unicorn/qemu/target-arm/helper.c

5960 lines
197 KiB
C
Raw Normal View History

2015-08-21 07:04:50 +00:00
#include "cpu.h"
#include "internals.h"
#include "exec/helper-proto.h"
#include "qemu/host-utils.h"
#include "sysemu/sysemu.h"
#include "qemu/bitops.h"
#include "qemu/crc32c.h"
#include "exec/cpu_ldst.h"
#include "arm_ldst.h"
#ifndef CONFIG_USER_ONLY
static inline int get_phys_addr(CPUARMState *env, target_ulong address,
int access_type, int is_user,
hwaddr *phys_ptr, int *prot,
target_ulong *page_size);
/* Definitions for the PMCCNTR and PMCR registers */
#define PMCRD 0x8
#define PMCRC 0x4
#define PMCRE 0x1
#endif
static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
if (cpreg_field_is_64bit(ri)) {
return CPREG_FIELD64(env, ri);
} else {
return CPREG_FIELD32(env, ri);
}
}
static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
if (cpreg_field_is_64bit(ri)) {
CPREG_FIELD64(env, ri) = value;
} else {
CPREG_FIELD32(env, ri) = value;
}
}
static uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
{
/* Raw read of a coprocessor register (as needed for migration, etc). */
if (ri->type & ARM_CP_CONST) {
return ri->resetvalue;
} else if (ri->raw_readfn) {
return ri->raw_readfn(env, ri);
} else if (ri->readfn) {
return ri->readfn(env, ri);
} else {
return raw_read(env, ri);
}
}
static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t v)
{
/* Raw write of a coprocessor register (as needed for migration, etc).
* Note that constant registers are treated as write-ignored; the
* caller should check for success by whether a readback gives the
* value written.
*/
if (ri->type & ARM_CP_CONST) {
return;
} else if (ri->raw_writefn) {
ri->raw_writefn(env, ri, v);
} else if (ri->writefn) {
ri->writefn(env, ri, v);
} else {
raw_write(env, ri, v);
}
}
bool write_cpustate_to_list(ARMCPU *cpu)
{
/* Write the coprocessor state from cpu->env to the (index,value) list. */
int i;
bool ok = true;
for (i = 0; i < cpu->cpreg_array_len; i++) {
uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
const ARMCPRegInfo *ri;
ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
if (!ri) {
ok = false;
continue;
}
if (ri->type & ARM_CP_NO_MIGRATE) {
continue;
}
cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
}
return ok;
}
bool write_list_to_cpustate(ARMCPU *cpu)
{
int i;
bool ok = true;
for (i = 0; i < cpu->cpreg_array_len; i++) {
uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
uint64_t v = cpu->cpreg_values[i];
const ARMCPRegInfo *ri;
ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
if (!ri) {
ok = false;
continue;
}
if (ri->type & ARM_CP_NO_MIGRATE) {
continue;
}
/* Write value and confirm it reads back as written
* (to catch read-only registers and partially read-only
* registers where the incoming migration value doesn't match)
*/
write_raw_cp_reg(&cpu->env, ri, v);
if (read_raw_cp_reg(&cpu->env, ri) != v) {
ok = false;
}
}
return ok;
}
static void add_cpreg_to_list(gpointer key, gpointer opaque)
{
ARMCPU *cpu = opaque;
uint64_t regidx;
const ARMCPRegInfo *ri;
regidx = *(uint32_t *)key;
ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
if (!(ri->type & ARM_CP_NO_MIGRATE)) {
cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
/* The value array need not be initialized at this point */
cpu->cpreg_array_len++;
}
}
static void count_cpreg(gpointer key, gpointer opaque)
{
ARMCPU *cpu = opaque;
uint64_t regidx;
const ARMCPRegInfo *ri;
regidx = *(uint32_t *)key;
ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
if (!(ri->type & ARM_CP_NO_MIGRATE)) {
cpu->cpreg_array_len++;
}
}
static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
2015-08-21 07:04:50 +00:00
{
uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
if (aidx > bidx) {
return 1;
}
if (aidx < bidx) {
return -1;
}
return 0;
}
static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata)
{
GList **plist = udata;
*plist = g_list_prepend(*plist, key);
}
void init_cpreg_list(ARMCPU *cpu)
{
/* Initialise the cpreg_tuples[] array based on the cp_regs hash.
* Note that we require cpreg_tuples[] to be sorted by key ID.
*/
GList *keys = NULL;
int arraylen;
g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys);
keys = g_list_sort(keys, cpreg_key_compare);
cpu->cpreg_array_len = 0;
g_list_foreach(keys, count_cpreg, cpu);
arraylen = cpu->cpreg_array_len;
cpu->cpreg_indexes = g_new(uint64_t, arraylen);
cpu->cpreg_values = g_new(uint64_t, arraylen);
cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
cpu->cpreg_array_len = 0;
g_list_foreach(keys, add_cpreg_to_list, cpu);
assert(cpu->cpreg_array_len == arraylen);
g_list_free(keys);
}
static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
ARMCPU *cpu = arm_env_get_cpu(env);
raw_write(env, ri, value);
tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
}
static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
ARMCPU *cpu = arm_env_get_cpu(env);
if (raw_read(env, ri) != value) {
/* Unlike real hardware the qemu TLB uses virtual addresses,
* not modified virtual addresses, so this causes a TLB flush.
*/
tlb_flush(CPU(cpu), 1);
raw_write(env, ri, value);
}
}
static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
ARMCPU *cpu = arm_env_get_cpu(env);
if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
&& !extended_addresses_enabled(env)) {
/* For VMSA (when not using the LPAE long descriptor page table
* format) this register includes the ASID, so do a TLB flush.
* For PMSA it is purely a process ID and no action is needed.
*/
tlb_flush(CPU(cpu), 1);
}
raw_write(env, ri, value);
}
static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* Invalidate all (TLBIALL) */
ARMCPU *cpu = arm_env_get_cpu(env);
tlb_flush(CPU(cpu), 1);
}
static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
ARMCPU *cpu = arm_env_get_cpu(env);
tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
}
static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* Invalidate by ASID (TLBIASID) */
ARMCPU *cpu = arm_env_get_cpu(env);
tlb_flush(CPU(cpu), value == 0);
}
static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
ARMCPU *cpu = arm_env_get_cpu(env);
tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
}
/* IS variants of TLB operations must affect all cores */
static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
//struct uc_struct *uc = env->uc;
2016-09-23 14:38:21 +00:00
// TODO: issue #642
// tlb_flush(other_cpu, 1);
2015-08-21 07:04:50 +00:00
}
static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
//struct uc_struct *uc = env->uc;
2016-09-23 14:38:21 +00:00
// TODO: issue #642
// tlb_flush(other_cpu, value == 0);
2015-08-21 07:04:50 +00:00
}
static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
//struct uc_struct *uc = env->uc;
2016-09-23 14:38:21 +00:00
// TODO: issue #642
// tlb_flush(other_cpu, value & TARGET_PAGE_MASK);
2015-08-21 07:04:50 +00:00
}
static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
//struct uc_struct *uc = env->uc;
2016-09-23 14:38:21 +00:00
// TODO: issue #642
// tlb_flush(other_cpu, value & TARGET_PAGE_MASK);
2015-08-21 07:04:50 +00:00
}
static const ARMCPRegInfo cp_reginfo[] = {
{ "FCSEIDR", 15,13,0, 0,0,0, 0,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.c13_fcse), {0, 0},
NULL, NULL, fcse_write, NULL, raw_write, NULL, },
{ "CONTEXTIDR", 0,13,0, 3,0,1, ARM_CP_STATE_BOTH,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.contextidr_el1), {0, 0},
NULL, NULL, contextidr_write, NULL, raw_write, NULL, },
2015-08-21 07:04:50 +00:00
REGINFO_SENTINEL
};
static const ARMCPRegInfo not_v8_cp_reginfo[] = {
/* NB: Some of these registers exist in v8 but with more precise
* definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
*/
/* MMU Domain access control / MPU write buffer control */
{ "DACR", 15,3,CP_ANY, 0,CP_ANY,CP_ANY, 0,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.c3), {0, 0},
NULL, NULL, dacr_write, NULL, raw_write, NULL, },
2015-08-21 07:04:50 +00:00
/* ??? This covers not just the impdef TLB lockdown registers but also
* some v7VMSA registers relating to TEX remap, so it is overly broad.
*/
{ "TLB_LOCKDOWN", 15,10,CP_ANY, 0,CP_ANY,CP_ANY, 0,
ARM_CP_NOP, PL1_RW, },
2015-08-21 07:04:50 +00:00
/* Cache maintenance ops; some of this space may be overridden later. */
{ "CACHEMAINT", 15,7,CP_ANY, 0,0,CP_ANY, 0,
ARM_CP_NOP | ARM_CP_OVERRIDE, PL1_W, },
2015-08-21 07:04:50 +00:00
REGINFO_SENTINEL
};
static const ARMCPRegInfo not_v6_cp_reginfo[] = {
/* Not all pre-v6 cores implemented this WFI, so this is slightly
* over-broad.
*/
{ "WFI_v5", 15,7,8, 0,0,2, 0,
ARM_CP_WFI, PL1_W, },
2015-08-21 07:04:50 +00:00
REGINFO_SENTINEL
};
static const ARMCPRegInfo not_v7_cp_reginfo[] = {
/* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
* is UNPREDICTABLE; we choose to NOP as most implementations do).
*/
{ "WFI_v6", 15,7,0, 0,0,4, 0,
ARM_CP_WFI, PL1_W, },
2015-08-21 07:04:50 +00:00
/* L1 cache lockdown. Not architectural in v6 and earlier but in practice
* implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
* OMAPCP will override this space.
*/
{ "DLOCKDOWN", 15,9,0, 0,0,0, 0,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.c9_data), },
{ "ILOCKDOWN", 15,9,0, 0,0,1, 0,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.c9_insn), },
2015-08-21 07:04:50 +00:00
/* v6 doesn't have the cache ID registers but Linux reads them anyway */
{ "DUMMY", 15,0,0, 0,1,CP_ANY, 0,
ARM_CP_CONST | ARM_CP_NO_MIGRATE, PL1_R, 0, NULL, 0 },
2015-08-21 07:04:50 +00:00
/* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
* implementing it as RAZ means the "debug architecture version" bits
* will read as a reserved value, which should cause Linux to not try
* to use the debug hardware.
*/
{ "DBGDIDR", 14,0,0, 0,0,0, 0,
ARM_CP_CONST, PL0_R, 0, NULL, 0 },
2015-08-21 07:04:50 +00:00
/* MMU TLB control. Note that the wildcarding means we cover not just
* the unified TLB ops but also the dside/iside/inner-shareable variants.
*/
{ "TLBIALL", 15,8,CP_ANY, 0,CP_ANY,0, 0,
ARM_CP_NO_MIGRATE, PL1_W, 0, NULL, 0, 0, {0, 0},
NULL, NULL, tlbiall_write, },
{ "TLBIMVA", 15,8,CP_ANY, 0,CP_ANY,1, 0,
ARM_CP_NO_MIGRATE, PL1_W, 0, NULL, 0, 0, {0, 0},
NULL, NULL, tlbimva_write, },
{ "TLBIASID", 15,8,CP_ANY, 0,CP_ANY,2, 0,
ARM_CP_NO_MIGRATE, PL1_W, 0, NULL, 0, 0, {0, 0},
NULL, NULL, tlbiasid_write, },
{ "TLBIMVAA", 15,8,CP_ANY, 0,CP_ANY,3, 0,
ARM_CP_NO_MIGRATE, PL1_W, 0, NULL, 0, 0, {0, 0},
NULL, NULL, tlbimvaa_write, },
2015-08-21 07:04:50 +00:00
REGINFO_SENTINEL
};
static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
uint32_t mask = 0;
/* In ARMv8 most bits of CPACR_EL1 are RES0. */
if (!arm_feature(env, ARM_FEATURE_V8)) {
/* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
* ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
* TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
*/
if (arm_feature(env, ARM_FEATURE_VFP)) {
/* VFP coprocessor: cp10 & cp11 [23:20] */
mask |= (1 << 31) | (1 << 30) | (0xf << 20);
if (!arm_feature(env, ARM_FEATURE_NEON)) {
/* ASEDIS [31] bit is RAO/WI */
value |= (1 << 31);
}
/* VFPv3 and upwards with NEON implement 32 double precision
* registers (D0-D31).
*/
if (!arm_feature(env, ARM_FEATURE_NEON) ||
!arm_feature(env, ARM_FEATURE_VFP3)) {
/* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
value |= (1 << 30);
}
}
value &= mask;
}
env->cp15.c1_coproc = value;
}
static const ARMCPRegInfo v6_cp_reginfo[] = {
/* prefetch by MVA in v6, NOP in v7 */
{ "MVA_prefetch", 15,7,13, 0,0,1, 0,
ARM_CP_NOP, PL1_W, },
{ "ISB", 15,7,5, 0,0,4, 0,
ARM_CP_NOP, PL0_W, },
{ "DSB", 15,7,10, 0,0,4, 0,
ARM_CP_NOP, PL0_W, },
{ "DMB", 15,7,10, 0,0,5, 0,
ARM_CP_NOP, PL0_W, },
{ "IFAR", 15,6,0, 0,0,2, 0,
0, PL1_RW, 0, NULL, 0, offsetofhigh32(CPUARMState, cp15.far_el[1]), },
2015-08-21 07:04:50 +00:00
/* Watchpoint Fault Address Register : should actually only be present
* for 1136, 1176, 11MPCore.
*/
{ "WFAR", 15,6,0, 0,0,1, 0,
ARM_CP_CONST, PL1_RW, 0, NULL, 0, },
{ "CPACR", 0,1,0, 3,0,2, ARM_CP_STATE_BOTH,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.c1_coproc), {0, 0},
NULL, NULL, cpacr_write },
2015-08-21 07:04:50 +00:00
REGINFO_SENTINEL
};
static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
/* Performance monitor registers user accessibility is controlled
* by PMUSERENR.
*/
if (arm_current_el(env) == 0 && !env->cp15.c9_pmuserenr) {
return CP_ACCESS_TRAP;
}
return CP_ACCESS_OK;
}
#ifndef CONFIG_USER_ONLY
static inline bool arm_ccnt_enabled(CPUARMState *env)
{
/* This does not support checking PMCCFILTR_EL0 register */
if (!(env->cp15.c9_pmcr & PMCRE)) {
return false;
}
return true;
}
void pmccntr_sync(CPUARMState *env)
{
uint64_t temp_ticks;
temp_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
get_ticks_per_sec(), 1000000);
if (env->cp15.c9_pmcr & PMCRD) {
/* Increment once every 64 processor clock cycles */
temp_ticks /= 64;
}
if (arm_ccnt_enabled(env)) {
env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
}
}
static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
pmccntr_sync(env);
if (value & PMCRC) {
/* The counter has been reset */
env->cp15.c15_ccnt = 0;
}
/* only the DP, X, D and E bits are writable */
env->cp15.c9_pmcr &= ~0x39;
env->cp15.c9_pmcr |= (value & 0x39);
pmccntr_sync(env);
}
static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
uint64_t total_ticks;
if (!arm_ccnt_enabled(env)) {
/* Counter is disabled, do not change value */
return env->cp15.c15_ccnt;
}
total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
get_ticks_per_sec(), 1000000);
if (env->cp15.c9_pmcr & PMCRD) {
/* Increment once every 64 processor clock cycles */
total_ticks /= 64;
}
return total_ticks - env->cp15.c15_ccnt;
}
static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
uint64_t total_ticks;
if (!arm_ccnt_enabled(env)) {
/* Counter is disabled, set the absolute value */
env->cp15.c15_ccnt = value;
return;
}
total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
get_ticks_per_sec(), 1000000);
if (env->cp15.c9_pmcr & PMCRD) {
/* Increment once every 64 processor clock cycles */
total_ticks /= 64;
}
env->cp15.c15_ccnt = total_ticks - value;
}
static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
uint64_t cur_val = pmccntr_read(env, NULL);
pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
}
#else /* CONFIG_USER_ONLY */
void pmccntr_sync(CPUARMState *env)
{
}
#endif
static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
pmccntr_sync(env);
env->cp15.pmccfiltr_el0 = value & 0x7E000000;
pmccntr_sync(env);
}
static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
value &= (1 << 31);
env->cp15.c9_pmcnten |= value;
}
static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
value &= (1 << 31);
env->cp15.c9_pmcnten &= ~value;
}
static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
env->cp15.c9_pmovsr &= ~value;
}
static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
env->cp15.c9_pmxevtyper = value & 0xff;
}
static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
env->cp15.c9_pmuserenr = value & 1;
}
static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* We have no event counters so only the C bit can be changed */
value &= (1 << 31);
env->cp15.c9_pminten |= value;
}
static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
value &= (1 << 31);
env->cp15.c9_pminten &= ~value;
}
static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* Note that even though the AArch64 view of this register has bits
* [10:0] all RES0 we can only mask the bottom 5, to comply with the
* architectural requirements for bits which are RES0 only in some
* contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
* requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
*/
raw_write(env, ri, value & ~0x1FULL);
}
static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
/* We only mask off bits that are RES0 both for AArch64 and AArch32.
* For bits that vary between AArch32/64, code needs to check the
* current execution mode before directly using the feature bit.
*/
uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
if (!arm_feature(env, ARM_FEATURE_EL2)) {
valid_mask &= ~SCR_HCE;
/* On ARMv7, SMD (or SCD as it is called in v7) is only
* supported if EL2 exists. The bit is UNK/SBZP when
* EL2 is unavailable. In QEMU ARMv7, we force it to always zero
* when EL2 is unavailable.
*/
if (arm_feature(env, ARM_FEATURE_V7)) {
valid_mask &= ~SCR_SMD;
}
}
/* Clear all-context RES0 bits. */
value &= valid_mask;
raw_write(env, ri, value);
}
static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
ARMCPU *cpu = arm_env_get_cpu(env);
return cpu->ccsidr[env->cp15.c0_cssel];
}
static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
raw_write(env, ri, value & 0xf);
}
static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
CPUState *cs = ENV_GET_CPU(env);
uint64_t ret = 0;
if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
ret |= CPSR_I;
}
if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
ret |= CPSR_F;
}
/* External aborts are not possible in QEMU so A bit is always clear */
return ret;
}
static const ARMCPRegInfo v7_cp_reginfo[] = {
/* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
{ "NOP", 15,7,0, 0,0,4, 0,
ARM_CP_NOP, PL1_W, },
2015-08-21 07:04:50 +00:00
/* Performance monitors are implementation defined in v7,
* but with an ARM recommended set of registers, which we
* follow (although we don't actually implement any counters)
*
* Performance registers fall into three categories:
* (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
* (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
* (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
* For the cases controlled by PMUSERENR we must set .access to PL0_RW
* or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
*/
{ "PMCNTENSET", 15,9,12, 0,0,1, 0,
ARM_CP_NO_MIGRATE, PL0_RW, 0, NULL, 0, offsetoflow32(CPUARMState, cp15.c9_pmcnten), {0, 0},
pmreg_access, NULL, pmcntenset_write, NULL, raw_write },
{ "PMCNTENSET_EL0", 0,9,12, 3,3,1, ARM_CP_STATE_AA64,
0, PL0_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.c9_pmcnten), {0, 0},
pmreg_access, NULL, pmcntenset_write, NULL, raw_write },
{ "PMCNTENCLR", 15,9,12, 0,0,2, 0,
ARM_CP_NO_MIGRATE, PL0_RW, 0, NULL, 0, offsetoflow32(CPUARMState, cp15.c9_pmcnten), {0, 0},
pmreg_access, NULL, pmcntenclr_write, },
{ "PMCNTENCLR_EL0", 0,9,12, 3,3,2, ARM_CP_STATE_AA64,
ARM_CP_NO_MIGRATE, PL0_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.c9_pmcnten), {0, 0},
pmreg_access, NULL, pmcntenclr_write },
{ "PMOVSR", 15,9,12, 0,0,3, 0,
0, PL0_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.c9_pmovsr), {0, 0},
pmreg_access, NULL, pmovsr_write, NULL, raw_write },
2015-08-21 07:04:50 +00:00
/* Unimplemented so WI. */
{ "PMSWINC", 15,9,12, 0,0,4, 0,
ARM_CP_NOP, PL0_W, 0, NULL, 0, 0, {0, 0},
pmreg_access, },
2015-08-21 07:04:50 +00:00
/* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
* We choose to RAZ/WI.
*/
{ "PMSELR", 15,9,12, 0,0,5, 0,
ARM_CP_CONST, PL0_RW, 0, NULL, 0, 0, {0, 0},
pmreg_access },
2015-08-21 07:04:50 +00:00
#ifndef CONFIG_USER_ONLY
{ "PMCCNTR", 15,9,13, 0,0,0, 0,
ARM_CP_IO, PL0_RW, 0, NULL, 0, 0, {0, 0},
pmreg_access, pmccntr_read, pmccntr_write32, },
{ "PMCCNTR_EL0", 0,9,13, 3,3,0, ARM_CP_STATE_AA64,
ARM_CP_IO, PL0_RW, 0, NULL, 0, 0, {0, 0},
pmreg_access, pmccntr_read, pmccntr_write, },
2015-08-21 07:04:50 +00:00
#endif
{ "PMCCFILTR_EL0", 0,14,15, 3,3,7, ARM_CP_STATE_AA64,
ARM_CP_IO, PL0_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.pmccfiltr_el0), {0, 0},
pmreg_access, NULL, pmccfiltr_write, },
{ "PMXEVTYPER", 15,9,13, 0,0,1, 0,
0, PL0_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.c9_pmxevtyper), {0, 0},
pmreg_access, NULL, pmxevtyper_write, NULL, raw_write },
2015-08-21 07:04:50 +00:00
/* Unimplemented, RAZ/WI. */
{ "PMXEVCNTR", 15,9,13, 0,0,2, 0,
ARM_CP_CONST, PL0_RW, 0, NULL, 0, 0, {0, 0},
pmreg_access },
{ "PMUSERENR", 15,9,14, 0,0,0, 0,
0, PL0_R | PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.c9_pmuserenr), {0, 0},
NULL, NULL, pmuserenr_write, NULL, raw_write },
{ "PMINTENSET", 15,9,14, 0,0,1, 0,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.c9_pminten), {0, 0},
NULL, NULL, pmintenset_write, NULL, raw_write },
{ "PMINTENCLR", 15,9,14, 0,0,2, 0,
ARM_CP_NO_MIGRATE, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.c9_pminten), {0, 0},
NULL, NULL, pmintenclr_write, },
{ "CCSIDR", 0,0,0, 3,1,0, ARM_CP_STATE_BOTH,
ARM_CP_NO_MIGRATE, PL1_R, 0, NULL, 0, 0, {0, 0},
NULL, ccsidr_read, },
{ "CSSELR", 0,0,0, 3,2,0, ARM_CP_STATE_BOTH,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.c0_cssel), {0, 0},
NULL, NULL, csselr_write, },
2015-08-21 07:04:50 +00:00
/* Auxiliary ID register: this actually has an IMPDEF value but for now
* just RAZ for all cores:
*/
{ "AIDR", 0,0,0, 3,1,7, ARM_CP_STATE_BOTH,
ARM_CP_CONST, PL1_R, 0, NULL, 0 },
2015-08-21 07:04:50 +00:00
/* Auxiliary fault status registers: these also are IMPDEF, and we
* choose to RAZ/WI for all cores.
*/
{ "AFSR0_EL1", 0,5,1, 3,0,0, ARM_CP_STATE_BOTH,
ARM_CP_CONST, PL1_RW, 0, NULL, 0 },
{ "AFSR1_EL1", 0,5,1, 3,0,1, ARM_CP_STATE_BOTH,
ARM_CP_CONST, PL1_RW, 0, NULL, 0 },
2015-08-21 07:04:50 +00:00
/* MAIR can just read-as-written because we don't implement caches
* and so don't need to care about memory attributes.
*/
{ "MAIR_EL1", 0,10,2, 3,0,0, ARM_CP_STATE_AA64,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.mair_el1), },
2015-08-21 07:04:50 +00:00
/* For non-long-descriptor page tables these are PRRR and NMRR;
* regardless they still act as reads-as-written for QEMU.
* The override is necessary because of the overly-broad TLB_LOCKDOWN
* definition.
