yuzu-mainline/src/video_core/shader/decode.cpp

379 lines
13 KiB
C++
Raw Normal View History

2018-12-20 22:09:21 +00:00
// Copyright 2018 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <cstring>
#include <limits>
2018-12-20 22:09:21 +00:00
#include <set>
#include <fmt/format.h>
#include "common/assert.h"
2018-12-20 22:09:21 +00:00
#include "common/common_types.h"
#include "video_core/engines/shader_bytecode.h"
#include "video_core/engines/shader_header.h"
#include "video_core/shader/control_flow.h"
#include "video_core/shader/node_helper.h"
2018-12-20 22:09:21 +00:00
#include "video_core/shader/shader_ir.h"
namespace VideoCommon::Shader {
using Tegra::Shader::Instruction;
using Tegra::Shader::OpCode;
2018-12-21 06:39:46 +00:00
namespace {
2018-12-20 22:09:21 +00:00
/**
* Returns whether the instruction at the specified offset is a 'sched' instruction.
* Sched instructions always appear before a sequence of 3 instructions.
*/
constexpr bool IsSchedInstruction(u32 offset, u32 main_offset) {
constexpr u32 SchedPeriod = 4;
u32 absolute_offset = offset - main_offset;
return (absolute_offset % SchedPeriod) == 0;
}
void DeduceTextureHandlerSize(VideoCore::GuestDriverProfile& gpu_driver,
2020-01-24 14:44:34 +00:00
const std::list<Sampler>& used_samplers) {
if (gpu_driver.IsTextureHandlerSizeKnown() || used_samplers.size() <= 1) {
2020-01-08 15:46:36 +00:00
return;
}
u32 count{};
std::vector<u32> bound_offsets;
for (const auto& sampler : used_samplers) {
if (sampler.IsBindless()) {
continue;
}
++count;
bound_offsets.emplace_back(sampler.GetOffset());
}
if (count > 1) {
gpu_driver.DeduceTextureHandlerSize(std::move(bound_offsets));
2020-01-08 15:46:36 +00:00
}
}
2020-01-24 14:44:34 +00:00
std::optional<u32> TryDeduceSamplerSize(const Sampler& sampler_to_deduce,
VideoCore::GuestDriverProfile& gpu_driver,
2020-01-24 14:44:34 +00:00
const std::list<Sampler>& used_samplers) {
const u32 base_offset = sampler_to_deduce.GetOffset();
u32 max_offset{std::numeric_limits<u32>::max()};
for (const auto& sampler : used_samplers) {
if (sampler.IsBindless()) {
continue;
}
if (sampler.GetOffset() > base_offset) {
max_offset = std::min(sampler.GetOffset(), max_offset);
}
}
if (max_offset == std::numeric_limits<u32>::max()) {
return std::nullopt;
}
return ((max_offset - base_offset) * 4) / gpu_driver.GetTextureHandlerSize();
}
} // Anonymous namespace
2018-12-21 06:39:46 +00:00
class ASTDecoder {
public:
ASTDecoder(ShaderIR& ir) : ir(ir) {}
void operator()(ASTProgram& ast) {
ASTNode current = ast.nodes.GetFirst();
while (current) {
Visit(current);
current = current->GetNext();
}
}
void operator()(ASTIfThen& ast) {
ASTNode current = ast.nodes.GetFirst();
while (current) {
Visit(current);
current = current->GetNext();
}
}
void operator()(ASTIfElse& ast) {
ASTNode current = ast.nodes.GetFirst();
while (current) {
Visit(current);
current = current->GetNext();
}
}
void operator()(ASTBlockEncoded& ast) {}
void operator()(ASTBlockDecoded& ast) {}
void operator()(ASTVarSet& ast) {}
void operator()(ASTLabel& ast) {}
