Without this flag, OpenGL rendering does not work as expected.
Additionally, all WGL_ARB_pixel_format attributes are expected to be
specified in key-value pairs. Fixed double-buffering and stereoscoping
rendering attributes.
Fixed WGL_ARB_pixel_format attribute selection for doublebuffering,
stereoscopic rendering and hardware acceleration. Implemented
minimization strategy to select the optimal PixelFormatDescriptor in the
fallback path.
Instead of creating a list of all available formats and iterating
through that, we let the driver decide which is the best accelerated
format to use for the user parameters. If no such format exists, we fall
back to generic acceleration or software acceleration, in turn.
This affects issue #21
Don't filter window messages passed to our window (see
http://blogs.msdn.com/b/oldnewthing/archive/2005/02/09/369804.aspx).
Additionally, return the correct values for all messages we are actually
handling and clean up unmanaged memory after we are done with the
window.
Instead of combining PeekMessage+GetMessage, we can simply call
PeekMessage(Remove) to achieve the same effect. This also allows us to
remove the IsIdle property, which is no longer used anywhere.
The temporary context is now retained until the actual context has been
constructed. If we don't do this, then WGL_ARB_create_context may fail
to work correctly on specific GPUs (e.g. Intel). This may affect issue
#19.
The correct way to query number of available pixel formats is to use
Wgl.Arb.GetPixelFormatAttrib(NumberPixelFormatsArb), not
Wgl.Arb.ChoosePixelFormats. This fixes an issue where Intel drivers
would fail to report any pixel formats in GetModesARB, even when
WGL_ARB_pixel_format is supported.
Misbehaving clients that shall not be named here may call
GameWindow.Close() inside the GameWindow.Closing event. This causes
recursion in SDL2, crashing the application.
This patch adds a guard to protect against recursion when calling
GameWindow.Close().
Instead of modifying the name of an OpenGL symbol on the managed side,
before copying it to the unmanaged side, we perform the modification
directly on the unmanaged side. This reduces the total amount of
allocations in OpenTK by ~30% (673496 bytes in 10750 objects compared
to 930272 bytes in 15243 objects before this modification.)
It is now possible to indicate that an application is not DPI-aware. In
that case, OpenTK will let the operating system handle DPI scaling. This
results in worse visuals (pixel doubling) but allows non DPI-aware
applications to continue working.
WGL was autogenerated a few years ago but never touched after that.
Since we use a tiny fraction of all available methods, it makes sense to
remove the unused ones. This reduces dll size and improves startup
times.
On Windows, entry points for OpenGL 1.0 and 1.1 are not exposed by
wglGetProcAddress. We fall back to LoadLibrary+GetProcAddress when
wglProcAddress fails.
OpenTK normally uses reflection to load bindings, instead of generating
huge constructors. Although reflection is faster on first load (thanks
to reduced JIT overhead), it fails to work correctly with monolinker.
This branch explores the performance of a direct binding.