*/
{ "MAIR0", 15,10,2, 0,0,0, ARM_CP_STATE_AA32,
ARM_CP_OVERRIDE, PL1_RW, 0, NULL, 0, offsetoflow32(CPUARMState, cp15.mair_el1), {0, 0},
NULL, NULL, NULL, NULL, NULL, arm_cp_reset_ignore },
{ "MAIR1", 15,10,2, 0,0,1, ARM_CP_STATE_AA32,
ARM_CP_OVERRIDE, PL1_RW, 0, NULL, 0, offsetofhigh32(CPUARMState, cp15.mair_el1), {0, 0},
NULL, NULL, NULL, NULL, NULL, arm_cp_reset_ignore },
{ "ISR_EL1", 0,12,1, 3,0,0, ARM_CP_STATE_BOTH,
ARM_CP_NO_MIGRATE, PL1_R, 0, NULL, 0, 0, {0, 0},
NULL, isr_read },
2015-08-21 07:04:50 +00:00
/* 32 bit ITLB invalidates */
{ "ITLBIALL", 15,8,5, 0,0,0, 0,
ARM_CP_NO_MIGRATE, PL1_W, 0, NULL, 0, 0, {0, 0},
NULL, NULL, tlbiall_write },
{ "ITLBIMVA", 15,8,5, 0,0,1, 0,
ARM_CP_NO_MIGRATE, PL1_W, 0, NULL, 0, 0, {0, 0},
NULL, NULL, tlbimva_write },
{ "ITLBIASID", 15,8,5, 0,0,2, 0,
ARM_CP_NO_MIGRATE, PL1_W, 0, NULL, 0, 0, {0, 0},
NULL, NULL, tlbiasid_write },
2015-08-21 07:04:50 +00:00
/* 32 bit DTLB invalidates */
{ "DTLBIALL", 15,8,6, 0,0,0, 0,
ARM_CP_NO_MIGRATE, PL1_W, 0, NULL, 0, 0, {0, 0},
NULL, NULL, tlbiall_write },
{ "DTLBIMVA", 15,8,6, 0,0,1, 0,
ARM_CP_NO_MIGRATE, PL1_W, 0, NULL, 0, 0, {0, 0},
NULL, NULL, tlbimva_write },
{ "DTLBIASID", 15,8,6, 0,0,2, 0,
ARM_CP_NO_MIGRATE, PL1_W, 0, NULL, 0, 0, {0, 0},
NULL, NULL, tlbiasid_write },
2015-08-21 07:04:50 +00:00
/* 32 bit TLB invalidates */
{ "TLBIALL", 15,8,7, 0,0,0, 0,
ARM_CP_NO_MIGRATE, PL1_W, 0, NULL, 0, 0, {0, 0},
NULL, NULL, tlbiall_write },
{ "TLBIMVA", 15,8,7, 0,0,1, 0,
ARM_CP_NO_MIGRATE, PL1_W, 0, NULL, 0, 0, {0, 0},
NULL, NULL, tlbimva_write },
{ "TLBIASID", 15,8,7, 0,0,2, 0,
ARM_CP_NO_MIGRATE, PL1_W, 0, NULL, 0, 0, {0, 0},
NULL, NULL, tlbiasid_write },
{ "TLBIMVAA", 15,8,7, 0,0,3, 0,
ARM_CP_NO_MIGRATE, PL1_W, 0, NULL, 0, 0, {0, 0},
NULL, NULL, tlbimvaa_write },
2015-08-21 07:04:50 +00:00
REGINFO_SENTINEL
};
static const ARMCPRegInfo v7mp_cp_reginfo[] = {
/* 32 bit TLB invalidates, Inner Shareable */
{ "TLBIALLIS", 15,8,3, 0,0,0, 0,
ARM_CP_NO_MIGRATE, PL1_W, 0, NULL, 0, 0, {0, 0},
NULL, NULL, tlbiall_is_write },
{ "TLBIMVAIS", 15,8,3, 0,0,1, 0,
ARM_CP_NO_MIGRATE, PL1_W, 0, NULL, 0, 0, {0, 0},
NULL, NULL, tlbimva_is_write },
{ "TLBIASIDIS", 15,8,3, 0,0,2, 0,
ARM_CP_NO_MIGRATE, PL1_W, 0, NULL, 0, 0, {0, 0},
NULL, NULL, tlbiasid_is_write },
{ "TLBIMVAAIS", 15,8,3, 0,0,3, 0,
ARM_CP_NO_MIGRATE, PL1_W, 0, NULL, 0, 0, {0, 0},
NULL, NULL, tlbimvaa_is_write },
2015-08-21 07:04:50 +00:00
REGINFO_SENTINEL
};
static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
value &= 1;
env->teecr = value;
}
static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
if (arm_current_el(env) == 0 && (env->teecr & 1)) {
return CP_ACCESS_TRAP;
}
return CP_ACCESS_OK;
}
static const ARMCPRegInfo t2ee_cp_reginfo[] = {
{ "TEECR", 14,0,0, 0,6,0, 0,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, teecr), {0, 0},
NULL, NULL, teecr_write },
{ "TEEHBR", 14,1,0, 0,6,0, 0,
0, PL0_RW, 0, NULL, 0, offsetof(CPUARMState, teehbr), {0, 0},
teehbr_access, },
2015-08-21 07:04:50 +00:00
REGINFO_SENTINEL
};
static const ARMCPRegInfo v6k_cp_reginfo[] = {
{ "TPIDR_EL0", 0,13,0, 3,3,2, ARM_CP_STATE_AA64,
0, PL0_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.tpidr_el0), },
{ "TPIDRURW", 15,13,0, 0,0,2, 0,
0, PL0_RW, 0, NULL, 0, offsetoflow32(CPUARMState, cp15.tpidr_el0), {0, 0},
NULL, NULL, NULL, NULL, NULL, arm_cp_reset_ignore },
{ "TPIDRRO_EL0", 0,13,0, 3,3,3, ARM_CP_STATE_AA64,
0, PL0_R|PL1_W, 0, NULL, 0, offsetof(CPUARMState, cp15.tpidrro_el0) },
{ "TPIDRURO", 15,13,0, 0,0,3, 0,
0, PL0_R|PL1_W, 0, NULL, 0, offsetoflow32(CPUARMState, cp15.tpidrro_el0), {0, 0},
NULL, NULL, NULL, NULL, NULL, arm_cp_reset_ignore },
{ "TPIDR_EL1", 0,13,0, 3,0,4, ARM_CP_STATE_BOTH,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.tpidr_el1), },
2015-08-21 07:04:50 +00:00
REGINFO_SENTINEL
};
#ifndef CONFIG_USER_ONLY
static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
/* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
if (arm_current_el(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
return CP_ACCESS_TRAP;
}
return CP_ACCESS_OK;
}
static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx)
{
/* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
if (arm_current_el(env) == 0 &&
!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
return CP_ACCESS_TRAP;
}
return CP_ACCESS_OK;
}
static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx)
{
/* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
* EL0[PV]TEN is zero.
*/
if (arm_current_el(env) == 0 &&
!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
return CP_ACCESS_TRAP;
}
return CP_ACCESS_OK;
}
static CPAccessResult gt_pct_access(CPUARMState *env,
const ARMCPRegInfo *ri)
{
return gt_counter_access(env, GTIMER_PHYS);
}
static CPAccessResult gt_vct_access(CPUARMState *env,
const ARMCPRegInfo *ri)
{
return gt_counter_access(env, GTIMER_VIRT);
}
static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
return gt_timer_access(env, GTIMER_PHYS);
}
static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
return gt_timer_access(env, GTIMER_VIRT);
}
static uint64_t gt_get_countervalue(CPUARMState *env)
{
return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
}
static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
{
ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
if (gt->ctl & 1) {
/* Timer enabled: calculate and set current ISTATUS, irq, and
* reset timer to when ISTATUS next has to change
*/
uint64_t count = gt_get_countervalue(&cpu->env);
/* Note that this must be unsigned 64 bit arithmetic: */
int istatus = count >= gt->cval;
uint64_t nexttick;
gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
//qemu_set_irq(cpu->gt_timer_outputs[timeridx],
// (istatus && !(gt->ctl & 2)));
if (istatus) {
/* Next transition is when count rolls back over to zero */
nexttick = UINT64_MAX;
} else {
/* Next transition is when we hit cval */
nexttick = gt->cval;
}
/* Note that the desired next expiry time might be beyond the
* signed-64-bit range of a QEMUTimer -- in this case we just
* set the timer for as far in the future as possible. When the
* timer expires we will reset the timer for any remaining period.
*/
if (nexttick > INT64_MAX / GTIMER_SCALE) {
nexttick = INT64_MAX / GTIMER_SCALE;
}
//timer_mod(cpu->gt_timer[timeridx], nexttick);
} else {
/* Timer disabled: ISTATUS and timer output always clear */
gt->ctl &= ~4;
//qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
//timer_del(cpu->gt_timer[timeridx]);
}
}
static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
}
static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
return gt_get_countervalue(env);
}
static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
int timeridx = ri->opc1 & 1;
env->cp15.c14_timer[timeridx].cval = value;
//gt_recalc_timer(arm_env_get_cpu(env), timeridx);
}
static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
int timeridx = ri->crm & 1;
return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
gt_get_countervalue(env));
}
static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
int timeridx = ri->crm & 1;
env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) +
+ sextract64(value, 0, 32);
gt_recalc_timer(arm_env_get_cpu(env), timeridx);
}
static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
ARMCPU *cpu = arm_env_get_cpu(env);
int timeridx = ri->crm & 1;
uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
if ((oldval ^ value) & 1) {
/* Enable toggled */
gt_recalc_timer(cpu, timeridx);
} else if ((oldval ^ value) & 2) {
/* IMASK toggled: don't need to recalculate,
* just set the interrupt line based on ISTATUS
*/
//qemu_set_irq(cpu->gt_timer_outputs[timeridx],
// (oldval & 4) && !(value & 2));
}
}
void arm_gt_ptimer_cb(void *opaque)
{
ARMCPU *cpu = opaque;
gt_recalc_timer(cpu, GTIMER_PHYS);
}
void arm_gt_vtimer_cb(void *opaque)
{
ARMCPU *cpu = opaque;
gt_recalc_timer(cpu, GTIMER_VIRT);
}
static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
/* Note that CNTFRQ is purely reads-as-written for the benefit
* of software; writing it doesn't actually change the timer frequency.
* Our reset value matches the fixed frequency we implement the timer at.
*/
{ "CNTFRQ", 15,14,0, 0,0,0, 0,
ARM_CP_NO_MIGRATE, PL1_RW | PL0_R, 0, NULL, 0, offsetoflow32(CPUARMState, cp15.c14_cntfrq), {0, 0},
gt_cntfrq_access, NULL,NULL, NULL,NULL, arm_cp_reset_ignore, },
{ "CNTFRQ_EL0", 0,14,0, 3,3,0, ARM_CP_STATE_AA64,
0, PL1_RW | PL0_R, 0, NULL, (1000 * 1000 * 1000) / GTIMER_SCALE, offsetof(CPUARMState, cp15.c14_cntfrq), {0, 0},
gt_cntfrq_access, },
2015-08-21 07:04:50 +00:00
/* overall control: mostly access permissions */
{ "CNTKCTL", 0,14,1, 3,0,0, ARM_CP_STATE_BOTH,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.c14_cntkctl), },
2015-08-21 07:04:50 +00:00
/* per-timer control */
{ "CNTP_CTL", 15,14,2, 0,0,1, 0,
ARM_CP_IO | ARM_CP_NO_MIGRATE, PL1_RW | PL0_R, 0, NULL, 0, offsetoflow32(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), {0, 0},
gt_ptimer_access, NULL, gt_ctl_write, NULL,raw_write, arm_cp_reset_ignore, },
{ "CNTP_CTL_EL0", 0,14,2, 3,3,1, ARM_CP_STATE_AA64,
ARM_CP_IO, PL1_RW | PL0_R, 0, NULL, 0, offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), {0, 0},
gt_ptimer_access, NULL,gt_ctl_write, NULL,raw_write, },
{ "CNTV_CTL", 15,14,3, 0,0,1, 0,
ARM_CP_IO | ARM_CP_NO_MIGRATE, PL1_RW | PL0_R, 0, NULL, 0, offsetoflow32(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), {0, 0},
gt_vtimer_access, NULL,gt_ctl_write, NULL,raw_write, arm_cp_reset_ignore, },
{ "CNTV_CTL_EL0", 0,14,3, 3,3,1, ARM_CP_STATE_AA64,
ARM_CP_IO, PL1_RW | PL0_R, 0, NULL, 0, offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), {0, 0},
gt_vtimer_access, NULL,gt_ctl_write, NULL,raw_write, },
2015-08-21 07:04:50 +00:00
/* TimerValue views: a 32 bit downcounting view of the underlying state */
{ "CNTP_TVAL", 15,14,2, 0,0,0, 0,
ARM_CP_NO_MIGRATE | ARM_CP_IO, PL1_RW | PL0_R, 0, NULL, 0, 0, {0, 0},
gt_ptimer_access, gt_tval_read, gt_tval_write, },
{ "CNTP_TVAL_EL0", 0,14,2, 3,3,0, ARM_CP_STATE_AA64,
ARM_CP_NO_MIGRATE | ARM_CP_IO, PL1_RW | PL0_R, 0, NULL, 0, 0, {0, 0},
NULL, gt_tval_read, gt_tval_write, },
{ "CNTV_TVAL", 15,14,3, 0,0,0, 0,
ARM_CP_NO_MIGRATE | ARM_CP_IO, PL1_RW | PL0_R, 0, NULL, 0, 0, {0, 0},
gt_vtimer_access, gt_tval_read, gt_tval_write, },
{ "CNTV_TVAL_EL0", 0,14,3, 3,3,0, ARM_CP_STATE_AA64,
ARM_CP_NO_MIGRATE | ARM_CP_IO, PL1_RW | PL0_R, 0, NULL, 0, 0, {0, 0},
NULL, gt_tval_read, gt_tval_write, },
2015-08-21 07:04:50 +00:00
/* The counter itself */
{ "CNTPCT", 15,0,14, 0,0, 0, 0,
ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO, PL0_R, 0, NULL, 0, 0, {0, 0},
gt_pct_access, gt_cnt_read,NULL, NULL,NULL, arm_cp_reset_ignore, },
{ "CNTPCT_EL0", 0,14,0, 3,3,1, ARM_CP_STATE_AA64,
ARM_CP_NO_MIGRATE | ARM_CP_IO, PL0_R, 0, NULL, 0, 0, {0, 0},
gt_pct_access, gt_cnt_read, NULL, NULL, NULL, gt_cnt_reset, },
{ "CNTVCT", 15,0,14, 0,1,0, 0,
ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO, PL0_R, 0, NULL, 0, 0, {0, 0},
gt_vct_access, gt_cnt_read,NULL, NULL,NULL, arm_cp_reset_ignore, },
{ "CNTVCT_EL0", 0,14,0, 3,3,2, ARM_CP_STATE_AA64,
ARM_CP_NO_MIGRATE | ARM_CP_IO, PL0_R, 0, NULL, 0, 0, {0, 0},
gt_vct_access, gt_cnt_read, NULL, NULL,NULL, gt_cnt_reset, },
2015-08-21 07:04:50 +00:00
/* Comparison value, indicating when the timer goes off */
{ "CNTP_CVAL", 15, 0,14, 0,2, 0, 0,
ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE, PL1_RW | PL0_R, 0, NULL, 0, offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), {0, 0},
gt_ptimer_access, NULL, gt_cval_write, NULL, raw_write, arm_cp_reset_ignore, },
{ "CNTP_CVAL_EL0", 0,14,2, 3,3,2, ARM_CP_STATE_AA64,
ARM_CP_IO, PL1_RW | PL0_R, 0, NULL, 0, offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), {0, 0},
gt_vtimer_access, NULL, gt_cval_write, NULL, raw_write, },
{ "CNTV_CVAL", 15, 0,14, 0,3,0, 0,
ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE, PL1_RW | PL0_R, 0, NULL, 0, offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), {0, 0},
gt_vtimer_access, NULL, gt_cval_write, NULL, raw_write, arm_cp_reset_ignore, },
{ "CNTV_CVAL_EL0", 0,14,3, 3,3,2, ARM_CP_STATE_AA64,
ARM_CP_IO, PL1_RW | PL0_R, 0, NULL, 0, offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), {0, 0},
gt_vtimer_access, NULL, gt_cval_write, NULL, raw_write, },
2015-08-21 07:04:50 +00:00
REGINFO_SENTINEL
};
#else
/* In user-mode none of the generic timer registers are accessible,
* and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
* so instead just don't register any of them.
*/
static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
REGINFO_SENTINEL
};
#endif
static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
if (arm_feature(env, ARM_FEATURE_LPAE)) {
raw_write(env, ri, value);
} else if (arm_feature(env, ARM_FEATURE_V7)) {
raw_write(env, ri, value & 0xfffff6ff);
} else {
raw_write(env, ri, value & 0xfffff1ff);
}
}
#ifndef CONFIG_USER_ONLY
/* get_phys_addr() isn't present for user-mode-only targets */
static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
if (ri->opc2 & 4) {
/* Other states are only available with TrustZone; in
* a non-TZ implementation these registers don't exist
* at all, which is an Uncategorized trap. This underdecoding
* is safe because the reginfo is NO_MIGRATE.
*/
return CP_ACCESS_TRAP_UNCATEGORIZED;
}
return CP_ACCESS_OK;
}
static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
hwaddr phys_addr;
target_ulong page_size;
int prot;
int ret, is_user = ri->opc2 & 2;
int access_type = ri->opc2 & 1;
ret = get_phys_addr(env, value, access_type, is_user,
&phys_addr, &prot, &page_size);
if (extended_addresses_enabled(env)) {
/* ret is a DFSR/IFSR value for the long descriptor
* translation table format, but with WnR always clear.
* Convert it to a 64-bit PAR.
*/
uint64_t par64 = (1 << 11); /* LPAE bit always set */
if (ret == 0) {
par64 |= phys_addr & ~0xfffULL;
/* We don't set the ATTR or SH fields in the PAR. */
} else {
par64 |= 1; /* F */
par64 |= (ret & 0x3f) << 1; /* FS */
/* Note that S2WLK and FSTAGE are always zero, because we don't
* implement virtualization and therefore there can't be a stage 2
* fault.
*/
}
env->cp15.par_el1 = par64;
} else {
/* ret is a DFSR/IFSR value for the short descriptor
* translation table format (with WnR always clear).
* Convert it to a 32-bit PAR.
*/
if (ret == 0) {
/* We do not set any attribute bits in the PAR */
if (page_size == (1 << 24)
&& arm_feature(env, ARM_FEATURE_V7)) {
env->cp15.par_el1 = (phys_addr & 0xff000000) | 1 << 1;
} else {
env->cp15.par_el1 = phys_addr & 0xfffff000;
}
} else {
env->cp15.par_el1 = ((ret & (1 << 10)) >> 5) |
((ret & (1 << 12)) >> 6) |
((ret & 0xf) << 1) | 1;
}
}
}
#endif
static const ARMCPRegInfo vapa_cp_reginfo[] = {
{ "PAR", 15,7,4, 0,0,0, 0,
0, PL1_RW, 0, NULL, 0, offsetoflow32(CPUARMState, cp15.par_el1), {0, 0},
NULL, NULL, par_write },
2015-08-21 07:04:50 +00:00
#ifndef CONFIG_USER_ONLY
{ "ATS", 15,7,8, 0,0,CP_ANY, 0,
ARM_CP_NO_MIGRATE, PL1_W, 0, NULL, 0, 0, {0, 0},
ats_access, NULL, ats_write },
2015-08-21 07:04:50 +00:00
#endif
REGINFO_SENTINEL
};
/* Return basic MPU access permission bits. */
static uint32_t simple_mpu_ap_bits(uint32_t val)
{
uint32_t ret;
uint32_t mask;
int i;
ret = 0;
mask = 3;
for (i = 0; i < 16; i += 2) {
ret |= (val >> i) & mask;
mask <<= 2;
}
return ret;
}
/* Pad basic MPU access permission bits to extended format. */
static uint32_t extended_mpu_ap_bits(uint32_t val)
{
uint32_t ret;
uint32_t mask;
int i;
ret = 0;
mask = 3;
for (i = 0; i < 16; i += 2) {
ret |= (val & mask) << i;
mask <<= 2;
}
return ret;
}
static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
}
static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
}
static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
}
static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
}
static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
{ "DATA_AP", 15,5,0, 0,0,0, 0,
ARM_CP_NO_MIGRATE, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.pmsav5_data_ap), {0, 0},
NULL, pmsav5_data_ap_read, pmsav5_data_ap_write, },
{ "INSN_AP", 15,5,0, 0,0,1, 0,
ARM_CP_NO_MIGRATE,PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.pmsav5_insn_ap), {0, 0},
NULL, pmsav5_insn_ap_read, pmsav5_insn_ap_write, },
{ "DATA_EXT_AP", 15,5,0, 0,0,2, 0,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.pmsav5_data_ap), },
{ "INSN_EXT_AP", 15,5,0, 0,0,3, 0,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.pmsav5_insn_ap), },
{ "DCACHE_CFG", 15,2,0, 0,0,0, 0,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.c2_data), },
{ "ICACHE_CFG", 15,2,0, 0,0,1, 0,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.c2_insn), },
2015-08-21 07:04:50 +00:00
/* Protection region base and size registers */
{ "946_PRBS0", 15,6,0, 0,0,CP_ANY, 0,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.c6_region[0]) },
{ "946_PRBS1", 15,6,1, 0,0,CP_ANY, 0,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.c6_region[1]) },
{ "946_PRBS2", 15,6,2, 0,0,CP_ANY, 0,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.c6_region[2]) },
{ "946_PRBS3", 15,6,3, 0,0,CP_ANY, 0,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.c6_region[3]) },
{ "946_PRBS4", 15,6,4, 0,0,CP_ANY, 0,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.c6_region[4]) },
{ "946_PRBS5", 15,6,5, 0,0,CP_ANY, 0,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.c6_region[5]) },
{ "946_PRBS6", 15,6,6, 0,0,CP_ANY, 0,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.c6_region[6]) },
{ "946_PRBS7", 15,6,7, 0,0,CP_ANY, 0,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.c6_region[7]) },
2015-08-21 07:04:50 +00:00
REGINFO_SENTINEL
};
static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
int maskshift = extract32(value, 0, 3);
if (!arm_feature(env, ARM_FEATURE_V8)) {
if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
/* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
* using Long-desciptor translation table format */
value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
} else if (arm_feature(env, ARM_FEATURE_EL3)) {
/* In an implementation that includes the Security Extensions
* TTBCR has additional fields PD0 [4] and PD1 [5] for
* Short-descriptor translation table format.
*/
value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
} else {
value &= TTBCR_N;
}
}
/* Note that we always calculate c2_mask and c2_base_mask, but
* they are only used for short-descriptor tables (ie if EAE is 0);
* for long-descriptor tables the TTBCR fields are used differently
* and the c2_mask and c2_base_mask values are meaningless.
*/
raw_write(env, ri, value);
env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> maskshift);
env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> maskshift);
}
static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
ARMCPU *cpu = arm_env_get_cpu(env);
if (arm_feature(env, ARM_FEATURE_LPAE)) {
/* With LPAE the TTBCR could result in a change of ASID
* via the TTBCR.A1 bit, so do a TLB flush.
*/
tlb_flush(CPU(cpu), 1);
}
vmsa_ttbcr_raw_write(env, ri, value);
}
static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
env->cp15.c2_base_mask = 0xffffc000u;
raw_write(env, ri, 0);
env->cp15.c2_mask = 0;
}
static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
ARMCPU *cpu = arm_env_get_cpu(env);
/* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
tlb_flush(CPU(cpu), 1);
raw_write(env, ri, value);
}
static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* 64 bit accesses to the TTBRs can change the ASID and so we
* must flush the TLB.