void operator()(ASTGoto& ast) {}
void operator()(ASTDoWhile& ast) {
ASTNode current = ast.nodes.GetFirst();
while (current) {
Visit(current);
current = current->GetNext();
}
}
void operator()(ASTReturn& ast) {}
void operator()(ASTBreak& ast) {}
void Visit(ASTNode& node) {
std::visit(*this, *node->GetInnerData());
if (node->IsBlockEncoded()) {
auto block = std::get_if<ASTBlockEncoded>(node->GetInnerData());
NodeBlock bb = ir.DecodeRange(block->start, block->end);
2019-10-04 21:23:16 +00:00
node->TransformBlockEncoded(std::move(bb));
}
}
private:
ShaderIR& ir;
};
2018-12-20 22:09:21 +00:00
void ShaderIR::Decode() {
std::memcpy(&header, program_code.data(), sizeof(Tegra::Shader::Header));
decompiled = false;
auto info = ScanFlow(program_code, main_offset, settings, registry);
auto& shader_info = *info;
coverage_begin = shader_info.start;
coverage_end = shader_info.end;
switch (shader_info.settings.depth) {
case CompileDepth::FlowStack: {
for (const auto& block : shader_info.blocks) {
basic_blocks.insert({block.start, DecodeRange(block.start, block.end + 1)});
}
break;
}
case CompileDepth::NoFlowStack: {
disable_flow_stack = true;
const auto insert_block = [this](NodeBlock& nodes, u32 label) {
if (label == static_cast<u32>(exit_branch)) {
return;
}
basic_blocks.insert({label, nodes});
};
const auto& blocks = shader_info.blocks;
NodeBlock current_block;
u32 current_label = static_cast<u32>(exit_branch);
for (auto& block : blocks) {
if (shader_info.labels.count(block.start) != 0) {
insert_block(current_block, current_label);
current_block.clear();
current_label = block.start;
}
if (!block.ignore_branch) {
DecodeRangeInner(current_block, block.start, block.end);
InsertControlFlow(current_block, block);
} else {
DecodeRangeInner(current_block, block.start, block.end + 1);
}
}
insert_block(current_block, current_label);
break;
}
case CompileDepth::DecompileBackwards:
case CompileDepth::FullDecompile: {
program_manager = std::move(shader_info.manager);
disable_flow_stack = true;
decompiled = true;
ASTDecoder decoder{*this};
ASTNode program = GetASTProgram();
decoder.Visit(program);
break;
}
default:
LOG_CRITICAL(HW_GPU, "Unknown decompilation mode!");
[[fallthrough]];
case CompileDepth::BruteForce: {
const auto shader_end = static_cast<u32>(program_code.size());
coverage_begin = main_offset;
coverage_end = shader_end;
for (u32 label = main_offset; label < shader_end; ++label) {
basic_blocks.insert({label, DecodeRange(label, label + 1)});
}
break;
}
2018-12-20 22:09:21 +00:00
}
if (settings.depth != shader_info.settings.depth) {
LOG_WARNING(
HW_GPU, "Decompiling to this setting \"{}\" failed, downgrading to this setting \"{}\"",
CompileDepthAsString(settings.depth), CompileDepthAsString(shader_info.settings.depth));
2018-12-20 22:09:21 +00:00
}
}
NodeBlock ShaderIR::DecodeRange(u32 begin, u32 end) {
NodeBlock basic_block;
DecodeRangeInner(basic_block, begin, end);
return basic_block;
}
void ShaderIR::DecodeRangeInner(NodeBlock& bb, u32 begin, u32 end) {
2018-12-20 22:09:21 +00:00