*/
if (cpreg_field_is_64bit(ri)) {
ARMCPU *cpu = arm_env_get_cpu(env);
tlb_flush(CPU(cpu), 1);
}
raw_write(env, ri, value);
}
static const ARMCPRegInfo vmsa_cp_reginfo[] = {
{ "DFSR", 15,5,0, 0,0,0, 0,
ARM_CP_NO_MIGRATE, PL1_RW, 0, NULL, 0, offsetoflow32(CPUARMState, cp15.esr_el[1]), {0, 0},
NULL,NULL,NULL,NULL,NULL, arm_cp_reset_ignore, },
{ "IFSR", 15,5,0, 0,0,1, 0,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.ifsr_el2), },
{ "ESR_EL1", 0,5,2, 3,0,0, ARM_CP_STATE_AA64,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.esr_el[1]), },
{ "TTBR0_EL1", 0,2,0, 3,0,0, ARM_CP_STATE_BOTH,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.ttbr0_el1), {0, 0},
NULL, NULL, vmsa_ttbr_write, },
{ "TTBR1_EL1", 0,2,0, 3,0,1, ARM_CP_STATE_BOTH,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.ttbr1_el1), {0, 0},
NULL, NULL, vmsa_ttbr_write, },
{ "TCR_EL1", 0,2,0, 3,0,2, ARM_CP_STATE_AA64,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.c2_control), {0, 0},
NULL, NULL,vmsa_tcr_el1_write, NULL,raw_write, vmsa_ttbcr_reset, },
{ "TTBCR", 15,2,0, 0,0,2, 0,
ARM_CP_NO_MIGRATE, PL1_RW, 0, NULL, 0, offsetoflow32(CPUARMState, cp15.c2_control), {0, 0},
NULL, NULL, vmsa_ttbcr_write, NULL, vmsa_ttbcr_raw_write, arm_cp_reset_ignore, },
2015-08-21 07:04:50 +00:00
/* 64-bit FAR; this entry also gives us the AArch32 DFAR */
{ "FAR_EL1", 0,6,0, 3,0,0, ARM_CP_STATE_BOTH,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.far_el[1]), },
2015-08-21 07:04:50 +00:00
REGINFO_SENTINEL
};
static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
env->cp15.c15_ticonfig = value & 0xe7;
/* The OS_TYPE bit in this register changes the reported CPUID! */
env->cp15.c0_cpuid = (value & (1 << 5)) ?
ARM_CPUID_TI915T : ARM_CPUID_TI925T;
}
static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
env->cp15.c15_threadid = value & 0xffff;
}
static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* Wait-for-interrupt (deprecated) */
cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
}
static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* On OMAP there are registers indicating the max/min index of dcache lines
* containing a dirty line; cache flush operations have to reset these.
*/
env->cp15.c15_i_max = 0x000;
env->cp15.c15_i_min = 0xff0;
}
static const ARMCPRegInfo omap_cp_reginfo[] = {
{ "DFSR", 15,5,CP_ANY, 0,CP_ANY,CP_ANY, 0,
ARM_CP_OVERRIDE, PL1_RW, 0, NULL, 0, offsetoflow32(CPUARMState, cp15.esr_el[1]), },
{ "", 15,15,0, 0,0,0, 0,
ARM_CP_NOP, PL1_RW, 0, NULL, 0, 0, },
{ "TICONFIG", 15,15,1, 0,0,0, 0,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.c15_ticonfig), {0, 0},
NULL, NULL, omap_ticonfig_write },
{ "IMAX", 15,15,2, 0,0,0, 0,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.c15_i_max), },
{ "IMIN", 15,15,3, 0,0,0, 0,
0, PL1_RW, 0, NULL, 0xff0, offsetof(CPUARMState, cp15.c15_i_min) },
{ "THREADID", 15,15,4, 0,0,0, 0,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.c15_threadid), {0, 0},
NULL, NULL, omap_threadid_write },
{ "TI925T_STATUS", 15,15,8, 0,0,0, 0,
ARM_CP_NO_MIGRATE, PL1_RW, 0, NULL, 0, 0, {0, 0},
NULL, arm_cp_read_zero, omap_wfi_write, },
2015-08-21 07:04:50 +00:00
/* TODO: Peripheral port remap register:
* On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
* base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
* when MMU is off.
*/
{ "OMAP_CACHEMAINT", 15,7,CP_ANY, 0,0,CP_ANY, 0,
ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE, PL1_W, 0, NULL, 0, 0, {0, 0},
NULL, NULL, omap_cachemaint_write },
{ "C9", 15,9,CP_ANY, 0,CP_ANY,CP_ANY, 0,
ARM_CP_CONST | ARM_CP_OVERRIDE, PL1_RW, 0, NULL, 0, 0, },
2015-08-21 07:04:50 +00:00
REGINFO_SENTINEL
};
static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
env->cp15.c15_cpar = value & 0x3fff;
}
static const ARMCPRegInfo xscale_cp_reginfo[] = {
{ "XSCALE_CPAR", 15,15,1, 0,0,0, 0,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.c15_cpar), {0, 0},
NULL, NULL, xscale_cpar_write, },
{ "XSCALE_AUXCR", 15,1,0, 0,0,1, 0,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.c1_xscaleauxcr), },
2015-08-21 07:04:50 +00:00
/* XScale specific cache-lockdown: since we have no cache we NOP these
* and hope the guest does not really rely on cache behaviour.
*/
{ "XSCALE_LOCK_ICACHE_LINE", 15,9,1, 0,0,0, 0,
ARM_CP_NOP, PL1_W },
{ "XSCALE_UNLOCK_ICACHE", 15,9,1, 0,0,1, 0,
ARM_CP_NOP, PL1_W, },
{ "XSCALE_DCACHE_LOCK", 15,9,2, 0,0,0, 0,
ARM_CP_NOP, PL1_RW },
{ "XSCALE_UNLOCK_DCACHE", 15,9,2, 0,0,1, 0,
ARM_CP_NOP, PL1_W, },
2015-08-21 07:04:50 +00:00
REGINFO_SENTINEL
};
static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
/* RAZ/WI the whole crn=15 space, when we don't have a more specific
* implementation of this implementation-defined space.
* Ideally this should eventually disappear in favour of actually
* implementing the correct behaviour for all cores.
*/
{ "C15_IMPDEF", 15,15,CP_ANY, 0,CP_ANY,CP_ANY, 0,
ARM_CP_CONST | ARM_CP_NO_MIGRATE | ARM_CP_OVERRIDE, PL1_RW, 0, NULL, 0 },
2015-08-21 07:04:50 +00:00
REGINFO_SENTINEL
};
static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
/* Cache status: RAZ because we have no cache so it's always clean */
{ "CDSR", 15,7,10, 0,0,6, 0,
ARM_CP_CONST | ARM_CP_NO_MIGRATE, PL1_R, 0, NULL, 0 },
2015-08-21 07:04:50 +00:00
REGINFO_SENTINEL
};
static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
/* We never have a a block transfer operation in progress */
{ "BXSR", 15,7,12, 0,0,4, 0,
ARM_CP_CONST | ARM_CP_NO_MIGRATE, PL0_R, 0, NULL, 0 },
2015-08-21 07:04:50 +00:00
/* The cache ops themselves: these all NOP for QEMU */
{ "IICR", 15, 0,5, 0,0, 0, 0,
ARM_CP_NOP|ARM_CP_64BIT, PL1_W },
{ "IDCR", 15, 0,6, 0,0, 0, 0,
ARM_CP_NOP|ARM_CP_64BIT, PL1_W, },
{ "CDCR", 15, 0,12, 0,0, 0, 0,
ARM_CP_NOP|ARM_CP_64BIT, PL0_W, },
{ "PIR", 15, 0,12, 0,1, 0, 0,
ARM_CP_NOP|ARM_CP_64BIT, PL0_W, },
{ "PDR", 15, 0,12, 0,2, 0, 0,
ARM_CP_NOP|ARM_CP_64BIT, PL0_W, },
{ "CIDCR", 15, 0,14, 0,0, 0, 0,
ARM_CP_NOP|ARM_CP_64BIT, PL1_W, },
2015-08-21 07:04:50 +00:00
REGINFO_SENTINEL
};
static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
/* The cache test-and-clean instructions always return (1 << 30)
* to indicate that there are no dirty cache lines.
*/
{ "TC_DCACHE", 15,7,10, 0,0,3, 0,
ARM_CP_CONST | ARM_CP_NO_MIGRATE, PL0_R, 0, NULL, (1 << 30) },
{ "TCI_DCACHE", 15,7,14, 0,0,3, 0,
ARM_CP_CONST | ARM_CP_NO_MIGRATE, PL0_R, 0, NULL, (1 << 30) },
2015-08-21 07:04:50 +00:00
REGINFO_SENTINEL
};
static const ARMCPRegInfo strongarm_cp_reginfo[] = {
/* Ignore ReadBuffer accesses */
{ "C9_READBUFFER", 15,9,CP_ANY, 0,CP_ANY,CP_ANY, 0,
ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE, PL1_RW, 0, NULL, 0, },
2015-08-21 07:04:50 +00:00
REGINFO_SENTINEL
};
static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
CPUState *cs = CPU(arm_env_get_cpu(env));
uint32_t mpidr = cs->cpu_index;
/* We don't support setting cluster ID ([8..11]) (known as Aff1
* in later ARM ARM versions), or any of the higher affinity level fields,
* so these bits always RAZ.
*/
if (arm_feature(env, ARM_FEATURE_V7MP)) {
mpidr |= (1U << 31);
/* Cores which are uniprocessor (non-coherent)
* but still implement the MP extensions set
* bit 30. (For instance, A9UP.) However we do
* not currently model any of those cores.
*/
}
return mpidr;
}
static const ARMCPRegInfo mpidr_cp_reginfo[] = {
{ "MPIDR", 0,0,0, 3,0,5, ARM_CP_STATE_BOTH,
ARM_CP_NO_MIGRATE, PL1_R, 0, NULL, 0, 0, {0, 0},
NULL, mpidr_read, },
2015-08-21 07:04:50 +00:00
REGINFO_SENTINEL
};
static const ARMCPRegInfo lpae_cp_reginfo[] = {
/* NOP AMAIR0/1: the override is because these clash with the rather
* broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
*/
{ "AMAIR0", 0,10,3, 3,0,0, ARM_CP_STATE_BOTH,
ARM_CP_CONST | ARM_CP_OVERRIDE, PL1_RW, 0, NULL, 0 },
2015-08-21 07:04:50 +00:00
/* AMAIR1 is mapped to AMAIR_EL1[63:32] */
{ "AMAIR1", 15,10,3, 0,0,1, 0,
ARM_CP_CONST | ARM_CP_OVERRIDE, PL1_RW, 0, NULL, 0 },
{ "PAR", 15, 0,7, 0,0, 0, 0,
ARM_CP_64BIT, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.par_el1), },
{ "TTBR0", 15, 0,2, 0,0, 0, 0,
ARM_CP_64BIT | ARM_CP_NO_MIGRATE, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.ttbr0_el1), {0, 0},
NULL, NULL, vmsa_ttbr_write, NULL,NULL, arm_cp_reset_ignore },
{ "TTBR1", 15, 0,2, 0,1, 0, 0,
ARM_CP_64BIT | ARM_CP_NO_MIGRATE, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.ttbr1_el1), {0, 0},
NULL, NULL, vmsa_ttbr_write, NULL,NULL, arm_cp_reset_ignore },
2015-08-21 07:04:50 +00:00
REGINFO_SENTINEL
};
static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
return vfp_get_fpcr(env);
}
static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
vfp_set_fpcr(env, value);
}
static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
return vfp_get_fpsr(env);
}
static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
vfp_set_fpsr(env, value);
}
static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
if (arm_current_el(env) == 0 && !(env->cp15.c1_sys & SCTLR_UMA)) {
return CP_ACCESS_TRAP;
}
return CP_ACCESS_OK;
}
static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
env->daif = value & PSTATE_DAIF;
}
static CPAccessResult aa64_cacheop_access(CPUARMState *env,
const ARMCPRegInfo *ri)
{
/* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
* SCTLR_EL1.UCI is set.
*/
if (arm_current_el(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCI)) {
return CP_ACCESS_TRAP;
}
return CP_ACCESS_OK;
}
/* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
* Page D4-1736 (DDI0487A.b)
*/
static void tlbi_aa64_va_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* Invalidate by VA (AArch64 version) */
ARMCPU *cpu = arm_env_get_cpu(env);
uint64_t pageaddr = sextract64(value << 12, 0, 56);
tlb_flush_page(CPU(cpu), pageaddr);
}
static void tlbi_aa64_vaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* Invalidate by VA, all ASIDs (AArch64 version) */
ARMCPU *cpu = arm_env_get_cpu(env);
uint64_t pageaddr = sextract64(value << 12, 0, 56);
tlb_flush_page(CPU(cpu), pageaddr);
}
static void tlbi_aa64_asid_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* Invalidate by ASID (AArch64 version) */
ARMCPU *cpu = arm_env_get_cpu(env);
int asid = extract64(value, 48, 16);
tlb_flush(CPU(cpu), asid == 0);
}
static void tlbi_aa64_va_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
//uint64_t pageaddr = sextract64(value << 12, 0, 56);
//struct uc_struct *uc = env->uc;
2016-09-23 14:38:21 +00:00
// TODO: issue #642
// tlb_flush(other_cpu, pageaddr);
2015-08-21 07:04:50 +00:00
}
static void tlbi_aa64_vaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
//uint64_t pageaddr = sextract64(value << 12, 0, 56);
//struct uc_struct *uc = env->uc;
2016-09-23 14:38:21 +00:00
// TODO: issue #642
// tlb_flush(other_cpu, pageaddr);
2015-08-21 07:04:50 +00:00
}
static void tlbi_aa64_asid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
//int asid = extract64(value, 48, 16);
//struct uc_struct *uc = env->uc;
2016-09-23 14:38:21 +00:00
// TODO: issue #642
// tlb_flush(other_cpu, asid == 0);
2015-08-21 07:04:50 +00:00
}
static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
/* We don't implement EL2, so the only control on DC ZVA is the
* bit in the SCTLR which can prohibit access for EL0.
*/
if (arm_current_el(env) == 0 && !(env->cp15.c1_sys & SCTLR_DZE)) {
return CP_ACCESS_TRAP;
}
return CP_ACCESS_OK;
}
static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
ARMCPU *cpu = arm_env_get_cpu(env);
int dzp_bit = 1 << 4;
/* DZP indicates whether DC ZVA access is allowed */
if (aa64_zva_access(env, NULL) == CP_ACCESS_OK) {
dzp_bit = 0;
}
return cpu->dcz_blocksize | dzp_bit;
}
static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
if (!(env->pstate & PSTATE_SP)) {
/* Access to SP_EL0 is undefined if it's being used as
* the stack pointer.
*/
return CP_ACCESS_TRAP_UNCATEGORIZED;
}
return CP_ACCESS_OK;
}
static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
return env->pstate & PSTATE_SP;
}
static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
{
update_spsel(env, val);
}
static const ARMCPRegInfo v8_cp_reginfo[] = {
/* Minimal set of EL0-visible registers. This will need to be expanded
* significantly for system emulation of AArch64 CPUs.
*/
{ "NZCV", 0,4,2, 3,3,0, ARM_CP_STATE_AA64,
ARM_CP_NZCV, PL0_RW, },
{ "DAIF", 0,4,2, 3,3,1, ARM_CP_STATE_AA64,
ARM_CP_NO_MIGRATE, PL0_RW, 0, NULL, 0, offsetof(CPUARMState, daif), {0, 0},
aa64_daif_access, NULL, aa64_daif_write, NULL,NULL, arm_cp_reset_ignore },
{ "FPCR", 0,4,4, 3,3,0, ARM_CP_STATE_AA64,
0, PL0_RW, 0, NULL, 0, 0, {0, 0},
NULL, aa64_fpcr_read, aa64_fpcr_write },
{ "FPSR", 0,4,4, 3,3,1, ARM_CP_STATE_AA64,
0, PL0_RW, 0, NULL, 0, 0, {0, 0},
NULL, aa64_fpsr_read, aa64_fpsr_write },
{ "DCZID_EL0", 0,0,0, 3,3,7, ARM_CP_STATE_AA64,
ARM_CP_NO_MIGRATE, PL0_R, 0, NULL, 0, 0, {0, 0},
NULL, aa64_dczid_read },
{ "DC_ZVA", 0,7,4, 1,3,1, ARM_CP_STATE_AA64,
ARM_CP_DC_ZVA, PL0_W, 0, NULL, 0, 0, {0, 0},
2015-08-21 07:04:50 +00:00
#ifndef CONFIG_USER_ONLY
/* Avoid overhead of an access check that always passes in user-mode */
aa64_zva_access,
2015-08-21 07:04:50 +00:00
#endif
},
{ "CURRENTEL", 0,4,2, 3,0,2, ARM_CP_STATE_AA64,
ARM_CP_CURRENTEL, PL1_R, },
2015-08-21 07:04:50 +00:00
/* Cache ops: all NOPs since we don't emulate caches */
{ "IC_IALLUIS", 0,7,1, 1,0,0, ARM_CP_STATE_AA64,
ARM_CP_NOP, PL1_W, },
{ "IC_IALLU", 0,7,5, 1,0,0, ARM_CP_STATE_AA64,
ARM_CP_NOP, PL1_W, },
{ "IC_IVAU", 0,7,5, 1,3,1, ARM_CP_STATE_AA64,
ARM_CP_NOP, PL0_W, 0, NULL, 0, 0, {0, 0},
aa64_cacheop_access },
{ "DC_IVAC", 0,7,6, 1,0,1, ARM_CP_STATE_AA64,
ARM_CP_NOP, PL1_W, },
{ "DC_ISW", 0,7,6, 1,0,2, ARM_CP_STATE_AA64,
ARM_CP_NOP, PL1_W, },
{ "DC_CVAC", 0,7,10, 1,3,1, ARM_CP_STATE_AA64,
ARM_CP_NOP, PL0_W, 0, NULL, 0, 0, {0, 0},
aa64_cacheop_access },
{ "DC_CSW", 0,7,10, 1,0,2, ARM_CP_STATE_AA64,
ARM_CP_NOP, PL1_W, },
{ "DC_CVAU", 0,7,11, 1,3,1, ARM_CP_STATE_AA64,
ARM_CP_NOP, PL0_W, 0, NULL, 0, 0, {0, 0},
aa64_cacheop_access },
{ "DC_CIVAC", 0,7,14, 1,3,1, ARM_CP_STATE_AA64,
ARM_CP_NOP, PL0_W, 0, NULL, 0, 0, {0, 0},
aa64_cacheop_access },
{ "DC_CISW", 0,7,14, 1,0,2, ARM_CP_STATE_AA64,
ARM_CP_NOP, PL1_W, },
2015-08-21 07:04:50 +00:00
/* TLBI operations */
{ "TLBI_VMALLE1IS", 0,8,3, 1,0,0, ARM_CP_STATE_AA64,
ARM_CP_NO_MIGRATE, PL1_W, 0, NULL, 0, 0, {0, 0},
NULL, NULL, tlbiall_is_write },
{ "TLBI_VAE1IS", 0,8,3, 1,0,1, ARM_CP_STATE_AA64,
ARM_CP_NO_MIGRATE, PL1_W, 0, NULL, 0, 0, {0, 0},
NULL, NULL, tlbi_aa64_va_is_write },
{ "TLBI_ASIDE1IS", 0,8,3, 1,0,2, ARM_CP_STATE_AA64,
ARM_CP_NO_MIGRATE, PL1_W, 0, NULL, 0, 0, {0, 0},
NULL, NULL, tlbi_aa64_asid_is_write },
{ "TLBI_VAAE1IS", 0,8,3, 1,0,3, ARM_CP_STATE_AA64,
ARM_CP_NO_MIGRATE, PL1_W, 0, NULL, 0, 0, {0, 0},
NULL, NULL, tlbi_aa64_vaa_is_write },
{ "TLBI_VALE1IS", 0,8,3, 1,0,5, ARM_CP_STATE_AA64,
ARM_CP_NO_MIGRATE, PL1_W, 0, NULL, 0, 0, {0, 0},
NULL, NULL, tlbi_aa64_va_is_write },
{ "TLBI_VAALE1IS", 0,8,3, 1,0,7, ARM_CP_STATE_AA64,
ARM_CP_NO_MIGRATE, PL1_W, 0, NULL, 0, 0, {0, 0},
NULL, NULL, tlbi_aa64_vaa_is_write },
{ "TLBI_VMALLE1", 0,8,7, 1,0,0, ARM_CP_STATE_AA64,
ARM_CP_NO_MIGRATE, PL1_W, 0, NULL, 0, 0, {0, 0},
NULL, NULL, tlbiall_write },
{ "TLBI_VAE1", 0,8,7, 1,0,1, ARM_CP_STATE_AA64,
ARM_CP_NO_MIGRATE, PL1_W, 0, NULL, 0, 0, {0, 0},
NULL, NULL, tlbi_aa64_va_write },
{ "TLBI_ASIDE1", 0,8,7, 1,0,2, ARM_CP_STATE_AA64,
ARM_CP_NO_MIGRATE, PL1_W, 0, NULL, 0, 0, {0, 0},
NULL, NULL, tlbi_aa64_asid_write },
{ "TLBI_VAAE1", 0,8,7, 1,0,3, ARM_CP_STATE_AA64,
ARM_CP_NO_MIGRATE, PL1_W, 0, NULL, 0, 0, {0, 0},
NULL, NULL, tlbi_aa64_vaa_write },
{ "TLBI_VALE1", 0,8,7, 1,0,5, ARM_CP_STATE_AA64,
ARM_CP_NO_MIGRATE, PL1_W, 0, NULL, 0, 0, {0, 0},
NULL, NULL, tlbi_aa64_va_write },
{ "TLBI_VAALE1", 0,8,7, 1,0,7, ARM_CP_STATE_AA64,
ARM_CP_NO_MIGRATE, PL1_W, 0, NULL, 0, 0, {0, 0},
NULL, NULL, tlbi_aa64_vaa_write },
2015-08-21 07:04:50 +00:00
#ifndef CONFIG_USER_ONLY
/* 64 bit address translation operations */
{ "AT_S1E1R", 0,7,8, 1,0,0, ARM_CP_STATE_AA64,
ARM_CP_NO_MIGRATE, PL1_W, 0, NULL, 0, 0, {0, 0},
NULL, NULL, ats_write },
{ "AT_S1E1W", 0,7,8, 1,0,1, ARM_CP_STATE_AA64,
ARM_CP_NO_MIGRATE, PL1_W, 0, NULL, 0, 0, {0, 0},
NULL, NULL, ats_write },
{ "AT_S1E0R", 0,7,8, 1,0,2, ARM_CP_STATE_AA64,
ARM_CP_NO_MIGRATE, PL1_W, 0, NULL, 0, 0, {0, 0},
NULL, NULL, ats_write },
{ "AT_S1E0W", 0,7,8, 1,0,3, ARM_CP_STATE_AA64,
ARM_CP_NO_MIGRATE, PL1_W, 0, NULL, 0, 0, {0, 0},
NULL, NULL, ats_write },
2015-08-21 07:04:50 +00:00
#endif
/* TLB invalidate last level of translation table walk */
{ "TLBIMVALIS", 15,8,3, 0,0,5, 0,
ARM_CP_NO_MIGRATE, PL1_W, 0, NULL, 0, 0, {0, 0},
NULL, NULL, tlbimva_is_write },
{ "TLBIMVAALIS", 15,8,3, 0,0,7, 0,
ARM_CP_NO_MIGRATE, PL1_W, 0, NULL, 0, 0, {0, 0},
NULL, NULL, tlbimvaa_is_write },
{ "TLBIMVAL", 15,8,7, 0,0,5, 0,
ARM_CP_NO_MIGRATE, PL1_W, 0, NULL, 0, 0, {0, 0},
NULL, NULL, tlbimva_write },
{ "TLBIMVAAL", 15,8,7, 0,0,7, 0,
ARM_CP_NO_MIGRATE, PL1_W, 0, NULL, 0, 0, {0, 0},
NULL, NULL, tlbimvaa_write },
2015-08-21 07:04:50 +00:00
/* 32 bit cache operations */
{ "ICIALLUIS", 15,7,1, 0,0,0, 0,
ARM_CP_NOP, PL1_W },
{ "BPIALLUIS", 15,7,1, 0,0,6, 0,
ARM_CP_NOP, PL1_W },
{ "ICIALLU", 15,7,5, 0,0,0, 0,
ARM_CP_NOP, PL1_W },
{ "ICIMVAU", 15,7,5, 0,0,1, 0,
ARM_CP_NOP, PL1_W },
{ "BPIALL", 15,7,5, 0,0,6, 0,
ARM_CP_NOP, PL1_W },
{ "BPIMVA", 15,7,5, 0,0,7, 0,
ARM_CP_NOP, PL1_W },
{ "DCIMVAC", 15,7,6, 0,0,1, 0,
ARM_CP_NOP, PL1_W },
{ "DCISW", 15,7,6, 0,0,2, 0,
ARM_CP_NOP, PL1_W },
{ "DCCMVAC", 15,7,10, 0,0,1, 0,
ARM_CP_NOP, PL1_W },
{ "DCCSW", 15,7,10, 0,0,2, 0,
ARM_CP_NOP, PL1_W },
{ "DCCMVAU", 15,7,11, 0,0,1, 0,
ARM_CP_NOP, PL1_W },
{ "DCCIMVAC", 15,7,14, 0,0,1, 0,
ARM_CP_NOP, PL1_W },
{ "DCCISW", 15,7,14, 0,0,2, 0,
ARM_CP_NOP, PL1_W },
2015-08-21 07:04:50 +00:00
/* MMU Domain access control / MPU write buffer control */
{ "DACR", 15,3,0, 0,0,0, 0,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.c3), {0, 0},
NULL, NULL,dacr_write, NULL,raw_write, },
{ "ELR_EL1", 0,4,0, 3,0,1, ARM_CP_STATE_AA64,
ARM_CP_NO_MIGRATE, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, elr_el[1]) },
{ "SPSR_EL1", 0,4,0, 3,0,0, ARM_CP_STATE_AA64,
ARM_CP_NO_MIGRATE, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, banked_spsr[0]) },
2015-08-21 07:04:50 +00:00
/* We rely on the access checks not allowing the guest to write to the
* state field when SPSel indicates that it's being used as the stack
* pointer.