for (u32 pc = begin; pc < (begin > end ? MAX_PROGRAM_LENGTH : end);) {
pc = DecodeInstr(bb, pc);
2018-12-20 22:09:21 +00:00
}
}
2019-06-25 15:10:45 +00:00
void ShaderIR::InsertControlFlow(NodeBlock& bb, const ShaderBlock& block) {
const auto apply_conditions = [&](const Condition& cond, Node n) -> Node {
2019-06-25 15:10:45 +00:00
Node result = n;
if (cond.cc != ConditionCode::T) {
result = Conditional(GetConditionCode(cond.cc), {result});
}
if (cond.predicate != Pred::UnusedIndex) {
u32 pred = static_cast<u32>(cond.predicate);
const bool is_neg = pred > 7;
if (is_neg) {
2019-06-25 15:10:45 +00:00
pred -= 8;
}
2019-06-25 15:10:45 +00:00
result = Conditional(GetPredicate(pred, is_neg), {result});
}
return result;
};
if (std::holds_alternative<SingleBranch>(*block.branch)) {
auto branch = std::get_if<SingleBranch>(block.branch.get());
if (branch->address < 0) {
if (branch->kill) {
Node n = Operation(OperationCode::Discard);
n = apply_conditions(branch->condition, n);
bb.push_back(n);
global_code.push_back(n);
return;
}
Node n = Operation(OperationCode::Exit);
n = apply_conditions(branch->condition, n);
2019-06-25 15:10:45 +00:00
bb.push_back(n);
global_code.push_back(n);
return;
}
Node n = Operation(OperationCode::Branch, Immediate(branch->address));
n = apply_conditions(branch->condition, n);
2019-06-25 15:10:45 +00:00
bb.push_back(n);
global_code.push_back(n);
return;
}
auto multi_branch = std::get_if<MultiBranch>(block.branch.get());
Node op_a = GetRegister(multi_branch->gpr);
for (auto& branch_case : multi_branch->branches) {
Node n = Operation(OperationCode::Branch, Immediate(branch_case.address));
Node op_b = Immediate(branch_case.cmp_value);
Node condition =
GetPredicateComparisonInteger(Tegra::Shader::PredCondition::Equal, false, op_a, op_b);
auto result = Conditional(condition, {n});
bb.push_back(result);
global_code.push_back(result);
}
2019-06-25 15:10:45 +00:00
}
u32 ShaderIR::DecodeInstr(NodeBlock& bb, u32 pc) {
2018-12-20 22:09:21 +00:00
// Ignore sched instructions when generating code.
if (IsSchedInstruction(pc, main_offset)) {
return pc + 1;
}
const Instruction instr = {program_code[pc]};
const auto opcode = OpCode::Decode(instr);
const u32 nv_address = ConvertAddressToNvidiaSpace(pc);
2018-12-20 22:09:21 +00:00
// Decoding failure
if (!opcode) {
UNIMPLEMENTED_MSG("Unhandled instruction: {0:x}", instr.value);
bb.push_back(Comment(fmt::format("{:05x} Unimplemented Shader instruction (0x{:016x})",
nv_address, instr.value)));
2018-12-20 22:09:21 +00:00
return pc + 1;
}
bb.push_back(Comment(
fmt::format("{:05x} {} (0x{:016x})", nv_address, opcode->get().GetName(), instr.value)));
2018-12-20 22:09:21 +00:00
using Tegra::Shader::Pred;
UNIMPLEMENTED_IF_MSG(instr.pred.full_pred == Pred::NeverExecute,
"NeverExecute predicate not implemented");
static const std::map<OpCode::Type, u32 (ShaderIR::*)(NodeBlock&, u32)> decoders = {
{OpCode::Type::Arithmetic, &ShaderIR::DecodeArithmetic},
{OpCode::Type::ArithmeticImmediate, &ShaderIR::DecodeArithmeticImmediate},
{OpCode::Type::Bfe, &ShaderIR::DecodeBfe},