*/
{ "SP_EL0", 0,4,1, 3,0,0, ARM_CP_STATE_AA64,
ARM_CP_NO_MIGRATE, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, sp_el[0]), {0, 0},
sp_el0_access, },
{ "SPSel", 0,4,2, 3,0,0, ARM_CP_STATE_AA64,
ARM_CP_NO_MIGRATE, PL1_RW, 0, NULL, 0, 0, {0, 0},
NULL, spsel_read, spsel_write },
2015-08-21 07:04:50 +00:00
REGINFO_SENTINEL
};
/* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
static const ARMCPRegInfo v8_el3_no_el2_cp_reginfo[] = {
{ "VBAR_EL2", 0,12,0, 3,4,0, ARM_CP_STATE_AA64,
0, PL2_RW, 0, NULL, 0, 0, {0, 0},
NULL, arm_cp_read_zero, arm_cp_write_ignore },
{ "HCR_EL2", 0,1,1, 3,4,0, ARM_CP_STATE_AA64,
ARM_CP_NO_MIGRATE, PL2_RW, 0, NULL, 0, 0, {0, 0},
NULL, arm_cp_read_zero, arm_cp_write_ignore },
2015-08-21 07:04:50 +00:00
REGINFO_SENTINEL
};
static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
ARMCPU *cpu = arm_env_get_cpu(env);
uint64_t valid_mask = HCR_MASK;
if (arm_feature(env, ARM_FEATURE_EL3)) {
valid_mask &= ~HCR_HCD;
} else {
valid_mask &= ~HCR_TSC;
}
/* Clear RES0 bits. */
value &= valid_mask;
/* These bits change the MMU setup:
* HCR_VM enables stage 2 translation
* HCR_PTW forbids certain page-table setups
* HCR_DC Disables stage1 and enables stage2 translation
*/
if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
tlb_flush(CPU(cpu), 1);
}
raw_write(env, ri, value);
}
static const ARMCPRegInfo v8_el2_cp_reginfo[] = {
{ "HCR_EL2", 0,1,1, 3,4,0, ARM_CP_STATE_AA64,
0, PL2_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.hcr_el2), {0, 0},
NULL, NULL, hcr_write },
{ "ELR_EL2", 0,4,0, 3,4,1, ARM_CP_STATE_AA64,
ARM_CP_NO_MIGRATE, PL2_RW, 0, NULL, 0, offsetof(CPUARMState, elr_el[2]) },
{ "ESR_EL2", 0,5,2, 3,4,0, ARM_CP_STATE_AA64,
ARM_CP_NO_MIGRATE, PL2_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.esr_el[2]) },
{ "FAR_EL2", 0,6,0, 3,4,0, ARM_CP_STATE_AA64,
0, PL2_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.far_el[2]) },
{ "SPSR_EL2", 0,4,0, 3,4,0, ARM_CP_STATE_AA64,
ARM_CP_NO_MIGRATE, PL2_RW, 0, NULL, 0, offsetof(CPUARMState, banked_spsr[6]) },
{ "VBAR_EL2", 0,12,0, 3,4,0, ARM_CP_STATE_AA64,
0, PL2_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.vbar_el[2]), {0, 0},
NULL, NULL, vbar_write, },
2015-08-21 07:04:50 +00:00
REGINFO_SENTINEL
};
static const ARMCPRegInfo v8_el3_cp_reginfo[] = {
{ "ELR_EL3", 0,4,0, 3,6,1, ARM_CP_STATE_AA64,
ARM_CP_NO_MIGRATE, PL3_RW, 0, NULL, 0, offsetof(CPUARMState, elr_el[3]) },
{ "ESR_EL3", 0,5,2, 3,6,0, ARM_CP_STATE_AA64,
ARM_CP_NO_MIGRATE, PL3_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.esr_el[3]) },
{ "FAR_EL3", 0,6,0, 3,6,0, ARM_CP_STATE_AA64,
0, PL3_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.far_el[3]) },
{ "SPSR_EL3", 0,4,0, 3,6,0, ARM_CP_STATE_AA64,
ARM_CP_NO_MIGRATE, PL3_RW, 0, NULL, 0, offsetof(CPUARMState, banked_spsr[7]) },
{ "VBAR_EL3", 0,12,0, 3,6,0, ARM_CP_STATE_AA64,
0, PL3_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.vbar_el[3]), {0, 0},
NULL, NULL, vbar_write, },
REGINFO_SENTINEL
};
static const ARMCPRegInfo el3_cp_reginfo[] = {
{ "SCR_EL3", 0,1,1, 3,6,0, ARM_CP_STATE_AA64,
0, PL3_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.scr_el3), {0, 0},
NULL, NULL, scr_write },
{ "SCR", 15,1,1, 0,0,0, 0,
ARM_CP_NO_MIGRATE, PL3_RW, 0, NULL, 0, offsetoflow32(CPUARMState, cp15.scr_el3), {0, 0},
NULL, NULL, scr_write, NULL, NULL, arm_cp_reset_ignore },
{ "SDER32_EL3", 0,1,1, 3,6,1, ARM_CP_STATE_AA64,0,
PL3_RW, 0, NULL, 0,
offsetof(CPUARMState, cp15.sder) },
{ "SDER", 15,1,1, 0,0,1, 0,0,
PL3_RW, 0, NULL, 0,
offsetoflow32(CPUARMState, cp15.sder) },
/* TODO: Implement NSACR trapping of secure EL1 accesses to EL3 */
{ "NSACR", 15,1,1, 0,0,2, 0,0,
PL3_W | PL1_R, 0, NULL, 0,
offsetof(CPUARMState, cp15.nsacr), },
2015-08-21 07:04:50 +00:00
REGINFO_SENTINEL
};
static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
ARMCPU *cpu = arm_env_get_cpu(env);
if (raw_read(env, ri) == value) {
/* Skip the TLB flush if nothing actually changed; Linux likes
* to do a lot of pointless SCTLR writes.
*/
return;
}
raw_write(env, ri, value);
/* ??? Lots of these bits are not implemented. */
/* This may enable/disable the MMU, so do a TLB flush. */
tlb_flush(CPU(cpu), 1);
}
static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
/* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
* but the AArch32 CTR has its own reginfo struct)
*/
if (arm_current_el(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCT)) {
return CP_ACCESS_TRAP;
}
return CP_ACCESS_OK;
}
static const ARMCPRegInfo debug_cp_reginfo[] = {
/* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
* debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
* unlike DBGDRAR it is never accessible from EL0.
* DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
* accessor.
*/
{ "DBGDRAR", 14,1,0, 0,0,0, 0,
ARM_CP_CONST, PL0_R, 0, NULL, 0 },
{ "MDRAR_EL1", 0,1,0, 2,0,0, ARM_CP_STATE_AA64,
ARM_CP_CONST, PL1_R, 0, NULL, 0 },
{ "DBGDSAR", 14,2,0, 0,0,0, 0,
ARM_CP_CONST, PL0_R, 0, NULL, 0 },
2015-08-21 07:04:50 +00:00
/* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
{ "MDSCR_EL1", 14,0,2, 2,0,2, ARM_CP_STATE_BOTH,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.mdscr_el1), },
2015-08-21 07:04:50 +00:00
/* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
* We don't implement the configurable EL0 access.
*/
{ "MDCCSR_EL0", 14,0,1, 2,0,0, ARM_CP_STATE_BOTH,
ARM_CP_NO_MIGRATE, PL1_R, 0, NULL, 0, offsetof(CPUARMState, cp15.mdscr_el1), {0, 0},
NULL,NULL,NULL,NULL,NULL, arm_cp_reset_ignore },
2015-08-21 07:04:50 +00:00
/* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
{ "OSLAR_EL1", 14,1,0, 2,0,4, ARM_CP_STATE_BOTH,
ARM_CP_NOP, PL1_W, },
2015-08-21 07:04:50 +00:00
/* Dummy OSDLR_EL1: 32-bit Linux will read this */
{ "OSDLR_EL1", 14,1,3, 2,0,4, ARM_CP_STATE_BOTH,
ARM_CP_NOP, PL1_RW, },
2015-08-21 07:04:50 +00:00
/* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
* implement vector catch debug events yet.
*/
{ "DBGVCR", 14,0,7, 0,0,0, 0,
ARM_CP_NOP, PL1_RW, },
2015-08-21 07:04:50 +00:00
REGINFO_SENTINEL
};
static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
/* 64 bit access versions of the (dummy) debug registers */
{ "DBGDRAR", 14, 0,1, 0,0, 0, 0,
ARM_CP_CONST|ARM_CP_64BIT, PL0_R, 0, NULL, 0 },
{ "DBGDSAR", 14, 0,2, 0,0, 0, 0,
ARM_CP_CONST|ARM_CP_64BIT, PL0_R, 0, NULL, 0 },
2015-08-21 07:04:50 +00:00
REGINFO_SENTINEL
};
void hw_watchpoint_update(ARMCPU *cpu, int n)
{
CPUARMState *env = &cpu->env;
vaddr len = 0;
vaddr wvr = env->cp15.dbgwvr[n];
uint64_t wcr = env->cp15.dbgwcr[n];
int mask;
int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
if (env->cpu_watchpoint[n]) {
cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
env->cpu_watchpoint[n] = NULL;
}
if (!extract64(wcr, 0, 1)) {
/* E bit clear : watchpoint disabled */
return;
}
switch (extract64(wcr, 3, 2)) {
case 0:
/* LSC 00 is reserved and must behave as if the wp is disabled */
return;
case 1:
flags |= BP_MEM_READ;
break;
case 2:
flags |= BP_MEM_WRITE;
break;
case 3:
flags |= BP_MEM_ACCESS;
break;
}
/* Attempts to use both MASK and BAS fields simultaneously are
* CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
* thus generating a watchpoint for every byte in the masked region.
*/
mask = extract64(wcr, 24, 4);
if (mask == 1 || mask == 2) {
/* Reserved values of MASK; we must act as if the mask value was
* some non-reserved value, or as if the watchpoint were disabled.
* We choose the latter.
*/
return;
} else if (mask) {
/* Watchpoint covers an aligned area up to 2GB in size */
len = 1ULL << mask;
/* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
* whether the watchpoint fires when the unmasked bits match; we opt
* to generate the exceptions.
*/
wvr &= ~(len - 1);
} else {
/* Watchpoint covers bytes defined by the byte address select bits */
int bas = extract64(wcr, 5, 8);
int basstart;
if (bas == 0) {
/* This must act as if the watchpoint is disabled */
return;
}
if (extract64(wvr, 2, 1)) {
/* Deprecated case of an only 4-aligned address. BAS[7:4] are
* ignored, and BAS[3:0] define which bytes to watch.
*/
bas &= 0xf;
}
/* The BAS bits are supposed to be programmed to indicate a contiguous
* range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
* we fire for each byte in the word/doubleword addressed by the WVR.
* We choose to ignore any non-zero bits after the first range of 1s.
*/
basstart = ctz32(bas);
len = cto32(bas >> basstart);
wvr += basstart;
}
cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
&env->cpu_watchpoint[n]);
}
void hw_watchpoint_update_all(ARMCPU *cpu)
{
int i;
CPUARMState *env = &cpu->env;
/* Completely clear out existing QEMU watchpoints and our array, to
* avoid possible stale entries following migration load.
*/
cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
hw_watchpoint_update(cpu, i);
}
}
static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
ARMCPU *cpu = arm_env_get_cpu(env);
int i = ri->crm;
/* Bits [63:49] are hardwired to the value of bit [48]; that is, the
* register reads and behaves as if values written are sign extended.
* Bits [1:0] are RES0.
*/
value = sextract64(value, 0, 49) & ~3ULL;
raw_write(env, ri, value);
hw_watchpoint_update(cpu, i);
}
static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
ARMCPU *cpu = arm_env_get_cpu(env);
int i = ri->crm;
raw_write(env, ri, value);
hw_watchpoint_update(cpu, i);
}
void hw_breakpoint_update(ARMCPU *cpu, int n)
{
CPUARMState *env = &cpu->env;
uint64_t bvr = env->cp15.dbgbvr[n];
uint64_t bcr = env->cp15.dbgbcr[n];
vaddr addr;
int bt;
int flags = BP_CPU;
if (env->cpu_breakpoint[n]) {
cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
env->cpu_breakpoint[n] = NULL;
}
if (!extract64(bcr, 0, 1)) {
/* E bit clear : watchpoint disabled */
return;
}
bt = extract64(bcr, 20, 4);
switch (bt) {
case 4: /* unlinked address mismatch (reserved if AArch64) */
case 5: /* linked address mismatch (reserved if AArch64) */
qemu_log_mask(LOG_UNIMP,
"arm: address mismatch breakpoint types not implemented");
return;
case 0: /* unlinked address match */
case 1: /* linked address match */
{
/* Bits [63:49] are hardwired to the value of bit [48]; that is,
* we behave as if the register was sign extended. Bits [1:0] are
* RES0. The BAS field is used to allow setting breakpoints on 16
* bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
* a bp will fire if the addresses covered by the bp and the addresses
* covered by the insn overlap but the insn doesn't start at the
* start of the bp address range. We choose to require the insn and
* the bp to have the same address. The constraints on writing to
* BAS enforced in dbgbcr_write mean we have only four cases:
* 0b0000 => no breakpoint
* 0b0011 => breakpoint on addr
* 0b1100 => breakpoint on addr + 2
* 0b1111 => breakpoint on addr
* See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
*/
int bas = extract64(bcr, 5, 4);
addr = sextract64(bvr, 0, 49) & ~3ULL;
if (bas == 0) {
return;
}
if (bas == 0xc) {
addr += 2;
}
break;
}
case 2: /* unlinked context ID match */
case 8: /* unlinked VMID match (reserved if no EL2) */
case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
qemu_log_mask(LOG_UNIMP,
"arm: unlinked context breakpoint types not implemented");
return;
case 9: /* linked VMID match (reserved if no EL2) */
case 11: /* linked context ID and VMID match (reserved if no EL2) */
case 3: /* linked context ID match */
default:
/* We must generate no events for Linked context matches (unless
* they are linked to by some other bp/wp, which is handled in
* updates for the linking bp/wp). We choose to also generate no events
* for reserved values.
*/
return;
}
cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
}
void hw_breakpoint_update_all(ARMCPU *cpu)
{
int i;
CPUARMState *env = &cpu->env;
/* Completely clear out existing QEMU breakpoints and our array, to
* avoid possible stale entries following migration load.
*/
cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
hw_breakpoint_update(cpu, i);
}
}
static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
ARMCPU *cpu = arm_env_get_cpu(env);
int i = ri->crm;
raw_write(env, ri, value);
hw_breakpoint_update(cpu, i);
}
static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
ARMCPU *cpu = arm_env_get_cpu(env);
int i = ri->crm;
/* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
* copy of BAS[0].
*/
value = deposit64(value, 6, 1, extract64(value, 5, 1));
value = deposit64(value, 8, 1, extract64(value, 7, 1));
raw_write(env, ri, value);
hw_breakpoint_update(cpu, i);
}
static void define_debug_regs(ARMCPU *cpu)
{
/* Define v7 and v8 architectural debug registers.
* These are just dummy implementations for now.
*/
int i;
int wrps, brps, ctx_cmps;
ARMCPRegInfo dbgdidr = {
"DBGDIDR", 14,0,0, 0,0,0, 0,
ARM_CP_CONST, PL0_R, 0, NULL, cpu->dbgdidr,
2015-08-21 07:04:50 +00:00
};
/* Note that all these register fields hold "number of Xs minus 1". */
brps = extract32(cpu->dbgdidr, 24, 4);
wrps = extract32(cpu->dbgdidr, 28, 4);
ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
assert(ctx_cmps <= brps);
/* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
* of the debug registers such as number of breakpoints;
* check that if they both exist then they agree.
*/
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
}
define_one_arm_cp_reg(cpu, &dbgdidr);
define_arm_cp_regs(cpu, debug_cp_reginfo);
if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
}
for (i = 0; i < brps + 1; i++) {
ARMCPRegInfo dbgregs[] = {
{ "DBGBVR", 14,0,i, 2,0,4,ARM_CP_STATE_BOTH,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.dbgbvr[i]), {0, 0},
NULL, NULL,dbgbvr_write, NULL,raw_write
2015-08-21 07:04:50 +00:00
},
{ "DBGBCR", 14,0,i, 2,0,5, ARM_CP_STATE_BOTH,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.dbgbcr[i]), {0, 0},
NULL, NULL,dbgbcr_write, NULL,raw_write
2015-08-21 07:04:50 +00:00
},
REGINFO_SENTINEL
};
define_arm_cp_regs(cpu, dbgregs);
}
for (i = 0; i < wrps + 1; i++) {
ARMCPRegInfo dbgregs[] = {
{ "DBGWVR", 14,0,i, 2,0,6, ARM_CP_STATE_BOTH,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.dbgwvr[i]), {0, 0},
NULL, NULL,dbgwvr_write, NULL,raw_write
2015-08-21 07:04:50 +00:00
},
{ "DBGWCR", 14,0,i, 2,0,7, ARM_CP_STATE_BOTH,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.dbgwcr[i]), {0, 0},
NULL, NULL,dbgwcr_write, NULL,raw_write
2015-08-21 07:04:50 +00:00
},
REGINFO_SENTINEL
};
define_arm_cp_regs(cpu, dbgregs);
}
}
void register_cp_regs_for_features(ARMCPU *cpu)
{
/* Register all the coprocessor registers based on feature bits */
CPUARMState *env = &cpu->env;
if (arm_feature(env, ARM_FEATURE_M)) {
/* M profile has no coprocessor registers */
return;
}
define_arm_cp_regs(cpu, cp_reginfo);
if (!arm_feature(env, ARM_FEATURE_V8)) {
/* Must go early as it is full of wildcards that may be
* overridden by later definitions.
*/
define_arm_cp_regs(cpu, not_v8_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_V6)) {
/* The ID registers all have impdef reset values */
ARMCPRegInfo v6_idregs[] = {
{ "ID_PFR0", 0,0,1, 3,0,0, ARM_CP_STATE_BOTH,
ARM_CP_CONST, PL1_R, 0, NULL, cpu->id_pfr0 },
{ "ID_PFR1", 0,0,1, 3,0,1, ARM_CP_STATE_BOTH,
ARM_CP_CONST, PL1_R, 0, NULL, cpu->id_pfr1 },
{ "ID_DFR0", 0,0,1, 3,0,2, ARM_CP_STATE_BOTH,
ARM_CP_CONST, PL1_R, 0, NULL, cpu->id_dfr0 },
{ "ID_AFR0", 0,0,1, 3,0,3, ARM_CP_STATE_BOTH,
ARM_CP_CONST, PL1_R, 0, NULL, cpu->id_afr0 },
{ "ID_MMFR0", 0,0,1, 3,0,4, ARM_CP_STATE_BOTH,
ARM_CP_CONST, PL1_R, 0, NULL, cpu->id_mmfr0 },
{ "ID_MMFR1", 0,0,1, 3,0,5, ARM_CP_STATE_BOTH,
ARM_CP_CONST, PL1_R, 0, NULL, cpu->id_mmfr1 },
{ "ID_MMFR2", 0,0,1, 3,0,6, ARM_CP_STATE_BOTH,
ARM_CP_CONST, PL1_R, 0, NULL, cpu->id_mmfr2 },
{ "ID_MMFR3", 0,0,1, 3,0,7, ARM_CP_STATE_BOTH,
ARM_CP_CONST, PL1_R, 0, NULL, cpu->id_mmfr3 },
{ "ID_ISAR0", 0,0,2, 3,0,0, ARM_CP_STATE_BOTH,
ARM_CP_CONST, PL1_R, 0, NULL, cpu->id_isar0 },
{ "ID_ISAR1", 0,0,2, 3,0,1, ARM_CP_STATE_BOTH,
ARM_CP_CONST, PL1_R, 0, NULL, cpu->id_isar1 },
{ "ID_ISAR2", 0,0,2, 3,0,2, ARM_CP_STATE_BOTH,
ARM_CP_CONST, PL1_R, 0, NULL, cpu->id_isar2 },
{ "ID_ISAR3", 0,0,2, 3,0,3, ARM_CP_STATE_BOTH,
ARM_CP_CONST, PL1_R, 0, NULL, cpu->id_isar3 },
{ "ID_ISAR4", 0,0,2, 3,0,4, ARM_CP_STATE_BOTH,
ARM_CP_CONST, PL1_R, 0, NULL, cpu->id_isar4 },
{ "ID_ISAR5", 0,0,2, 3,0,5, ARM_CP_STATE_BOTH,
ARM_CP_CONST, PL1_R, 0, NULL, cpu->id_isar5 },
2015-08-21 07:04:50 +00:00
/* 6..7 are as yet unallocated and must RAZ */
{ "ID_ISAR6", 15,0,2, 0,0,6, 0,
ARM_CP_CONST, PL1_R, 0, NULL, 0 },
{ "ID_ISAR7", 15,0,2, 0,0,7, 0,
ARM_CP_CONST, PL1_R, 0, NULL, 0 },
2015-08-21 07:04:50 +00:00
REGINFO_SENTINEL
};
define_arm_cp_regs(cpu, v6_idregs);
define_arm_cp_regs(cpu, v6_cp_reginfo);
} else {
define_arm_cp_regs(cpu, not_v6_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_V6K)) {
define_arm_cp_regs(cpu, v6k_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_V7MP)) {
define_arm_cp_regs(cpu, v7mp_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_V7)) {
ARMCPRegInfo clidr = {
"CLIDR", 0,0,0, 3,1,1, ARM_CP_STATE_BOTH,
ARM_CP_CONST, PL1_R, 0, NULL, cpu->clidr
};
2015-08-21 07:04:50 +00:00
/* v7 performance monitor control register: same implementor
* field as main ID register, and we implement only the cycle
* count register.
*/
#ifndef CONFIG_USER_ONLY
ARMCPRegInfo pmcr = {
"PMCR", 15,9,12, 0,0,0, 0,
ARM_CP_IO | ARM_CP_NO_MIGRATE, PL0_RW, 0, NULL, 0, offsetoflow32(CPUARMState, cp15.c9_pmcr), {0, 0},
pmreg_access, NULL,pmcr_write, NULL,raw_write,
2015-08-21 07:04:50 +00:00
};
ARMCPRegInfo pmcr64 = {
"PMCR_EL0", 0,9,12, 3,3,0, ARM_CP_STATE_AA64,
ARM_CP_IO, PL0_RW, 0, NULL, cpu->midr & 0xff000000, offsetof(CPUARMState, cp15.c9_pmcr), {0, 0},
pmreg_access, NULL,pmcr_write, NULL,raw_write,
2015-08-21 07:04:50 +00:00
};
define_one_arm_cp_reg(cpu, &pmcr);
define_one_arm_cp_reg(cpu, &pmcr64);
#endif
define_one_arm_cp_reg(cpu, &clidr);
define_arm_cp_regs(cpu, v7_cp_reginfo);
define_debug_regs(cpu);
} else {
define_arm_cp_regs(cpu, not_v7_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_V8)) {
/* AArch64 ID registers, which all have impdef reset values */
ARMCPRegInfo v8_idregs[] = {
{ "ID_AA64PFR0_EL1", 0,0,4, 3,0,0, ARM_CP_STATE_AA64,
ARM_CP_CONST, PL1_R, 0, NULL, cpu->id_aa64pfr0 },
{ "ID_AA64PFR1_EL1", 0,0,4, 3,0,1, ARM_CP_STATE_AA64,
ARM_CP_CONST, PL1_R, 0, NULL, cpu->id_aa64pfr1},
{ "ID_AA64DFR0_EL1", 0,0,5, 3,0,0, ARM_CP_STATE_AA64,
ARM_CP_CONST, PL1_R, 0, NULL,
2015-08-21 07:04:50 +00:00
/* We mask out the PMUVer field, because we don't currently
* implement the PMU. Not advertising it prevents the guest
* from trying to use it and getting UNDEFs on registers we
* don't implement.