{OpCode::Type::Bfi, &ShaderIR::DecodeBfi},
{OpCode::Type::Shift, &ShaderIR::DecodeShift},
{OpCode::Type::ArithmeticInteger, &ShaderIR::DecodeArithmeticInteger},
{OpCode::Type::ArithmeticIntegerImmediate, &ShaderIR::DecodeArithmeticIntegerImmediate},
{OpCode::Type::ArithmeticHalf, &ShaderIR::DecodeArithmeticHalf},
{OpCode::Type::ArithmeticHalfImmediate, &ShaderIR::DecodeArithmeticHalfImmediate},
{OpCode::Type::Ffma, &ShaderIR::DecodeFfma},
{OpCode::Type::Hfma2, &ShaderIR::DecodeHfma2},
{OpCode::Type::Conversion, &ShaderIR::DecodeConversion},
{OpCode::Type::Warp, &ShaderIR::DecodeWarp},
{OpCode::Type::Memory, &ShaderIR::DecodeMemory},
{OpCode::Type::Texture, &ShaderIR::DecodeTexture},
{OpCode::Type::Image, &ShaderIR::DecodeImage},
{OpCode::Type::FloatSetPredicate, &ShaderIR::DecodeFloatSetPredicate},
{OpCode::Type::IntegerSetPredicate, &ShaderIR::DecodeIntegerSetPredicate},
{OpCode::Type::HalfSetPredicate, &ShaderIR::DecodeHalfSetPredicate},
{OpCode::Type::PredicateSetRegister, &ShaderIR::DecodePredicateSetRegister},
{OpCode::Type::PredicateSetPredicate, &ShaderIR::DecodePredicateSetPredicate},
{OpCode::Type::RegisterSetPredicate, &ShaderIR::DecodeRegisterSetPredicate},
{OpCode::Type::FloatSet, &ShaderIR::DecodeFloatSet},
{OpCode::Type::IntegerSet, &ShaderIR::DecodeIntegerSet},
{OpCode::Type::HalfSet, &ShaderIR::DecodeHalfSet},
{OpCode::Type::Video, &ShaderIR::DecodeVideo},
{OpCode::Type::Xmad, &ShaderIR::DecodeXmad},
};
std::vector<Node> tmp_block;
2018-12-20 22:09:21 +00:00
if (const auto decoder = decoders.find(opcode->get().GetType()); decoder != decoders.end()) {
pc = (this->*decoder->second)(tmp_block, pc);
2018-12-20 22:09:21 +00:00
} else {
pc = DecodeOther(tmp_block, pc);
2018-12-20 22:09:21 +00:00
}
// Some instructions (like SSY) don't have a predicate field, they are always unconditionally
// executed.
const bool can_be_predicated = OpCode::IsPredicatedInstruction(opcode->get().GetId());
const auto pred_index = static_cast<u32>(instr.pred.pred_index);
if (can_be_predicated && pred_index != static_cast<u32>(Pred::UnusedIndex)) {
const Node conditional =
Conditional(GetPredicate(pred_index, instr.negate_pred != 0), std::move(tmp_block));
global_code.push_back(conditional);
bb.push_back(conditional);
2018-12-20 22:09:21 +00:00
} else {
for (auto& node : tmp_block) {
global_code.push_back(node);
bb.push_back(node);
2018-12-20 22:09:21 +00:00
}
}
return pc + 1;
}
void ShaderIR::PostDecode() {
// Deduce texture handler size if needed
auto gpu_driver = registry.AccessGuestDriverProfile();
2020-01-05 16:08:39 +00:00
DeduceTextureHandlerSize(gpu_driver, used_samplers);
// Deduce Indexed Samplers
2020-01-24 14:44:34 +00:00
if (!uses_indexed_samplers) {
return;
}
for (auto& sampler : used_samplers) {
if (!sampler.IsIndexed()) {
continue;
}
if (const auto size = TryDeduceSamplerSize(sampler, gpu_driver, used_samplers)) {
sampler.SetSize(*size);
} else {
LOG_CRITICAL(HW_GPU, "Failed to deduce size of indexed sampler");
sampler.SetSize(1);
}
}
}
2019-04-03 07:33:36 +00:00
} // namespace VideoCommon::Shader