*/
cpu->id_aa64dfr0 & ~0xf00 },
{ "ID_AA64DFR1_EL1", 0,0,5, 3,0,1, ARM_CP_STATE_AA64,
ARM_CP_CONST, PL1_R, 0, NULL, cpu->id_aa64dfr1 },
{ "ID_AA64AFR0_EL1", 0,0,5, 3,0,4, ARM_CP_STATE_AA64,
ARM_CP_CONST, PL1_R, 0, NULL, cpu->id_aa64afr0 },
{ "ID_AA64AFR1_EL1", 0,0,5, 3,0,5, ARM_CP_STATE_AA64,
ARM_CP_CONST, PL1_R, 0, NULL, cpu->id_aa64afr1 },
{ "ID_AA64ISAR0_EL1", 0,0,6, 3,0,0, ARM_CP_STATE_AA64,
ARM_CP_CONST, PL1_R, 0, NULL, cpu->id_aa64isar0 },
{ "ID_AA64ISAR1_EL1", 0,0,6, 3,0,1, ARM_CP_STATE_AA64,
ARM_CP_CONST, PL1_R, 0, NULL, cpu->id_aa64isar1 },
{ "ID_AA64MMFR0_EL1", 0,0,7, 3,0,0, ARM_CP_STATE_AA64,
ARM_CP_CONST, PL1_R, 0, NULL, cpu->id_aa64mmfr0 },
{ "ID_AA64MMFR1_EL1", 0,0,7, 3,0,1, ARM_CP_STATE_AA64,
ARM_CP_CONST, PL1_R, 0, NULL, cpu->id_aa64mmfr1 },
{ "MVFR0_EL1", 0,0,3, 3,0,0, ARM_CP_STATE_AA64,
ARM_CP_CONST, PL1_R, 0, NULL, cpu->mvfr0 },
{ "MVFR1_EL1", 0,0,3, 3,0,1, ARM_CP_STATE_AA64,
ARM_CP_CONST, PL1_R, 0, NULL, cpu->mvfr1 },
{ "MVFR2_EL1", 0,0,3, 3,0,2, ARM_CP_STATE_AA64,
ARM_CP_CONST, PL1_R, 0, NULL, cpu->mvfr2 },
2015-08-21 07:04:50 +00:00
REGINFO_SENTINEL
};
ARMCPRegInfo rvbar = {
"RVBAR_EL1", 0,12,0, 3,0,2, ARM_CP_STATE_AA64,
ARM_CP_CONST, PL1_R, 0, NULL, cpu->rvbar
2015-08-21 07:04:50 +00:00
};
define_one_arm_cp_reg(cpu, &rvbar);
define_arm_cp_regs(cpu, v8_idregs);
define_arm_cp_regs(cpu, v8_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_EL2)) {
define_arm_cp_regs(cpu, v8_el2_cp_reginfo);
} else {
/* If EL2 is missing but higher ELs are enabled, we need to
* register the no_el2 reginfos.
*/
if (arm_feature(env, ARM_FEATURE_EL3)) {
define_arm_cp_regs(cpu, v8_el3_no_el2_cp_reginfo);
}
}
if (arm_feature(env, ARM_FEATURE_EL3)) {
if (arm_feature(env, ARM_FEATURE_V8)) {
define_arm_cp_regs(cpu, v8_el3_cp_reginfo);
}
define_arm_cp_regs(cpu, el3_cp_reginfo);
2015-08-21 07:04:50 +00:00
}
if (arm_feature(env, ARM_FEATURE_MPU)) {
/* These are the MPU registers prior to PMSAv6. Any new
* PMSA core later than the ARM946 will require that we
* implement the PMSAv6 or PMSAv7 registers, which are
* completely different.
*/
assert(!arm_feature(env, ARM_FEATURE_V6));
define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
} else {
define_arm_cp_regs(cpu, vmsa_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
define_arm_cp_regs(cpu, t2ee_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_VAPA)) {
define_arm_cp_regs(cpu, vapa_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
define_arm_cp_regs(cpu, omap_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
define_arm_cp_regs(cpu, strongarm_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_XSCALE)) {
define_arm_cp_regs(cpu, xscale_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_LPAE)) {
define_arm_cp_regs(cpu, lpae_cp_reginfo);
}
/* Slightly awkwardly, the OMAP and StrongARM cores need all of
* cp15 crn=0 to be writes-ignored, whereas for other cores they should
* be read-only (ie write causes UNDEF exception).
*/
{
ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
/* Pre-v8 MIDR space.
* Note that the MIDR isn't a simple constant register because
* of the TI925 behaviour where writes to another register can
* cause the MIDR value to change.
*
* Unimplemented registers in the c15 0 0 0 space default to
* MIDR. Define MIDR first as this entire space, then CTR, TCMTR
* and friends override accordingly.
*/
{ "MIDR", 15,0,0, 0,0,CP_ANY, 0,
ARM_CP_OVERRIDE, PL1_R, 0, NULL, cpu->midr, offsetof(CPUARMState, cp15.c0_cpuid), {0, 0},
NULL, NULL,arm_cp_write_ignore, NULL,raw_write, },
2015-08-21 07:04:50 +00:00
/* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
{ "DUMMY",
15,0,3, 0,0,CP_ANY, 0,
ARM_CP_CONST, PL1_R, 0, NULL, 0 },
{ "DUMMY",
15,0,4, 0,0,CP_ANY, 0,
ARM_CP_CONST, PL1_R, 0, NULL, 0 },
{ "DUMMY",
15,0,5, 0,0,CP_ANY, 0,
ARM_CP_CONST, PL1_R, 0, NULL, 0 },
{ "DUMMY",
15,0,6, 0,0,CP_ANY, 0,
ARM_CP_CONST, PL1_R, 0, NULL, 0 },
{ "DUMMY",
15,0,7, 0,0,CP_ANY, 0,
ARM_CP_CONST, PL1_R, 0, NULL, 0 },
2015-08-21 07:04:50 +00:00
REGINFO_SENTINEL
};
ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
/* v8 MIDR -- the wildcard isn't necessary, and nor is the
* variable-MIDR TI925 behaviour. Instead we have a single
* (strictly speaking IMPDEF) alias of the MIDR, REVIDR.
*/
{ "MIDR_EL1", 0,0,0, 3,0,0, ARM_CP_STATE_BOTH,
ARM_CP_CONST, PL1_R, 0, NULL, cpu->midr },
{ "REVIDR_EL1", 0,0,0, 3,0,6, ARM_CP_STATE_BOTH,
ARM_CP_CONST, PL1_R, 0, NULL, cpu->midr },
2015-08-21 07:04:50 +00:00
REGINFO_SENTINEL
};
ARMCPRegInfo id_cp_reginfo[] = {
/* These are common to v8 and pre-v8 */
{ "CTR", 15,0,0, 0,0,1, 0,
ARM_CP_CONST, PL1_R, 0, NULL, cpu->ctr },
{ "CTR_EL0", 0,0,0, 3,3,1, ARM_CP_STATE_AA64,
ARM_CP_CONST, PL0_R, 0, NULL, cpu->ctr, 0, {0, 0},
ctr_el0_access, },
2015-08-21 07:04:50 +00:00
/* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
{ "TCMTR", 15,0,0, 0,0,2, 0,
ARM_CP_CONST, PL1_R, 0, NULL, 0 },
{ "TLBTR", 15,0,0, 0,0,3, 0,
ARM_CP_CONST, PL1_R, 0, NULL, 0 },
2015-08-21 07:04:50 +00:00
REGINFO_SENTINEL
};
ARMCPRegInfo crn0_wi_reginfo = {
"CRN0_WI", 15,0,CP_ANY, 0,CP_ANY,CP_ANY, 0,
ARM_CP_NOP | ARM_CP_OVERRIDE, PL1_W,
2015-08-21 07:04:50 +00:00
};
if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
arm_feature(env, ARM_FEATURE_STRONGARM)) {
ARMCPRegInfo *r;
/* Register the blanket "writes ignored" value first to cover the
* whole space. Then update the specific ID registers to allow write
* access, so that they ignore writes rather than causing them to
* UNDEF.
*/
define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
for (r = id_pre_v8_midr_cp_reginfo;
r->type != ARM_CP_SENTINEL; r++) {
r->access = PL1_RW;
}
for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
r->access = PL1_RW;
}
}
if (arm_feature(env, ARM_FEATURE_V8)) {
define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
} else {
define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
}
define_arm_cp_regs(cpu, id_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_MPIDR)) {
define_arm_cp_regs(cpu, mpidr_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_AUXCR)) {
ARMCPRegInfo auxcr = {
"ACTLR_EL1", 0,1,0, 3,0,1, ARM_CP_STATE_BOTH,
ARM_CP_CONST, PL1_RW, 0, NULL, cpu->reset_auxcr
2015-08-21 07:04:50 +00:00
};
define_one_arm_cp_reg(cpu, &auxcr);
}
if (arm_feature(env, ARM_FEATURE_CBAR)) {
if (arm_feature(env, ARM_FEATURE_AARCH64)) {
/* 32 bit view is [31:18] 0...0 [43:32]. */
uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
| extract64(cpu->reset_cbar, 32, 12);
ARMCPRegInfo cbar_reginfo[] = {
{ "CBAR", 15,15,0, 0,4,0, 0,
ARM_CP_CONST, PL1_R, 0, NULL, cpu->reset_cbar },
{ "CBAR_EL1", 0,15,3, 3,1,0, ARM_CP_STATE_AA64,
ARM_CP_CONST, PL1_R, 0, NULL, cbar32 },
2015-08-21 07:04:50 +00:00
REGINFO_SENTINEL
};
/* We don't implement a r/w 64 bit CBAR currently */
assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
define_arm_cp_regs(cpu, cbar_reginfo);
} else {
ARMCPRegInfo cbar = {
"CBAR", 15,15,0, 0,4,0, 0,
0, PL1_R|PL3_W, 0, NULL, cpu->reset_cbar, offsetof(CPUARMState, cp15.c15_config_base_address)
2015-08-21 07:04:50 +00:00
};
if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
cbar.access = PL1_R;
cbar.fieldoffset = 0;
cbar.type = ARM_CP_CONST;
}
define_one_arm_cp_reg(cpu, &cbar);
}
}
if (arm_feature(env, ARM_FEATURE_VBAR)) {
ARMCPRegInfo vbar_cp_reginfo[] = {
{ "VBAR", 0,12,0, 3,0,0, ARM_CP_STATE_BOTH,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.vbar_el[1]), {0, 0},
NULL, NULL, vbar_write, },
REGINFO_SENTINEL
};
define_arm_cp_regs(cpu, vbar_cp_reginfo);
}
2015-08-21 07:04:50 +00:00
/* Generic registers whose values depend on the implementation */
{
ARMCPRegInfo sctlr = {
"SCTLR", 0,1,0, 3,0,0, ARM_CP_STATE_BOTH,
0, PL1_RW, 0, NULL, cpu->reset_sctlr, offsetof(CPUARMState, cp15.c1_sys), {0, 0},
NULL, NULL,sctlr_write, NULL,raw_write,
2015-08-21 07:04:50 +00:00
};
if (arm_feature(env, ARM_FEATURE_XSCALE)) {
/* Normally we would always end the TB on an SCTLR write, but Linux
* arch/arm/mach-pxa/sleep.S expects two instructions following
* an MMU enable to execute from cache. Imitate this behaviour.
*/
sctlr.type |= ARM_CP_SUPPRESS_TB_END;
}
define_one_arm_cp_reg(cpu, &sctlr);
}
}
ARMCPU *cpu_arm_init(struct uc_struct *uc, const char *cpu_model)
{
return ARM_CPU(uc, cpu_generic_init(uc, TYPE_ARM_CPU, cpu_model));
}
void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
{
#if 0
CPUState *cs = CPU(cpu);
CPUARMState *env = &cpu->env;
if (arm_feature(env, ARM_FEATURE_AARCH64)) {
gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
aarch64_fpu_gdb_set_reg,
34, "aarch64-fpu.xml", 0);
} else if (arm_feature(env, ARM_FEATURE_NEON)) {
gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
51, "arm-neon.xml", 0);
} else if (arm_feature(env, ARM_FEATURE_VFP3)) {
gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
35, "arm-vfp3.xml", 0);
} else if (arm_feature(env, ARM_FEATURE_VFP)) {
gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
19, "arm-vfp.xml", 0);
}
#endif
}
/* Sort alphabetically by type name, except for "any". */
#if 0
static void arm_cpu_list_entry(gpointer data, gpointer user_data)
{
ObjectClass *oc = data;
CPUListState *s = user_data;
const char *typename;
char *name;
typename = object_class_get_name(oc);
name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
(*s->cpu_fprintf)(s->file, " %s\n",
name);
g_free(name);
2015-08-21 07:04:50 +00:00
}
#endif
void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
{
#if 0
CPUListState s = {
.file = f,
.cpu_fprintf = cpu_fprintf,
};
GSList *list;
list = object_class_get_list(TYPE_ARM_CPU, false);
list = g_slist_sort(list, arm_cpu_list_compare);
(*cpu_fprintf)(f, "Available CPUs:\n");
g_slist_foreach(list, arm_cpu_list_entry, &s);
g_slist_free(list);
#ifdef CONFIG_KVM
/* The 'host' CPU type is dynamically registered only if KVM is
* enabled, so we have to special-case it here:
*/
(*cpu_fprintf)(f, " host (only available in KVM mode)\n");
#endif
#endif
}
static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
void *opaque, int state, int secstate,
2015-08-21 07:04:50 +00:00
int crm, int opc1, int opc2)
{
/* Private utility function for define_one_arm_cp_reg_with_opaque():
* add a single reginfo struct to the hash table.
*/
uint32_t *key = g_new(uint32_t, 1);
ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
/* Reset the secure state to the specific incoming state. This is
* necessary as the register may have been defined with both states.
*/
r2->secure = secstate;
if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
/* Register is banked (using both entries in array).
* Overwriting fieldoffset as the array is only used to define
* banked registers but later only fieldoffset is used.
2015-08-21 07:04:50 +00:00
*/
r2->fieldoffset = r->bank_fieldoffsets[ns];
}
if (state == ARM_CP_STATE_AA32) {
if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
/* If the register is banked then we don't need to migrate or
* reset the 32-bit instance in certain cases:
*
* 1) If the register has both 32-bit and 64-bit instances then we
* can count on the 64-bit instance taking care of the
* non-secure bank.
* 2) If ARMv8 is enabled then we can count on a 64-bit version
* taking care of the secure bank. This requires that separate
* 32 and 64-bit definitions are provided.
*/
if ((r->state == ARM_CP_STATE_BOTH && ns) ||
(arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
r2->type |= ARM_CP_NO_MIGRATE;
r2->resetfn = arm_cp_reset_ignore;
}
} else if ((secstate != r->secure) && !ns) {
/* The register is not banked so we only want to allow migration of
* the non-secure instance.
*/
r2->type |= ARM_CP_NO_MIGRATE;
r2->resetfn = arm_cp_reset_ignore;
2015-08-21 07:04:50 +00:00
}
if (r->state == ARM_CP_STATE_BOTH) {
/* We assume it is a cp15 register if the .cp field is left unset.
*/
if (r2->cp == 0) {
r2->cp = 15;
}
2015-08-21 07:04:50 +00:00
#ifdef HOST_WORDS_BIGENDIAN
if (r2->fieldoffset) {
r2->fieldoffset += sizeof(uint32_t);
}
2015-08-21 07:04:50 +00:00
#endif
}
2015-08-21 07:04:50 +00:00
}
2015-08-21 07:04:50 +00:00
if (state == ARM_CP_STATE_AA64) {
/* To allow abbreviation of ARMCPRegInfo
* definitions, we treat cp == 0 as equivalent to
* the value for "standard guest-visible sysreg".
* STATE_BOTH definitions are also always "standard
* sysreg" in their AArch64 view (the .cp value may
* be non-zero for the benefit of the AArch32 view).
*/
if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
r2->cp = CP_REG_ARM64_SYSREG_CP;
}
*key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
r2->opc0, opc1, opc2);
} else {
*key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
2015-08-21 07:04:50 +00:00
}
if (opaque) {
r2->opaque = opaque;
}
/* reginfo passed to helpers is correct for the actual access,
* and is never ARM_CP_STATE_BOTH:
*/
r2->state = state;
/* Make sure reginfo passed to helpers for wildcarded regs
* has the correct crm/opc1/opc2 for this reg, not CP_ANY:
*/
r2->crm = crm;
r2->opc1 = opc1;
r2->opc2 = opc2;
/* By convention, for wildcarded registers only the first
* entry is used for migration; the others are marked as
* NO_MIGRATE so we don't try to transfer the register
* multiple times. Special registers (ie NOP/WFI) are
* never migratable.
*/
if ((r->type & ARM_CP_SPECIAL) ||
((r->crm == CP_ANY) && crm != 0) ||
((r->opc1 == CP_ANY) && opc1 != 0) ||
((r->opc2 == CP_ANY) && opc2 != 0)) {
r2->type |= ARM_CP_NO_MIGRATE;
}
/* Overriding of an existing definition must be explicitly
* requested.
*/
if (!(r->type & ARM_CP_OVERRIDE)) {
ARMCPRegInfo *oldreg;
oldreg = g_hash_table_lookup(cpu->cp_regs, key);
if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
fprintf(stderr, "Register redefined: cp=%d %d bit "
"crn=%d crm=%d opc1=%d opc2=%d, "
"was %s, now %s\n", r2->cp, 32 + 32 * is64,
r2->crn, r2->crm, r2->opc1, r2->opc2,
oldreg->name, r2->name);
g_assert_not_reached();
}
}
g_hash_table_insert(cpu->cp_regs, key, r2);
}
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
const ARMCPRegInfo *r, void *opaque)
{
/* Define implementations of coprocessor registers.
* We store these in a hashtable because typically
* there are less than 150 registers in a space which
* is 16*16*16*8*8 = 262144 in size.
* Wildcarding is supported for the crm, opc1 and opc2 fields.
* If a register is defined twice then the second definition is
* used, so this can be used to define some generic registers and
* then override them with implementation specific variations.
* At least one of the original and the second definition should
* include ARM_CP_OVERRIDE in its type bits -- this is just a guard
* against accidental use.
*
* The state field defines whether the register is to be
* visible in the AArch32 or AArch64 execution state. If the
* state is set to ARM_CP_STATE_BOTH then we synthesise a
* reginfo structure for the AArch32 view, which sees the lower
* 32 bits of the 64 bit register.
*
* Only registers visible in AArch64 may set r->opc0; opc0 cannot
* be wildcarded. AArch64 registers are always considered to be 64
* bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
* the register, if any.
*/
int crm, opc1, opc2, state;
int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
/* 64 bit registers have only CRm and Opc1 fields */
assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
/* op0 only exists in the AArch64 encodings */
assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
/* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
/* The AArch64 pseudocode CheckSystemAccess() specifies that op1
* encodes a minimum access level for the register. We roll this
* runtime check into our general permission check code, so check
* here that the reginfo's specified permissions are strict enough
* to encompass the generic architectural permission check.
*/
if (r->state != ARM_CP_STATE_AA32) {
int mask = 0;
switch (r->opc1) {
case 0: case 1: case 2:
/* min_EL EL1 */
mask = PL1_RW;
break;
case 3:
/* min_EL EL0 */
mask = PL0_RW;
break;
case 4:
/* min_EL EL2 */
mask = PL2_RW;
break;
case 5:
/* unallocated encoding, so not possible */
assert(false);
break;
case 6:
/* min_EL EL3 */
mask = PL3_RW;
break;
case 7:
/* min_EL EL1, secure mode only (we don't check the latter) */
mask = PL1_RW;
break;
default:
/* broken reginfo with out-of-range opc1 */
assert(false);
break;
}
/* assert our permissions are not too lax (stricter is fine) */
assert((r->access & ~mask) == 0);
}
/* Check that the register definition has enough info to handle
* reads and writes if they are permitted.
*/
if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
if (r->access & PL3_R) {
assert((r->fieldoffset ||
(r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
r->readfn);
2015-08-21 07:04:50 +00:00
}
if (r->access & PL3_W) {
assert((r->fieldoffset ||
(r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
r->writefn);
2015-08-21 07:04:50 +00:00
}
}
/* Bad type field probably means missing sentinel at end of reg list */
assert(cptype_valid(r->type));
for (crm = crmmin; crm <= crmmax; crm++) {
for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
for (state = ARM_CP_STATE_AA32;
state <= ARM_CP_STATE_AA64; state++) {
if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
continue;
}
if (state == ARM_CP_STATE_AA32) {
/* Under AArch32 CP registers can be common
* (same for secure and non-secure world) or banked.
*/
switch (r->secure) {
case ARM_CP_SECSTATE_S:
case ARM_CP_SECSTATE_NS:
add_cpreg_to_hashtable(cpu, r, opaque, state,
r->secure, crm, opc1, opc2);
break;
default:
add_cpreg_to_hashtable(cpu, r, opaque, state,
ARM_CP_SECSTATE_S,
crm, opc1, opc2);
add_cpreg_to_hashtable(cpu, r, opaque, state,
ARM_CP_SECSTATE_NS,
crm, opc1, opc2);
break;
}
} else {
/* AArch64 registers get mapped to non-secure instance
* of AArch32 */
add_cpreg_to_hashtable(cpu, r, opaque, state,
ARM_CP_SECSTATE_NS,
crm, opc1, opc2);
}
2015-08-21 07:04:50 +00:00
}
}
}
}
}
void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
const ARMCPRegInfo *regs, void *opaque)
{
/* Define a whole list of registers */
const ARMCPRegInfo *r;
for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
}
}
const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
{
return g_hash_table_lookup(cpregs, &encoded_cp);
}
void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* Helper coprocessor write function for write-ignore registers */
}
uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
{
/* Helper coprocessor write function for read-as-zero registers */
return 0;
}
void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
{
/* Helper coprocessor reset function for do-nothing-on-reset registers */
}
static int bad_mode_switch(CPUARMState *env, int mode)
{
/* Return true if it is not valid for us to switch to
* this CPU mode (ie all the UNPREDICTABLE cases in
* the ARM ARM CPSRWriteByInstr pseudocode).
*/
switch (mode) {
case ARM_CPU_MODE_USR:
case ARM_CPU_MODE_SYS:
case ARM_CPU_MODE_SVC:
case ARM_CPU_MODE_ABT:
case ARM_CPU_MODE_UND:
case ARM_CPU_MODE_IRQ:
case ARM_CPU_MODE_FIQ:
return 0;
case ARM_CPU_MODE_MON:
return !arm_is_secure(env);
default:
return 1;
}
}
uint32_t cpsr_read(CPUARMState *env)
{
int ZF;
ZF = (env->ZF == 0);
return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
(env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
| (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
| ((env->condexec_bits & 0xfc) << 8)
| (env->GE << 16) | (env->daif & CPSR_AIF);
}
void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
{
if (mask & CPSR_NZCV) {
env->ZF = (~val) & CPSR_Z;
env->NF = val;
env->CF = (val >> 29) & 1;
env->VF = (val << 3) & 0x80000000;
}
if (mask & CPSR_Q)
env->QF = ((val & CPSR_Q) != 0);
if (mask & CPSR_T)
env->thumb = ((val & CPSR_T) != 0);
if (mask & CPSR_IT_0_1) {
env->condexec_bits &= ~3;
env->condexec_bits |= (val >> 25) & 3;
}
if (mask & CPSR_IT_2_7) {
env->condexec_bits &= 3;
env->condexec_bits |= (val >> 8) & 0xfc;
}
if (mask & CPSR_GE) {
env->GE = (val >> 16) & 0xf;
}
env->daif &= ~(CPSR_AIF & mask);
env->daif |= val & CPSR_AIF & mask;
if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
if (bad_mode_switch(env, val & CPSR_M)) {
/* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
* We choose to ignore the attempt and leave the CPSR M field
* untouched.
*/
mask &= ~CPSR_M;
} else {
switch_mode(env, val & CPSR_M);
}
}
mask &= ~CACHED_CPSR_BITS;
env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
}
/* Sign/zero extend */
uint32_t HELPER(sxtb16)(uint32_t x)
{
uint32_t res;
res = (uint16_t)(int8_t)x;
res |= (uint32_t)(int8_t)(x >> 16) << 16;
return res;
}
uint32_t HELPER(uxtb16)(uint32_t x)
{
uint32_t res;
res = (uint16_t)(uint8_t)x;
res |= (uint32_t)(uint8_t)(x >> 16) << 16;
return res;
}
uint32_t HELPER(clz_arm)(uint32_t x)
{
return clz32(x);
}
int32_t HELPER(sdiv)(int32_t num, int32_t den)
{
if (den == 0)
return 0;
if (num == INT_MIN && den == -1)
return INT_MIN;
return num / den;
}
uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
{
if (den == 0)
return 0;
return num / den;
}
uint32_t HELPER(rbit)(uint32_t x)
{
return revbit32(x);
2015-08-21 07:04:50 +00:00
}
#if defined(CONFIG_USER_ONLY)
int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
int mmu_idx)
{
2017-12-21 01:43:33 +00:00
ARMCPU *cpu = ARM_CPU(NULL, cs);
2015-08-21 07:04:50 +00:00
CPUARMState *env = &cpu->env;
env->exception.vaddress = address;
if (rw == 2) {
cs->exception_index = EXCP_PREFETCH_ABORT;
} else {
cs->exception_index = EXCP_DATA_ABORT;
}
return 1;
}
/* These should probably raise undefined insn exceptions. */
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
{
ARMCPU *cpu = arm_env_get_cpu(env);
cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
}
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
{
ARMCPU *cpu = arm_env_get_cpu(env);
cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
return 0;
}
void switch_mode(CPUARMState *env, int mode)
{
ARMCPU *cpu = arm_env_get_cpu(env);
if (mode != ARM_CPU_MODE_USR) {
cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
}
}
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
{
ARMCPU *cpu = arm_env_get_cpu(env);
cpu_abort(CPU(cpu), "banked r13 write\n");
}
uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
{
ARMCPU *cpu = arm_env_get_cpu(env);
cpu_abort(CPU(cpu), "banked r13 read\n");
return 0;
}
unsigned int arm_excp_target_el(CPUState *cs, unsigned int excp_idx)
{
return 1;
}
#else
/* Map CPU modes onto saved register banks. */
int bank_number(int mode)
{
switch (mode) {
default:
case ARM_CPU_MODE_USR:
case ARM_CPU_MODE_SYS:
return 0;
case ARM_CPU_MODE_SVC:
return 1;
case ARM_CPU_MODE_ABT:
return 2;
case ARM_CPU_MODE_UND:
return 3;
case ARM_CPU_MODE_IRQ:
return 4;
case ARM_CPU_MODE_FIQ:
return 5;
case ARM_CPU_MODE_HYP:
return 6;
case ARM_CPU_MODE_MON:
return 7;
}
//hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
}
void switch_mode(CPUARMState *env, int mode)
{
int old_mode;
int i;
old_mode = env->uncached_cpsr & CPSR_M;
if (mode == old_mode)
return;
if (old_mode == ARM_CPU_MODE_FIQ) {
memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
} else if (mode == ARM_CPU_MODE_FIQ) {
memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
}
i = bank_number(old_mode);
env->banked_r13[i] = env->regs[13];
env->banked_r14[i] = env->regs[14];
env->banked_spsr[i] = env->spsr;
i = bank_number(mode);
env->regs[13] = env->banked_r13[i];
env->regs[14] = env->banked_r14[i];
env->spsr = env->banked_spsr[i];
}
/* Physical Interrupt Target EL Lookup Table
*
* [ From ARM ARM section G1.13.4 (Table G1-15) ]
*
* The below multi-dimensional table is used for looking up the target
* exception level given numerous condition criteria. Specifically, the
* target EL is based on SCR and HCR routing controls as well as the
* currently executing EL and secure state.
*
* Dimensions:
* target_el_table[2][2][2][2][2][4]
* | | | | | +--- Current EL
* | | | | +------ Non-secure(0)/Secure(1)
* | | | +--------- HCR mask override
* | | +------------ SCR exec state control
* | +--------------- SCR mask override
* +------------------ 32-bit(0)/64-bit(1) EL3
*
* The table values are as such:
* 0-3 = EL0-EL3
* -1 = Cannot occur
*
* The ARM ARM target EL table includes entries indicating that an "exception
* is not taken". The two cases where this is applicable are:
* 1) An exception is taken from EL3 but the SCR does not have the exception
* routed to EL3.
* 2) An exception is taken from EL2 but the HCR does not have the exception
* routed to EL2.
* In these two cases, the below table contain a target of EL1. This value is
* returned as it is expected that the consumer of the table data will check
* for "target EL >= current EL" to ensure the exception is not taken.
*
* SCR HCR
* 64 EA AMO From
* BIT IRQ IMO Non-secure Secure
* EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
*/
const int8_t target_el_table[2][2][2][2][2][4] = {
{{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
{/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
{{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
{/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
{{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
{/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
{{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
{/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
{{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
{/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
{{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
{/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
{{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
{/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
{{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
{/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
};
/*
* Determine the target EL for physical exceptions
*/
static inline uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
uint32_t cur_el, bool secure)
{
CPUARMState *env = cs->env_ptr;
int rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
int scr;
int hcr;
int target_el;
int is64 = arm_el_is_aa64(env, 3);
switch (excp_idx) {
case EXCP_IRQ:
scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
break;
case EXCP_FIQ:
scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
break;
default:
scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
break;
};
/* If HCR.TGE is set then HCR is treated as being 1 */
hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
/* Perform a table-lookup for the target EL given the current state */
target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
assert(target_el > 0);
return target_el;
}
2015-08-21 07:04:50 +00:00
/*
* Determine the target EL for a given exception type.
*/
unsigned int arm_excp_target_el(CPUState *cs, unsigned int excp_idx)
{
CPUARMState *env = cs->env_ptr;
unsigned int cur_el = arm_current_el(env);
unsigned int target_el;
bool secure = arm_is_secure(env);
2015-08-21 07:04:50 +00:00
switch (excp_idx) {
case EXCP_HVC:
case EXCP_HYP_TRAP:
target_el = 2;
break;
case EXCP_SMC:
target_el = 3;
break;
case EXCP_FIQ:
case EXCP_IRQ:
target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
2015-08-21 07:04:50 +00:00
break;
case EXCP_VIRQ:
case EXCP_VFIQ:
target_el = 1;
break;
default:
target_el = MAX(cur_el, 1);
break;
}
return target_el;
}
static void v7m_push(CPUARMState *env, uint32_t val)
{
CPUState *cs = CPU(arm_env_get_cpu(env));
env->regs[13] -= 4;
stl_phys(cs->as, env->regs[13], val);
}
static uint32_t v7m_pop(CPUARMState *env)
{
CPUState *cs = CPU(arm_env_get_cpu(env));
uint32_t val;
val = ldl_phys(cs->as, env->regs[13]);
env->regs[13] += 4;
return val;
}
/* Switch to V7M main or process stack pointer. */
static void switch_v7m_sp(CPUARMState *env, int process)
{
uint32_t tmp;
if (env->v7m.current_sp != process) {
tmp = env->v7m.other_sp;
env->v7m.other_sp = env->regs[13];
env->regs[13] = tmp;
env->v7m.current_sp = process;
}
}
static void do_v7m_exception_exit(CPUARMState *env)
{
uint32_t type;
uint32_t xpsr;
type = env->regs[15];
//if (env->v7m.exception != 0)
// armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
/* Switch to the target stack. */
switch_v7m_sp(env, (type & 4) != 0);
/* Pop registers. */
env->regs[0] = v7m_pop(env);
env->regs[1] = v7m_pop(env);
env->regs[2] = v7m_pop(env);
env->regs[3] = v7m_pop(env);
env->regs[12] = v7m_pop(env);
env->regs[14] = v7m_pop(env);
env->regs[15] = v7m_pop(env);
xpsr = v7m_pop(env);
xpsr_write(env, xpsr, 0xfffffdff);
/* Undo stack alignment. */
if (xpsr & 0x200)
env->regs[13] |= 4;
/* ??? The exception return type specifies Thread/Handler mode. However
this is also implied by the xPSR value. Not sure what to do
if there is a mismatch. */
/* ??? Likewise for mismatches between the CONTROL register and the stack
pointer. */
}
void arm_v7m_cpu_do_interrupt(CPUState *cs)
{
CPUARMState *env = cs->env_ptr;
uint32_t xpsr = xpsr_read(env);
uint32_t lr;
uint32_t addr;
arm_log_exception(cs->exception_index);
lr = 0xfffffff1;
if (env->v7m.current_sp)
lr |= 4;
if (env->v7m.exception == 0)
lr |= 8;
/* For exceptions we just mark as pending on the NVIC, and let that
handle it. */
/* TODO: Need to escalate if the current priority is higher than the
one we're raising. */
switch (cs->exception_index) {
case EXCP_UDEF:
//armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
return;
case EXCP_SWI:
/* The PC already points to the next instruction. */
//armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
return;
case EXCP_PREFETCH_ABORT:
case EXCP_DATA_ABORT:
/* TODO: if we implemented the MPU registers, this is where we
* should set the MMFAR, etc from exception.fsr and exception.vaddress.
*/
//armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
return;
case EXCP_BKPT:
#if 0
if (semihosting_enabled) {
int nr;
nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
if (nr == 0xab) {
env->regs[15] += 2;
env->regs[0] = do_arm_semihosting(env);
qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
return;
}
}
#endif
//armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
return;
case EXCP_IRQ:
//env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
break;
case EXCP_EXCEPTION_EXIT:
do_v7m_exception_exit(env);
return;
default:
cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
return; /* Never happens. Keep compiler happy. */
}
/* Align stack pointer. */
/* ??? Should only do this if Configuration Control Register
STACKALIGN bit is set. */
if (env->regs[13] & 4) {
env->regs[13] -= 4;
xpsr |= 0x200;
}
/* Switch to the handler mode. */
v7m_push(env, xpsr);
v7m_push(env, env->regs[15]);
v7m_push(env, env->regs[14]);
v7m_push(env, env->regs[12]);
v7m_push(env, env->regs[3]);
v7m_push(env, env->regs[2]);
v7m_push(env, env->regs[1]);
v7m_push(env, env->regs[0]);
switch_v7m_sp(env, 0);
/* Clear IT bits */
env->condexec_bits = 0;
env->regs[14] = lr;
addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
env->regs[15] = addr & 0xfffffffe;
env->thumb = addr & 1;
}
/* Handle a CPU exception. */
void arm_cpu_do_interrupt(CPUState *cs)
{
CPUARMState *env = cs->env_ptr;
ARMCPU *cpu = ARM_CPU(env->uc, cs);
uint32_t addr;
uint32_t mask;
int new_mode;
uint32_t offset;
uint32_t moe;
assert(!IS_M(env));
arm_log_exception(cs->exception_index);
if (arm_is_psci_call(cpu, cs->exception_index)) {
arm_handle_psci_call(cpu);
qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
return;
}
/* If this is a debug exception we must update the DBGDSCR.MOE bits */
switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
case EC_BREAKPOINT:
case EC_BREAKPOINT_SAME_EL:
moe = 1;
break;
case EC_WATCHPOINT:
case EC_WATCHPOINT_SAME_EL:
moe = 10;
break;
case EC_AA32_BKPT:
moe = 3;
break;
case EC_VECTORCATCH:
moe = 5;
break;
default:
moe = 0;
break;
}
if (moe) {
env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
}
/* TODO: Vectored interrupt controller. */
switch (cs->exception_index) {
case EXCP_UDEF:
new_mode = ARM_CPU_MODE_UND;
addr = 0x04;
mask = CPSR_I;
if (env->thumb)
offset = 2;
else
offset = 4;
break;
case EXCP_SWI:
#if 0
if (semihosting_enabled) {
/* Check for semihosting interrupt. */
if (env->thumb) {
mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
& 0xff;
} else {
mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
& 0xffffff;
}
/* Only intercept calls from privileged modes, to provide some
semblance of security. */
if (((mask == 0x123456 && !env->thumb)
|| (mask == 0xab && env->thumb))
&& (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
env->regs[0] = do_arm_semihosting(env);
qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
return;
}
}
#endif
new_mode = ARM_CPU_MODE_SVC;
addr = 0x08;
mask = CPSR_I;
/* The PC already points to the next instruction. */
offset = 0;
break;
case EXCP_BKPT:
#if 0
/* See if this is a semihosting syscall. */
if (env->thumb && semihosting_enabled) {
mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
if (mask == 0xab
&& (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
env->regs[15] += 2;
env->regs[0] = do_arm_semihosting(env);
qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
return;
}
}
#endif
env->exception.fsr = 2;
/* Fall through to prefetch abort. */
case EXCP_PREFETCH_ABORT:
env->cp15.ifsr_el2 = env->exception.fsr;
env->cp15.far_el[1] = deposit64(env->cp15.far_el[1], 32, 32,
env->exception.vaddress);
qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
env->cp15.ifsr_el2, (uint32_t)env->exception.vaddress);
new_mode = ARM_CPU_MODE_ABT;
addr = 0x0c;
mask = CPSR_A | CPSR_I;
offset = 4;
break;
case EXCP_DATA_ABORT:
env->cp15.esr_el[1] = env->exception.fsr;
env->cp15.far_el[1] = deposit64(env->cp15.far_el[1], 0, 32,
env->exception.vaddress);
qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
(uint32_t)env->cp15.esr_el[1],
(uint32_t)env->exception.vaddress);
new_mode = ARM_CPU_MODE_ABT;
addr = 0x10;
mask = CPSR_A | CPSR_I;
offset = 8;
break;
case EXCP_IRQ:
new_mode = ARM_CPU_MODE_IRQ;
addr = 0x18;
/* Disable IRQ and imprecise data aborts. */
mask = CPSR_A | CPSR_I;
offset = 4;
if (env->cp15.scr_el3 & SCR_IRQ) {
/* IRQ routed to monitor mode */
new_mode = ARM_CPU_MODE_MON;
mask |= CPSR_F;
}
2015-08-21 07:04:50 +00:00
break;
case EXCP_FIQ:
new_mode = ARM_CPU_MODE_FIQ;
addr = 0x1c;
/* Disable FIQ, IRQ and imprecise data aborts. */
mask = CPSR_A | CPSR_I | CPSR_F;
offset = 4;
if (env->cp15.scr_el3 & SCR_FIQ) {
/* FIQ routed to monitor mode */
new_mode = ARM_CPU_MODE_MON;
}
2015-08-21 07:04:50 +00:00
break;
case EXCP_SMC:
new_mode = ARM_CPU_MODE_MON;
addr = 0x08;
mask = CPSR_A | CPSR_I | CPSR_F;
offset = 0;
break;
default:
cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
return; /* Never happens. Keep compiler happy. */
}
/* High vectors. */
if (env->cp15.c1_sys & SCTLR_V) {
/* when enabled, base address cannot be remapped. */
addr += 0xffff0000;
} else {
/* ARM v7 architectures provide a vector base address register to remap
* the interrupt vector table.
* This register is only followed in non-monitor mode, and has a secure
* and un-secure copy. Since the cpu is always in a un-secure operation
* and is never in monitor mode this feature is always active.
* Note: only bits 31:5 are valid.
*/
addr += env->cp15.vbar_el[1];
}
if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
env->cp15.scr_el3 &= ~SCR_NS;
}
switch_mode (env, new_mode);
/* For exceptions taken to AArch32 we must clear the SS bit in both
* PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
*/
env->uncached_cpsr &= ~PSTATE_SS;
env->spsr = cpsr_read(env);
/* Clear IT bits. */
env->condexec_bits = 0;
/* Switch to the new mode, and to the correct instruction set. */
env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
env->daif |= mask;
/* this is a lie, as the was no c1_sys on V4T/V5, but who cares
* and we should just guard the thumb mode on V4 */
if (arm_feature(env, ARM_FEATURE_V4T)) {
env->thumb = (env->cp15.c1_sys & SCTLR_TE) != 0;
}
env->regs[14] = env->regs[15] + offset;
env->regs[15] = addr;
cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
}
/* Check section/page access permissions.
Returns the page protection flags, or zero if the access is not
permitted. */
static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
int access_type, int is_user)
{
int prot_ro;
if (domain_prot == 3) {
return PAGE_READ | PAGE_WRITE;
}
if (access_type == 1)
prot_ro = 0;
else
prot_ro = PAGE_READ;
switch (ap) {
case 0:
if (arm_feature(env, ARM_FEATURE_V7)) {
return 0;
}
if (access_type == 1)
return 0;
switch (env->cp15.c1_sys & (SCTLR_S | SCTLR_R)) {
case SCTLR_S:
return is_user ? 0 : PAGE_READ;
case SCTLR_R:
return PAGE_READ;
default:
return 0;
}
case 1:
return is_user ? 0 : PAGE_READ | PAGE_WRITE;
case 2:
if (is_user)
return prot_ro;
else
return PAGE_READ | PAGE_WRITE;
case 3:
return PAGE_READ | PAGE_WRITE;
case 4: /* Reserved. */
return 0;
case 5:
return is_user ? 0 : prot_ro;
case 6:
return prot_ro;
case 7:
if (!arm_feature (env, ARM_FEATURE_V6K))
return 0;
return prot_ro;
default:
abort();
}
}
static bool get_level1_table_address(CPUARMState *env, uint32_t *table,
uint32_t address)
{
if (address & env->cp15.c2_mask) {
if ((env->cp15.c2_control & TTBCR_PD1)) {
/* Translation table walk disabled for TTBR1 */
return false;
}
*table = env->cp15.ttbr1_el1 & 0xffffc000;
} else {
if ((env->cp15.c2_control & TTBCR_PD0)) {
/* Translation table walk disabled for TTBR0 */
return false;
}
*table = env->cp15.ttbr0_el1 & env->cp15.c2_base_mask;
}
*table |= (address >> 18) & 0x3ffc;
return true;
}
static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
int is_user, hwaddr *phys_ptr,
int *prot, target_ulong *page_size)
{
CPUState *cs = CPU(arm_env_get_cpu(env));
int code;
uint32_t table;
uint32_t desc;
int type;
int ap;
int domain = 0;
int domain_prot;
hwaddr phys_addr;
/* Pagetable walk. */
/* Lookup l1 descriptor. */
if (!get_level1_table_address(env, &table, address)) {
/* Section translation fault if page walk is disabled by PD0 or PD1 */
code = 5;
goto do_fault;
}
desc = ldl_phys(cs->as, table);
type = (desc & 3);
domain = (desc >> 5) & 0x0f;
domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
if (type == 0) {
/* Section translation fault. */
code = 5;
goto do_fault;
}
if (domain_prot == 0 || domain_prot == 2) {
if (type == 2)
code = 9; /* Section domain fault. */
else
code = 11; /* Page domain fault. */
goto do_fault;
}
if (type == 2) {
/* 1Mb section. */
phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
ap = (desc >> 10) & 3;
code = 13;
*page_size = 1024 * 1024;
} else {
/* Lookup l2 entry. */
if (type == 1) {
/* Coarse pagetable. */
table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
} else {
/* Fine pagetable. */
table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
}
2015-08-21 07:04:50 +00:00
desc = ldl_phys(cs->as, table);
switch (desc & 3) {
case 0: /* Page translation fault. */
code = 7;
goto do_fault;
case 1: /* 64k page. */
phys_addr = (desc & 0xffff0000) | (address & 0xffff);
ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
*page_size = 0x10000;
break;
case 2: /* 4k page. */
phys_addr = (desc & 0xfffff000) | (address & 0xfff);
ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
*page_size = 0x1000;
break;
case 3: /* 1k page. */
if (type == 1) {
if (arm_feature(env, ARM_FEATURE_XSCALE)) {
phys_addr = (desc & 0xfffff000) | (address & 0xfff);
} else {
/* Page translation fault. */
code = 7;
goto do_fault;
}
} else {
phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
}
2015-08-21 07:04:50 +00:00
ap = (desc >> 4) & 3;
*page_size = 0x400;
break;
default:
/* Never happens, but compiler isn't smart enough to tell. */
abort();
}
code = 15;
}
*prot = check_ap(env, ap, domain_prot, access_type, is_user);
if (!*prot) {
/* Access permission fault. */
goto do_fault;
}
*prot |= PAGE_EXEC;
*phys_ptr = phys_addr;
return 0;
do_fault:
return code | (domain << 4);
}
static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
int is_user, hwaddr *phys_ptr,
int *prot, target_ulong *page_size)
{
CPUState *cs = CPU(arm_env_get_cpu(env));
int code;
uint32_t table;
uint32_t desc;
uint32_t xn;
uint32_t pxn = 0;
int type;
int ap;
int domain = 0;
int domain_prot;
hwaddr phys_addr;
/* Pagetable walk. */
/* Lookup l1 descriptor. */
if (!get_level1_table_address(env, &table, address)) {
/* Section translation fault if page walk is disabled by PD0 or PD1 */
code = 5;
goto do_fault;
}
desc = ldl_phys(cs->as, table);
type = (desc & 3);
if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
/* Section translation fault, or attempt to use the encoding
* which is Reserved on implementations without PXN.
*/
code = 5;
goto do_fault;
}
if ((type == 1) || !(desc & (1 << 18))) {
/* Page or Section. */
domain = (desc >> 5) & 0x0f;
}
domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
if (domain_prot == 0 || domain_prot == 2) {
if (type != 1) {
code = 9; /* Section domain fault. */
} else {
code = 11; /* Page domain fault. */
}
goto do_fault;
}
if (type != 1) {
if (desc & (1 << 18)) {
/* Supersection. */
phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
*page_size = 0x1000000;
} else {
/* Section. */
phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
*page_size = 0x100000;
}
ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
xn = desc & (1 << 4);
pxn = desc & 1;
code = 13;
} else {
if (arm_feature(env, ARM_FEATURE_PXN)) {
pxn = (desc >> 2) & 1;
}
/* Lookup l2 entry. */
table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
desc = ldl_phys(cs->as, table);
ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
switch (desc & 3) {
case 0: /* Page translation fault. */
code = 7;
goto do_fault;
case 1: /* 64k page. */
phys_addr = (desc & 0xffff0000) | (address & 0xffff);
xn = desc & (1 << 15);
*page_size = 0x10000;
break;
case 2: case 3: /* 4k page. */
phys_addr = (desc & 0xfffff000) | (address & 0xfff);
xn = desc & 1;
*page_size = 0x1000;
break;
default:
/* Never happens, but compiler isn't smart enough to tell. */
abort();
}
code = 15;
}
if (domain_prot == 3) {
*prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
} else {
if (pxn && !is_user) {
xn = 1;
}
if (xn && access_type == 2)
goto do_fault;
/* The simplified model uses AP[0] as an access control bit. */
if ((env->cp15.c1_sys & SCTLR_AFE) && (ap & 1) == 0) {
/* Access flag fault. */
code = (code == 15) ? 6 : 3;
goto do_fault;
}
*prot = check_ap(env, ap, domain_prot, access_type, is_user);
if (!*prot) {
/* Access permission fault. */
goto do_fault;
}
if (!xn) {
*prot |= PAGE_EXEC;
}
}
*phys_ptr = phys_addr;
return 0;
do_fault:
return code | (domain << 4);
}
/* Fault type for long-descriptor MMU fault reporting; this corresponds
* to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
*/
typedef enum {
translation_fault = 1,
access_fault = 2,
permission_fault = 3,
} MMUFaultType;
static int get_phys_addr_lpae(CPUARMState *env, target_ulong address,
int access_type, int is_user,
hwaddr *phys_ptr, int *prot,
target_ulong *page_size_ptr)
{
CPUState *cs = CPU(arm_env_get_cpu(env));
/* Read an LPAE long-descriptor translation table. */
MMUFaultType fault_type = translation_fault;
uint32_t level = 1;
uint32_t epd;
int32_t tsz;
uint32_t tg;
uint64_t ttbr;
int ttbr_select;
hwaddr descaddr, descmask;
uint32_t tableattrs;
target_ulong page_size;
uint32_t attrs;
int32_t granule_sz = 9;
int32_t va_size = 32;
int32_t tbi = 0;
uint32_t t0sz;
uint32_t t1sz;
2015-08-21 07:04:50 +00:00
if (arm_el_is_aa64(env, 1)) {
va_size = 64;
if (extract64(address, 55, 1))
tbi = extract64(env->cp15.c2_control, 38, 1);
else
tbi = extract64(env->cp15.c2_control, 37, 1);
tbi *= 8;
}
/* Determine whether this address is in the region controlled by
* TTBR0 or TTBR1 (or if it is in neither region and should fault).
* This is a Non-secure PL0/1 stage 1 translation, so controlled by
* TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
*/
t0sz = extract32(env->cp15.c2_control, 0, 6);
2015-08-21 07:04:50 +00:00
if (arm_el_is_aa64(env, 1)) {
t0sz = MIN(t0sz, 39);
t0sz = MAX(t0sz, 16);
}
t1sz = extract32(env->cp15.c2_control, 16, 6);
2015-08-21 07:04:50 +00:00
if (arm_el_is_aa64(env, 1)) {
t1sz = MIN(t1sz, 39);
t1sz = MAX(t1sz, 16);
}
if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) {
/* there is a ttbr0 region and we are in it (high bits all zero) */
ttbr_select = 0;
} else if (t1sz && !extract64(~address, va_size - t1sz, t1sz - tbi)) {
/* there is a ttbr1 region and we are in it (high bits all one) */
ttbr_select = 1;
} else if (!t0sz) {
/* ttbr0 region is "everything not in the ttbr1 region" */
ttbr_select = 0;
} else if (!t1sz) {
/* ttbr1 region is "everything not in the ttbr0 region" */
ttbr_select = 1;
} else {
/* in the gap between the two regions, this is a Translation fault */
fault_type = translation_fault;
goto do_fault;
}
/* Note that QEMU ignores shareability and cacheability attributes,
* so we don't need to do anything with the SH, ORGN, IRGN fields
* in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
* ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
* implement any ASID-like capability so we can ignore it (instead
* we will always flush the TLB any time the ASID is changed).
*/
if (ttbr_select == 0) {
ttbr = env->cp15.ttbr0_el1;
epd = extract32(env->cp15.c2_control, 7, 1);
tsz = t0sz;
tg = extract32(env->cp15.c2_control, 14, 2);
if (tg == 1) { /* 64KB pages */
granule_sz = 13;
}
if (tg == 2) { /* 16KB pages */
granule_sz = 11;
}
} else {
ttbr = env->cp15.ttbr1_el1;
epd = extract32(env->cp15.c2_control, 23, 1);
tsz = t1sz;
tg = extract32(env->cp15.c2_control, 30, 2);
if (tg == 3) { /* 64KB pages */
granule_sz = 13;
}
if (tg == 1) { /* 16KB pages */
granule_sz = 11;
}
}
if (epd) {
/* Translation table walk disabled => Translation fault on TLB miss */
goto do_fault;
}
/* The starting level depends on the virtual address size (which can be
* up to 48 bits) and the translation granule size. It indicates the number
* of strides (granule_sz bits at a time) needed to consume the bits
* of the input address. In the pseudocode this is:
* level = 4 - RoundUp((inputsize - grainsize) / stride)
* where their 'inputsize' is our 'va_size - tsz', 'grainsize' is
* our 'granule_sz + 3' and 'stride' is our 'granule_sz'.
* Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
* = 4 - (va_size - tsz - granule_sz - 3 + granule_sz - 1) / granule_sz
* = 4 - (va_size - tsz - 4) / granule_sz;
*/
level = 4 - (va_size - tsz - 4) / granule_sz;
/* Clear the vaddr bits which aren't part of the within-region address,
* so that we don't have to special case things when calculating the
* first descriptor address.
*/
if (tsz) {
address &= (1ULL << (va_size - tsz)) - 1;
}
descmask = (1ULL << (granule_sz + 3)) - 1;
/* Now we can extract the actual base address from the TTBR */
descaddr = extract64(ttbr, 0, 48);
descaddr &= ~((1ULL << (va_size - tsz - (granule_sz * (4 - level)))) - 1);
tableattrs = 0;
for (;;) {
uint64_t descriptor;
descaddr |= (address >> (granule_sz * (4 - level))) & descmask;
descaddr &= ~7ULL;
descriptor = ldq_phys(cs->as, descaddr);
if (!(descriptor & 1) ||
(!(descriptor & 2) && (level == 3))) {
/* Invalid, or the Reserved level 3 encoding */
goto do_fault;
}
descaddr = descriptor & 0xfffffff000ULL;
if ((descriptor & 2) && (level < 3)) {
/* Table entry. The top five bits are attributes which may
* propagate down through lower levels of the table (and
* which are all arranged so that 0 means "no effect", so
* we can gather them up by ORing in the bits at each level).
*/
tableattrs |= extract64(descriptor, 59, 5);
level++;
continue;
}
/* Block entry at level 1 or 2, or page entry at level 3.
* These are basically the same thing, although the number
* of bits we pull in from the vaddr varies.
*/
page_size = (1ULL << ((granule_sz * (4 - level)) + 3));
descaddr |= (address & (page_size - 1));
/* Extract attributes from the descriptor and merge with table attrs */
attrs = extract64(descriptor, 2, 10)
| (extract64(descriptor, 52, 12) << 10);
attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
/* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
* means "force PL1 access only", which means forcing AP[1] to 0.
*/
if (extract32(tableattrs, 2, 1)) {
attrs &= ~(1 << 4);
}
/* Since we're always in the Non-secure state, NSTable is ignored. */
break;
}
/* Here descaddr is the final physical address, and attributes
* are all in attrs.
*/
fault_type = access_fault;
if ((attrs & (1 << 8)) == 0) {
/* Access flag */
goto do_fault;
}
fault_type = permission_fault;
if (is_user && !(attrs & (1 << 4))) {
/* Unprivileged access not enabled */
goto do_fault;
}
*prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
if ((arm_feature(env, ARM_FEATURE_V8) && is_user && (attrs & (1 << 12))) ||
(!arm_feature(env, ARM_FEATURE_V8) && (attrs & (1 << 12))) ||
(!is_user && (attrs & (1 << 11)))) {
/* XN/UXN or PXN. Since we only implement EL0/EL1 we unconditionally
* treat XN/UXN as UXN for v8.
*/
if (access_type == 2) {
goto do_fault;
}
*prot &= ~PAGE_EXEC;
}
if (attrs & (1 << 5)) {
/* Write access forbidden */
if (access_type == 1) {
goto do_fault;
}
*prot &= ~PAGE_WRITE;
}
*phys_ptr = descaddr;
*page_size_ptr = page_size;
return 0;
do_fault:
/* Long-descriptor format IFSR/DFSR value */
return (1 << 9) | (fault_type << 2) | level;
}
static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
int access_type, int is_user,
hwaddr *phys_ptr, int *prot)
{
int n;
uint32_t mask;
uint32_t base;
*phys_ptr = address;
for (n = 7; n >= 0; n--) {
base = env->cp15.c6_region[n];
if ((base & 1) == 0)
continue;
mask = 1 << ((base >> 1) & 0x1f);
/* Keep this shift separate from the above to avoid an
(undefined) << 32. */
mask = (mask << 1) - 1;
if (((base ^ address) & ~mask) == 0)
break;
2015-08-21 07:04:50 +00:00
}
if (n < 0)
return 2;
2015-08-21 07:04:50 +00:00
if (access_type == 2) {
mask = env->cp15.pmsav5_insn_ap;
} else {
mask = env->cp15.pmsav5_data_ap;
}
mask = (mask >> (n * 4)) & 0xf;
switch (mask) {
case 0:
return 1;
2015-08-21 07:04:50 +00:00
case 1:
if (is_user)
return 1;
*prot = PAGE_READ | PAGE_WRITE;
break;
2015-08-21 07:04:50 +00:00
case 2:
*prot = PAGE_READ;
if (!is_user)
*prot |= PAGE_WRITE;
break;
2015-08-21 07:04:50 +00:00
case 3:
*prot = PAGE_READ | PAGE_WRITE;
break;
2015-08-21 07:04:50 +00:00
case 5:
if (is_user)
return 1;
*prot = PAGE_READ;
break;
2015-08-21 07:04:50 +00:00
case 6:
*prot = PAGE_READ;
break;
2015-08-21 07:04:50 +00:00
default:
/* Bad permission. */
return 1;
2015-08-21 07:04:50 +00:00
}
*prot |= PAGE_EXEC;
return 0;
}
/* get_phys_addr - get the physical address for this virtual address
*
* Find the physical address corresponding to the given virtual address,
* by doing a translation table walk on MMU based systems or using the
* MPU state on MPU based systems.
*
* Returns 0 if the translation was successful. Otherwise, phys_ptr,
* prot and page_size are not filled in, and the return value provides
* information on why the translation aborted, in the format of a
* DFSR/IFSR fault register, with the following caveats:
* * we honour the short vs long DFSR format differences.
* * the WnR bit is never set (the caller must do this).
* * for MPU based systems we don't bother to return a full FSR format
* value.
*
* @env: CPUARMState
* @address: virtual address to get physical address for
* @access_type: 0 for read, 1 for write, 2 for execute
* @is_user: 0 for privileged access, 1 for user
* @phys_ptr: set to the physical address corresponding to the virtual address
* @prot: set to the permissions for the page containing phys_ptr
* @page_size: set to the size of the page containing phys_ptr
*/
static inline int get_phys_addr(CPUARMState *env, target_ulong address,
int access_type, int is_user,
hwaddr *phys_ptr, int *prot,
target_ulong *page_size)
{
/* Fast Context Switch Extension. */
if (address < 0x02000000)
address += env->cp15.c13_fcse;
if ((env->cp15.c1_sys & SCTLR_M) == 0) {
/* MMU/MPU disabled. */
*phys_ptr = address;
*prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
*page_size = TARGET_PAGE_SIZE;
return 0;
} else if (arm_feature(env, ARM_FEATURE_MPU)) {
*page_size = TARGET_PAGE_SIZE;
return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
prot);
2015-08-21 07:04:50 +00:00
} else if (extended_addresses_enabled(env)) {
return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr,
prot, page_size);
} else if (env->cp15.c1_sys & SCTLR_XP) {
return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
prot, page_size);
} else {
return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
prot, page_size);
}
}
int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address,
int access_type, int mmu_idx)
{
CPUARMState *env = cs->env_ptr;
hwaddr phys_addr;
target_ulong page_size;
int prot;
int ret, is_user;
uint32_t syn;
bool same_el = (arm_current_el(env) != 0);
is_user = mmu_idx == MMU_USER_IDX;
ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
&page_size);
if (ret == 0) {
/* Map a single [sub]page. */
phys_addr &= TARGET_PAGE_MASK;
address &= TARGET_PAGE_MASK;
tlb_set_page(cs, address, phys_addr, prot, mmu_idx, page_size);
return 0;
}
/* AArch64 syndrome does not have an LPAE bit */
syn = ret & ~(1 << 9);
/* For insn and data aborts we assume there is no instruction syndrome
* information; this is always true for exceptions reported to EL1.
*/
if (access_type == 2) {
syn = syn_insn_abort(same_el, 0, 0, syn);
cs->exception_index = EXCP_PREFETCH_ABORT;
} else {
syn = syn_data_abort(same_el, 0, 0, 0, access_type == 1, syn);
if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6)) {
ret |= (1 << 11);
}
cs->exception_index = EXCP_DATA_ABORT;
}
env->exception.syndrome = syn;
env->exception.vaddress = address;
env->exception.fsr = ret;
return 1;
}
hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
{
2017-12-21 01:43:33 +00:00
ARMCPU *cpu = ARM_CPU(NULL, cs);
2015-08-21 07:04:50 +00:00
hwaddr phys_addr;
target_ulong page_size;
int prot;
int ret;
ret = get_phys_addr(&cpu->env, addr, 0, 0, &phys_addr, &prot, &page_size);
if (ret != 0) {
return -1;
}
return phys_addr;
}
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
{
if ((env->uncached_cpsr & CPSR_M) == mode) {
env->regs[13] = val;
} else {
env->banked_r13[bank_number(mode)] = val;
}
}
uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
{
if ((env->uncached_cpsr & CPSR_M) == mode) {
return env->regs[13];
} else {
return env->banked_r13[bank_number(mode)];
}
}
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
{
ARMCPU *cpu = arm_env_get_cpu(env);
switch (reg) {
case 0: /* APSR */
return xpsr_read(env) & 0xf8000000;
case 1: /* IAPSR */
return xpsr_read(env) & 0xf80001ff;
case 2: /* EAPSR */
return xpsr_read(env) & 0xff00fc00;
case 3: /* xPSR */
return xpsr_read(env) & 0xff00fdff;
case 5: /* IPSR */
return xpsr_read(env) & 0x000001ff;
case 6: /* EPSR */
return xpsr_read(env) & 0x0700fc00;
case 7: /* IEPSR */
return xpsr_read(env) & 0x0700edff;
case 8: /* MSP */
return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
case 9: /* PSP */
return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
case 16: /* PRIMASK */
return (env->daif & PSTATE_I) != 0;
case 17: /* BASEPRI */
case 18: /* BASEPRI_MAX */
return env->v7m.basepri;
case 19: /* FAULTMASK */
return (env->daif & PSTATE_F) != 0;
case 20: /* CONTROL */
return env->v7m.control;
default:
/* ??? For debugging only. */
cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
return 0;
}
}
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
{
ARMCPU *cpu = arm_env_get_cpu(env);
switch (reg) {
case 0: /* APSR */
xpsr_write(env, val, 0xf8000000);
break;
case 1: /* IAPSR */
xpsr_write(env, val, 0xf8000000);
break;
case 2: /* EAPSR */
xpsr_write(env, val, 0xfe00fc00);
break;
case 3: /* xPSR */
xpsr_write(env, val, 0xfe00fc00);
break;
case 5: /* IPSR */
/* IPSR bits are readonly. */
break;
case 6: /* EPSR */
xpsr_write(env, val, 0x0600fc00);
break;
case 7: /* IEPSR */
xpsr_write(env, val, 0x0600fc00);
break;
case 8: /* MSP */
if (env->v7m.current_sp)
env->v7m.other_sp = val;
else
env->regs[13] = val;
break;
case 9: /* PSP */
if (env->v7m.current_sp)
env->regs[13] = val;
else
env->v7m.other_sp = val;
break;
case 16: /* PRIMASK */
if (val & 1) {
env->daif |= PSTATE_I;
} else {
env->daif &= ~PSTATE_I;
}
break;
case 17: /* BASEPRI */
env->v7m.basepri = val & 0xff;
break;
case 18: /* BASEPRI_MAX */
val &= 0xff;
if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
env->v7m.basepri = val;
break;
case 19: /* FAULTMASK */
if (val & 1) {
env->daif |= PSTATE_F;
} else {
env->daif &= ~PSTATE_F;
}
break;
case 20: /* CONTROL */
env->v7m.control = val & 3;
switch_v7m_sp(env, (val & 2) != 0);
break;
default:
/* ??? For debugging only. */
cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
return;
}
}
#endif
void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
{
/* Implement DC ZVA, which zeroes a fixed-length block of memory.
* Note that we do not implement the (architecturally mandated)
* alignment fault for attempts to use this on Device memory
* (which matches the usual QEMU behaviour of not implementing either
* alignment faults or any memory attribute handling).
*/
ARMCPU *cpu = arm_env_get_cpu(env);
uint64_t blocklen = 4 << cpu->dcz_blocksize;
uint64_t vaddr = vaddr_in & ~(blocklen - 1);
#ifndef CONFIG_USER_ONLY
{
/* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
* the block size so we might have to do more than one TLB lookup.
* We know that in fact for any v8 CPU the page size is at least 4K
* and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
* 1K as an artefact of legacy v5 subpage support being present in the
* same QEMU executable.
*/
2015-08-21 07:04:50 +00:00
int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
// msvc doesnt allow non-constant array sizes, so we work out the size it would be
// TARGET_PAGE_SIZE is 1024
// blocklen is 64
// maxidx = (blocklen+TARGET_PAGE_SIZE-1) / TARGET_PAGE_SIZE
// = (64+1024-1) / 1024
// = 1
#ifdef _MSC_VER
void *hostaddr[1];
#else
2015-08-21 07:04:50 +00:00
void *hostaddr[maxidx];
#endif
2015-08-21 07:04:50 +00:00
int try, i;
unsigned mmu_idx = cpu_mmu_index(env);
TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
2015-08-21 07:04:50 +00:00
for (try = 0; try < 2; try++) {
for (i = 0; i < maxidx; i++) {
hostaddr[i] = tlb_vaddr_to_host(env,
vaddr + TARGET_PAGE_SIZE * i,
1, mmu_idx);
2015-08-21 07:04:50 +00:00
if (!hostaddr[i]) {
break;
}
}
if (i == maxidx) {
/* If it's all in the TLB it's fair game for just writing to;
* we know we don't need to update dirty status, etc.
*/
for (i = 0; i < maxidx - 1; i++) {
memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
}
memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
return;
}
/* OK, try a store and see if we can populate the tlb. This
* might cause an exception if the memory isn't writable,
* in which case we will longjmp out of here. We must for
* this purpose use the actual register value passed to us
* so that we get the fault address right.
*/
helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETRA());
2015-08-21 07:04:50 +00:00
/* Now we can populate the other TLB entries, if any */
for (i = 0; i < maxidx; i++) {
uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
if (va != (vaddr_in & TARGET_PAGE_MASK)) {
helper_ret_stb_mmu(env, va, 0, oi, GETRA());
2015-08-21 07:04:50 +00:00
}
}
}
/* Slow path (probably attempt to do this to an I/O device or
* similar, or clearing of a block of code we have translations
* cached for). Just do a series of byte writes as the architecture
* demands. It's not worth trying to use a cpu_physical_memory_map(),
* memset(), unmap() sequence here because:
* + we'd need to account for the blocksize being larger than a page
* + the direct-RAM access case is almost always going to be dealt
* with in the fastpath code above, so there's no speed benefit
* + we would have to deal with the map returning NULL because the
* bounce buffer was in use
*/
for (i = 0; i < blocklen; i++) {
helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETRA());
2015-08-21 07:04:50 +00:00
}
}
#else
memset(g2h(vaddr), 0, blocklen);
#endif
}
/* Note that signed overflow is undefined in C. The following routines are
careful to use unsigned types where modulo arithmetic is required.
Failure to do so _will_ break on newer gcc. */
/* Signed saturating arithmetic. */
/* Perform 16-bit signed saturating addition. */
static inline uint16_t add16_sat(uint16_t a, uint16_t b)
{
uint16_t res;
res = a + b;
if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
if (a & 0x8000)
res = 0x8000;
else
res = 0x7fff;
}
return res;
}
/* Perform 8-bit signed saturating addition. */
static inline uint8_t add8_sat(uint8_t a, uint8_t b)
{
uint8_t res;
res = a + b;
if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
if (a & 0x80)
res = 0x80;
else
res = 0x7f;
}
return res;
}
/* Perform 16-bit signed saturating subtraction. */
static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
{
uint16_t res;
res = a - b;
if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
if (a & 0x8000)
res = 0x8000;
else
res = 0x7fff;
}
return res;
}
/* Perform 8-bit signed saturating subtraction. */
static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
{
uint8_t res;
res = a - b;
if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
if (a & 0x80)
res = 0x80;
else
res = 0x7f;
}
return res;
}
#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
#define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
#define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
#define PFX q
#include "op_addsub.h"
/* Unsigned saturating arithmetic. */
static inline uint16_t add16_usat(uint16_t a, uint16_t b)
{
uint16_t res;
res = a + b;
if (res < a)
res = 0xffff;
return res;
}
static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
{
if (a > b)
return a - b;
else
return 0;
}
static inline uint8_t add8_usat(uint8_t a, uint8_t b)
{
uint8_t res;
res = a + b;
if (res < a)
res = 0xff;
return res;
}
static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
{
if (a > b)
return a - b;
else
return 0;
}
#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
#define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
#define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
#define PFX uq
#include "op_addsub.h"
/* Signed modulo arithmetic. */
#define SARITH16(a, b, n, op) do { \
int32_t sum; \
sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
RESULT(sum, n, 16); \
if (sum >= 0) \
ge |= 3 << (n * 2); \
} while(0)
#define SARITH8(a, b, n, op) do { \
int32_t sum; \
sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
RESULT(sum, n, 8); \
if (sum >= 0) \
ge |= 1 << n; \
} while(0)
#define ADD16(a, b, n) SARITH16(a, b, n, +)
#define SUB16(a, b, n) SARITH16(a, b, n, -)
#define ADD8(a, b, n) SARITH8(a, b, n, +)
#define SUB8(a, b, n) SARITH8(a, b, n, -)
#define PFX s
#define ARITH_GE
#include "op_addsub.h"
/* Unsigned modulo arithmetic. */
#define ADD16(a, b, n) do { \
uint32_t sum; \
sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
RESULT(sum, n, 16); \
if ((sum >> 16) == 1) \
ge |= 3 << (n * 2); \
} while(0)
#define ADD8(a, b, n) do { \
uint32_t sum; \
sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
RESULT(sum, n, 8); \
if ((sum >> 8) == 1) \
ge |= 1 << n; \
} while(0)
#define SUB16(a, b, n) do { \
uint32_t sum; \
sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
RESULT(sum, n, 16); \
if ((sum >> 16) == 0) \
ge |= 3 << (n * 2); \
} while(0)
#define SUB8(a, b, n) do { \
uint32_t sum; \
sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
RESULT(sum, n, 8); \
if ((sum >> 8) == 0) \
ge |= 1 << n; \
} while(0)
#define PFX u
#define ARITH_GE
#include "op_addsub.h"
/* Halved signed arithmetic. */
#define ADD16(a, b, n) \
RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
#define PFX sh
#include "op_addsub.h"
/* Halved unsigned arithmetic. */
#define ADD16(a, b, n) \
RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define PFX uh
#include "op_addsub.h"
static inline uint8_t do_usad(uint8_t a, uint8_t b)
{
if (a > b)
return a - b;
else
return b - a;
}
/* Unsigned sum of absolute byte differences. */
uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
{
uint32_t sum;
sum = do_usad(a, b);
sum += do_usad(a >> 8, b >> 8);
sum += do_usad(a >> 16, b >>16);
sum += do_usad(a >> 24, b >> 24);
return sum;
}
/* For ARMv6 SEL instruction. */
uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
{
uint32_t mask;
mask = 0;
if (flags & 1)
mask |= 0xff;
if (flags & 2)
mask |= 0xff00;
if (flags & 4)
mask |= 0xff0000;
if (flags & 8)
mask |= 0xff000000;
return (a & mask) | (b & ~mask);
}
/* VFP support. We follow the convention used for VFP instructions:
Single precision routines have a "s" suffix, double precision a
"d" suffix. */
/* Convert host exception flags to vfp form. */
static inline int vfp_exceptbits_from_host(int host_bits)
{
int target_bits = 0;
if (host_bits & float_flag_invalid)
target_bits |= 1;
if (host_bits & float_flag_divbyzero)
target_bits |= 2;
if (host_bits & float_flag_overflow)
target_bits |= 4;
if (host_bits & (float_flag_underflow | float_flag_output_denormal))
target_bits |= 8;
if (host_bits & float_flag_inexact)
target_bits |= 0x10;
if (host_bits & float_flag_input_denormal)
target_bits |= 0x80;
return target_bits;
}
uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
{
int i;
uint32_t fpscr;
fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
| (env->vfp.vec_len << 16)
| (env->vfp.vec_stride << 20);
i = get_float_exception_flags(&env->vfp.fp_status);
i |= get_float_exception_flags(&env->vfp.standard_fp_status);
fpscr |= vfp_exceptbits_from_host(i);
return fpscr;
}
uint32_t vfp_get_fpscr(CPUARMState *env)
{
return HELPER(vfp_get_fpscr)(env);
}
/* Convert vfp exception flags to target form. */
static inline int vfp_exceptbits_to_host(int target_bits)
{
int host_bits = 0;
if (target_bits & 1)
host_bits |= float_flag_invalid;
if (target_bits & 2)
host_bits |= float_flag_divbyzero;
if (target_bits & 4)
host_bits |= float_flag_overflow;
if (target_bits & 8)
host_bits |= float_flag_underflow;
if (target_bits & 0x10)
host_bits |= float_flag_inexact;
if (target_bits & 0x80)
host_bits |= float_flag_input_denormal;
return host_bits;
}
void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
{
int i;
uint32_t changed;
changed = env->vfp.xregs[ARM_VFP_FPSCR];
env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
env->vfp.vec_len = (val >> 16) & 7;
env->vfp.vec_stride = (val >> 20) & 3;
changed ^= val;
if (changed & (3 << 22)) {
i = (val >> 22) & 3;
switch (i) {
case FPROUNDING_TIEEVEN:
i = float_round_nearest_even;
break;
case FPROUNDING_POSINF:
i = float_round_up;
break;
case FPROUNDING_NEGINF:
i = float_round_down;
break;
case FPROUNDING_ZERO:
i = float_round_to_zero;
break;
}
set_float_rounding_mode(i, &env->vfp.fp_status);
}
if (changed & (1 << 24)) {
set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
}
if (changed & (1 << 25))
set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
i = vfp_exceptbits_to_host(val);
set_float_exception_flags(i, &env->vfp.fp_status);
set_float_exception_flags(0, &env->vfp.standard_fp_status);
}
void vfp_set_fpscr(CPUARMState *env, uint32_t val)
{
HELPER(vfp_set_fpscr)(env, val);
}
#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
#define VFP_BINOP(name) \
float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
{ \
float_status *fpst = fpstp; \
return float32_ ## name(a, b, fpst); \
} \
float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
{ \
float_status *fpst = fpstp; \
return float64_ ## name(a, b, fpst); \
}
VFP_BINOP(add)
VFP_BINOP(sub)
VFP_BINOP(mul)
VFP_BINOP(div)
VFP_BINOP(min)
VFP_BINOP(max)
VFP_BINOP(minnum)
VFP_BINOP(maxnum)
#undef VFP_BINOP
float32 VFP_HELPER(neg, s)(float32 a)
{
return float32_chs(a);
}
float64 VFP_HELPER(neg, d)(float64 a)
{
return float64_chs(a);
}
float32 VFP_HELPER(abs, s)(float32 a)
{
return float32_abs(a);
}
float64 VFP_HELPER(abs, d)(float64 a)
{
return float64_abs(a);
}
float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
{
return float32_sqrt(a, &env->vfp.fp_status);
}
float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
{
return float64_sqrt(a, &env->vfp.fp_status);
}
/* XXX: check quiet/signaling case */
#define DO_VFP_cmp(p, type) \
void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
{ \
uint32_t flags; \
switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
case 0: flags = 0x6; break; \
case -1: flags = 0x8; break; \
case 1: flags = 0x2; break; \
default: case 2: flags = 0x3; break; \
} \
env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
| (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
} \
void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
{ \
uint32_t flags; \
switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
case 0: flags = 0x6; break; \
case -1: flags = 0x8; break; \
case 1: flags = 0x2; break; \
default: case 2: flags = 0x3; break; \
} \
env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
| (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
}
DO_VFP_cmp(s, float32)
DO_VFP_cmp(d, float64)
#undef DO_VFP_cmp
/* Integer to float and float to integer conversions */
#define CONV_ITOF(name, fsz, sign) \
float##fsz HELPER(name)(uint32_t x, void *fpstp) \
{ \
float_status *fpst = fpstp; \
return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
}
#define CONV_FTOI(name, fsz, sign, round) \
uint32_t HELPER(name)(float##fsz x, void *fpstp) \
{ \
float_status *fpst = fpstp; \
if (float##fsz##_is_any_nan(x)) { \
float_raise(float_flag_invalid, fpst); \
return 0; \
} \
return float##fsz##_to_##sign##int32##round(x, fpst); \
}
#define FLOAT_CONVS(name, p, fsz, sign) \
CONV_ITOF(vfp_##name##to##p, fsz, sign) \
CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
FLOAT_CONVS(si, s, 32, )
FLOAT_CONVS(si, d, 64, )
FLOAT_CONVS(ui, s, 32, u)
FLOAT_CONVS(ui, d, 64, u)
#undef CONV_ITOF
#undef CONV_FTOI
#undef FLOAT_CONVS
/* floating point conversion */
float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
{
float64 r = float32_to_float64(x, &env->vfp.fp_status);
/* ARM requires that S<->D conversion of any kind of NaN generates
* a quiet NaN by forcing the most significant frac bit to 1.
*/
return float64_maybe_silence_nan(r);
}
float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
{
float32 r = float64_to_float32(x, &env->vfp.fp_status);
/* ARM requires that S<->D conversion of any kind of NaN generates
* a quiet NaN by forcing the most significant frac bit to 1.
*/
return float32_maybe_silence_nan(r);
}
/* VFP3 fixed point conversion. */
#define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
void *fpstp) \
{ \
float_status *fpst = fpstp; \
float##fsz tmp; \
tmp = itype##_to_##float##fsz(x, fpst); \
return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
}
/* Notice that we want only input-denormal exception flags from the
* scalbn operation: the other possible flags (overflow+inexact if
* we overflow to infinity, output-denormal) aren't correct for the
* complete scale-and-convert operation.
*/
#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
uint32_t shift, \
void *fpstp) \
{ \
float_status *fpst = fpstp; \
int old_exc_flags = get_float_exception_flags(fpst); \
float##fsz tmp; \
if (float##fsz##_is_any_nan(x)) { \
float_raise(float_flag_invalid, fpst); \
return 0; \
} \
tmp = float##fsz##_scalbn(x, shift, fpst); \
old_exc_flags |= get_float_exception_flags(fpst) \
& float_flag_input_denormal; \
set_float_exception_flags(old_exc_flags, fpst); \
return float##fsz##_to_##itype##round(tmp, fpst); \
}
#define VFP_CONV_FIX(name, p, fsz, isz, itype) \
VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
#define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
VFP_CONV_FIX(sh, d, 64, 64, int16)
VFP_CONV_FIX(sl, d, 64, 64, int32)
VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
VFP_CONV_FIX(uh, d, 64, 64, uint16)
VFP_CONV_FIX(ul, d, 64, 64, uint32)
VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
VFP_CONV_FIX(sh, s, 32, 32, int16)
VFP_CONV_FIX(sl, s, 32, 32, int32)
VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
VFP_CONV_FIX(uh, s, 32, 32, uint16)
VFP_CONV_FIX(ul, s, 32, 32, uint32)
VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
#undef VFP_CONV_FIX
#undef VFP_CONV_FIX_FLOAT
#undef VFP_CONV_FLOAT_FIX_ROUND
/* Set the current fp rounding mode and return the old one.
* The argument is a softfloat float_round_ value.
*/
uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
{
float_status *fp_status = &env->vfp.fp_status;
uint32_t prev_rmode = get_float_rounding_mode(fp_status);
set_float_rounding_mode(rmode, fp_status);
return prev_rmode;
}
/* Set the current fp rounding mode in the standard fp status and return
* the old one. This is for NEON instructions that need to change the
* rounding mode but wish to use the standard FPSCR values for everything
* else. Always set the rounding mode back to the correct value after
* modifying it.
* The argument is a softfloat float_round_ value.
*/
uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
{
float_status *fp_status = &env->vfp.standard_fp_status;
uint32_t prev_rmode = get_float_rounding_mode(fp_status);
set_float_rounding_mode(rmode, fp_status);
return prev_rmode;
}
/* Half precision conversions. */
static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
{
int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
float32 r = float16_to_float32(make_float16(a), ieee, s);
if (ieee) {
return float32_maybe_silence_nan(r);
}
return r;
}
static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
{
int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
float16 r = float32_to_float16(a, ieee, s);
if (ieee) {
r = float16_maybe_silence_nan(r);
}
return float16_val(r);
}
float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
{
return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
}
uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
{
return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
}
float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
{
return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
}
uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
{
return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
}
float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
{
int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
if (ieee) {
return float64_maybe_silence_nan(r);
}
return r;
}
uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
{
int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
if (ieee) {
r = float16_maybe_silence_nan(r);
}
return float16_val(r);
}
#define float32_two make_float32(0x40000000)
#define float32_three make_float32(0x40400000)
#define float32_one_point_five make_float32(0x3fc00000)
float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
{
float_status *s = &env->vfp.standard_fp_status;
if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
(float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
if (!(float32_is_zero(a) || float32_is_zero(b))) {
float_raise(float_flag_input_denormal, s);
}
return float32_two;
}
return float32_sub(float32_two, float32_mul(a, b, s), s);
}
float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
{
float_status *s = &env->vfp.standard_fp_status;
float32 product;
if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
(float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
if (!(float32_is_zero(a) || float32_is_zero(b))) {
float_raise(float_flag_input_denormal, s);
}
return float32_one_point_five;
}
product = float32_mul(a, b, s);
return float32_div(float32_sub(float32_three, product, s), float32_two, s);
}
/* NEON helpers. */
/* Constants 256 and 512 are used in some helpers; we avoid relying on
* int->float conversions at run-time. */
#define float64_256 make_float64(0x4070000000000000LL)
#define float64_512 make_float64(0x4080000000000000LL)
#define float32_maxnorm make_float32(0x7f7fffff)
#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
/* Reciprocal functions
*
* The algorithm that must be used to calculate the estimate
* is specified by the ARM ARM, see FPRecipEstimate()
*/
static float64 recip_estimate(float64 a, float_status *real_fp_status)
{
/* These calculations mustn't set any fp exception flags,
* so we use a local copy of the fp_status.
*/
float_status dummy_status = *real_fp_status;
float_status *s = &dummy_status;
/* q = (int)(a * 512.0) */
float64 q = float64_mul(float64_512, a, s);
int64_t q_int = float64_to_int64_round_to_zero(q, s);
/* r = 1.0 / (((double)q + 0.5) / 512.0) */
q = int64_to_float64(q_int, s);
q = float64_add(q, float64_half, s);
q = float64_div(q, float64_512, s);
q = float64_div(float64_one, q, s);
/* s = (int)(256.0 * r + 0.5) */
q = float64_mul(q, float64_256, s);
q = float64_add(q, float64_half, s);
q_int = float64_to_int64_round_to_zero(q, s);
/* return (double)s / 256.0 */
return float64_div(int64_to_float64(q_int, s), float64_256, s);
}
/* Common wrapper to call recip_estimate */
static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
{
uint64_t val64 = float64_val(num);
uint64_t frac = extract64(val64, 0, 52);
int64_t exp = extract64(val64, 52, 11);
uint64_t sbit;
float64 scaled, estimate;
/* Generate the scaled number for the estimate function */
if (exp == 0) {
if (extract64(frac, 51, 1) == 0) {
exp = -1;
frac = extract64(frac, 0, 50) << 2;
} else {
frac = extract64(frac, 0, 51) << 1;
}
}
/* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
scaled = make_float64((0x3feULL << 52)
| extract64(frac, 44, 8) << 44);
estimate = recip_estimate(scaled, fpst);
/* Build new result */
val64 = float64_val(estimate);
sbit = 0x8000000000000000ULL & val64;
exp = off - exp;
frac = extract64(val64, 0, 52);
if (exp == 0) {
frac = 1ULL << 51 | extract64(frac, 1, 51);
} else if (exp == -1) {
frac = 1ULL << 50 | extract64(frac, 2, 50);
exp = 0;
}
return make_float64(sbit | (exp << 52) | frac);
}
static bool round_to_inf(float_status *fpst, bool sign_bit)
{
switch (fpst->float_rounding_mode) {
case float_round_nearest_even: /* Round to Nearest */
return true;
case float_round_up: /* Round to +Inf */
return !sign_bit;
case float_round_down: /* Round to -Inf */
return sign_bit;
case float_round_to_zero: /* Round to Zero */
return false;
2017-02-23 12:32:09 +00:00
default:
break;
2015-08-21 07:04:50 +00:00
}
g_assert_not_reached();
return false;
2015-08-21 07:04:50 +00:00
}
float32 HELPER(recpe_f32)(float32 input, void *fpstp)
{
float_status *fpst = fpstp;
float32 f32 = float32_squash_input_denormal(input, fpst);
uint32_t f32_val = float32_val(f32);
uint32_t f32_sbit = 0x80000000ULL & f32_val;
int32_t f32_exp = extract32(f32_val, 23, 8);
uint32_t f32_frac = extract32(f32_val, 0, 23);
float64 f64, r64;
uint64_t r64_val;
int64_t r64_exp;
uint64_t r64_frac;
if (float32_is_any_nan(f32)) {
float32 nan = f32;
if (float32_is_signaling_nan(f32)) {
float_raise(float_flag_invalid, fpst);
nan = float32_maybe_silence_nan(f32);
}
if (fpst->default_nan_mode) {
nan = float32_default_nan;
}
return nan;
} else if (float32_is_infinity(f32)) {
return float32_set_sign(float32_zero, float32_is_neg(f32));
} else if (float32_is_zero(f32)) {
float_raise(float_flag_divbyzero, fpst);
return float32_set_sign(float32_infinity, float32_is_neg(f32));
} else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
/* Abs(value) < 2.0^-128 */
float_raise(float_flag_overflow | float_flag_inexact, fpst);
if (round_to_inf(fpst, f32_sbit)) {
return float32_set_sign(float32_infinity, float32_is_neg(f32));
} else {
return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
}
} else if (f32_exp >= 253 && fpst->flush_to_zero) {
float_raise(float_flag_underflow, fpst);
return float32_set_sign(float32_zero, float32_is_neg(f32));
}
f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
r64 = call_recip_estimate(f64, 253, fpst);
r64_val = float64_val(r64);
r64_exp = extract64(r64_val, 52, 11);
r64_frac = extract64(r64_val, 0, 52);
/* result = sign : result_exp<7:0> : fraction<51:29>; */
return make_float32(f32_sbit |
(r64_exp & 0xff) << 23 |
extract64(r64_frac, 29, 24));
}
float64 HELPER(recpe_f64)(float64 input, void *fpstp)
{
float_status *fpst = fpstp;
float64 f64 = float64_squash_input_denormal(input, fpst);
uint64_t f64_val = float64_val(f64);
uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
int64_t f64_exp = extract64(f64_val, 52, 11);
float64 r64;
uint64_t r64_val;
int64_t r64_exp;
uint64_t r64_frac;
/* Deal with any special cases */
if (float64_is_any_nan(f64)) {
float64 nan = f64;
if (float64_is_signaling_nan(f64)) {
float_raise(float_flag_invalid, fpst);
nan = float64_maybe_silence_nan(f64);
}
if (fpst->default_nan_mode) {
nan = float64_default_nan;
}
return nan;
} else if (float64_is_infinity(f64)) {
return float64_set_sign(float64_zero, float64_is_neg(f64));
} else if (float64_is_zero(f64)) {
float_raise(float_flag_divbyzero, fpst);
return float64_set_sign(float64_infinity, float64_is_neg(f64));
} else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
/* Abs(value) < 2.0^-1024 */
float_raise(float_flag_overflow | float_flag_inexact, fpst);
if (round_to_inf(fpst, f64_sbit)) {
return float64_set_sign(float64_infinity, float64_is_neg(f64));
} else {
return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
}
} else if (f64_exp >= 1023 && fpst->flush_to_zero) {
float_raise(float_flag_underflow, fpst);
return float64_set_sign(float64_zero, float64_is_neg(f64));
}
r64 = call_recip_estimate(f64, 2045, fpst);
r64_val = float64_val(r64);
r64_exp = extract64(r64_val, 52, 11);
r64_frac = extract64(r64_val, 0, 52);
/* result = sign : result_exp<10:0> : fraction<51:0> */
return make_float64(f64_sbit |
((r64_exp & 0x7ff) << 52) |
r64_frac);
}
/* The algorithm that must be used to calculate the estimate
* is specified by the ARM ARM.
*/
static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
{
/* These calculations mustn't set any fp exception flags,
* so we use a local copy of the fp_status.
*/
float_status dummy_status = *real_fp_status;
float_status *s = &dummy_status;
float64 q;
int64_t q_int;
if (float64_lt(a, float64_half, s)) {
/* range 0.25 <= a < 0.5 */
/* a in units of 1/512 rounded down */
/* q0 = (int)(a * 512.0); */
q = float64_mul(float64_512, a, s);
q_int = float64_to_int64_round_to_zero(q, s);
/* reciprocal root r */
/* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
q = int64_to_float64(q_int, s);
q = float64_add(q, float64_half, s);
q = float64_div(q, float64_512, s);
q = float64_sqrt(q, s);
q = float64_div(float64_one, q, s);
} else {
/* range 0.5 <= a < 1.0 */
int64_t q_int;
2015-08-21 07:04:50 +00:00
/* a in units of 1/256 rounded down */
/* q1 = (int)(a * 256.0); */
q = float64_mul(float64_256, a, s);
q_int = float64_to_int64_round_to_zero(q, s);
2015-08-21 07:04:50 +00:00
/* reciprocal root r */
/* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
q = int64_to_float64(q_int, s);
q = float64_add(q, float64_half, s);
q = float64_div(q, float64_256, s);
q = float64_sqrt(q, s);
q = float64_div(float64_one, q, s);
}
/* r in units of 1/256 rounded to nearest */
/* s = (int)(256.0 * r + 0.5); */
q = float64_mul(q, float64_256,s );
q = float64_add(q, float64_half, s);
q_int = float64_to_int64_round_to_zero(q, s);
/* return (double)s / 256.0;*/
return float64_div(int64_to_float64(q_int, s), float64_256, s);
}
float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
{
float_status *s = fpstp;
float32 f32 = float32_squash_input_denormal(input, s);
uint32_t val = float32_val(f32);
uint32_t f32_sbit = 0x80000000 & val;
int32_t f32_exp = extract32(val, 23, 8);
uint32_t f32_frac = extract32(val, 0, 23);
uint64_t f64_frac;
uint64_t val64;
int result_exp;
float64 f64;
if (float32_is_any_nan(f32)) {
float32 nan = f32;
if (float32_is_signaling_nan(f32)) {
float_raise(float_flag_invalid, s);
nan = float32_maybe_silence_nan(f32);
}
if (s->default_nan_mode) {
nan = float32_default_nan;
}
return nan;
} else if (float32_is_zero(f32)) {
float_raise(float_flag_divbyzero, s);
return float32_set_sign(float32_infinity, float32_is_neg(f32));
} else if (float32_is_neg(f32)) {
float_raise(float_flag_invalid, s);
return float32_default_nan;
} else if (float32_is_infinity(f32)) {
return float32_zero;
}
/* Scale and normalize to a double-precision value between 0.25 and 1.0,
* preserving the parity of the exponent. */
f64_frac = ((uint64_t) f32_frac) << 29;
if (f32_exp == 0) {
while (extract64(f64_frac, 51, 1) == 0) {
f64_frac = f64_frac << 1;
f32_exp = f32_exp-1;
}
f64_frac = extract64(f64_frac, 0, 51) << 1;
}
if (extract64(f32_exp, 0, 1) == 0) {
f64 = make_float64(((uint64_t) f32_sbit) << 32
| (0x3feULL << 52)
| f64_frac);
} else {
f64 = make_float64(((uint64_t) f32_sbit) << 32
| (0x3fdULL << 52)
| f64_frac);
}
result_exp = (380 - f32_exp) / 2;
f64 = recip_sqrt_estimate(f64, s);
val64 = float64_val(f64);
val = ((result_exp & 0xff) << 23)
| ((val64 >> 29) & 0x7fffff);
return make_float32(val);
}
float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
{
float_status *s = fpstp;
float64 f64 = float64_squash_input_denormal(input, s);
uint64_t val = float64_val(f64);
uint64_t f64_sbit = 0x8000000000000000ULL & val;
int64_t f64_exp = extract64(val, 52, 11);
uint64_t f64_frac = extract64(val, 0, 52);
int64_t result_exp;
uint64_t result_frac;
if (float64_is_any_nan(f64)) {
float64 nan = f64;
if (float64_is_signaling_nan(f64)) {
float_raise(float_flag_invalid, s);
nan = float64_maybe_silence_nan(f64);
}
if (s->default_nan_mode) {
nan = float64_default_nan;
}
return nan;
} else if (float64_is_zero(f64)) {
float_raise(float_flag_divbyzero, s);
return float64_set_sign(float64_infinity, float64_is_neg(f64));
} else if (float64_is_neg(f64)) {
float_raise(float_flag_invalid, s);
return float64_default_nan;
} else if (float64_is_infinity(f64)) {
return float64_zero;
}
/* Scale and normalize to a double-precision value between 0.25 and 1.0,
* preserving the parity of the exponent. */
if (f64_exp == 0) {
while (extract64(f64_frac, 51, 1) == 0) {
f64_frac = f64_frac << 1;
f64_exp = f64_exp - 1;
}
f64_frac = extract64(f64_frac, 0, 51) << 1;
}
if (extract64(f64_exp, 0, 1) == 0) {
f64 = make_float64(f64_sbit
| (0x3feULL << 52)
| f64_frac);
} else {
f64 = make_float64(f64_sbit
| (0x3fdULL << 52)
| f64_frac);
}
result_exp = (3068 - f64_exp) / 2;
f64 = recip_sqrt_estimate(f64, s);
result_frac = extract64(float64_val(f64), 0, 52);
return make_float64(f64_sbit |
((result_exp & 0x7ff) << 52) |
result_frac);
}
uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
{
float_status *s = fpstp;
float64 f64;
if ((a & 0x80000000) == 0) {
return 0xffffffff;
}
f64 = make_float64((0x3feULL << 52)
| ((int64_t)(a & 0x7fffffff) << 21));
f64 = recip_estimate(f64, s);
return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
}
uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
{
float_status *fpst = fpstp;
float64 f64;
if ((a & 0xc0000000) == 0) {
return 0xffffffff;
}
if (a & 0x80000000) {
f64 = make_float64((0x3feULL << 52)
| ((uint64_t)(a & 0x7fffffff) << 21));
} else { /* bits 31-30 == '01' */
f64 = make_float64((0x3fdULL << 52)
| ((uint64_t)(a & 0x3fffffff) << 22));
}
f64 = recip_sqrt_estimate(f64, fpst);
return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
}
/* VFPv4 fused multiply-accumulate */
float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
{
float_status *fpst = fpstp;
return float32_muladd(a, b, c, 0, fpst);
}
float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
{
float_status *fpst = fpstp;
return float64_muladd(a, b, c, 0, fpst);
}
/* ARMv8 round to integral */
float32 HELPER(rints_exact)(float32 x, void *fp_status)
{
return float32_round_to_int(x, fp_status);
}
float64 HELPER(rintd_exact)(float64 x, void *fp_status)
{
return float64_round_to_int(x, fp_status);
}
float32 HELPER(rints)(float32 x, void *fp_status)
{
int old_flags = get_float_exception_flags(fp_status), new_flags;
float32 ret;
ret = float32_round_to_int(x, fp_status);
/* Suppress any inexact exceptions the conversion produced */
if (!(old_flags & float_flag_inexact)) {
new_flags = get_float_exception_flags(fp_status);
set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
}
return ret;
}
float64 HELPER(rintd)(float64 x, void *fp_status)
{
int old_flags = get_float_exception_flags(fp_status), new_flags;
float64 ret;
ret = float64_round_to_int(x, fp_status);
new_flags = get_float_exception_flags(fp_status);
/* Suppress any inexact exceptions the conversion produced */
if (!(old_flags & float_flag_inexact)) {
new_flags = get_float_exception_flags(fp_status);
set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
}
return ret;
}
/* Convert ARM rounding mode to softfloat */
int arm_rmode_to_sf(int rmode)
{
switch (rmode) {
case FPROUNDING_TIEAWAY:
rmode = float_round_ties_away;
break;
case FPROUNDING_ODD:
/* FIXME: add support for TIEAWAY and ODD */
qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
rmode);
case FPROUNDING_TIEEVEN:
default:
rmode = float_round_nearest_even;
break;
case FPROUNDING_POSINF:
rmode = float_round_up;
break;
case FPROUNDING_NEGINF:
rmode = float_round_down;
break;
case FPROUNDING_ZERO:
rmode = float_round_to_zero;
break;
}
return rmode;
}
/* CRC helpers.
* The upper bytes of val (above the number specified by 'bytes') must have
* been zeroed out by the caller.
*/
uint32_t HELPER(crc32_arm)(uint32_t acc, uint32_t val, uint32_t bytes)
{
#if 0 // FIXME
uint8_t buf[4];
stl_le_p(buf, val);
/* zlib crc32 converts the accumulator and output to one's complement. */
return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
#endif
return 0;
}
uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
{
uint8_t buf[4];
stl_le_p(buf, val);
/* Linux crc32c converts the output to one's complement. */
return crc32c(acc, buf, bytes) ^ 0xffffffff;
}