When doing a re-initialization of a CPU core, the default state is to _not_
have 64-bit long mode enabled. This means the LME (long mode enable) and LMA
(long mode active) bits in the EFER model-specific register should be cleared.
However, the EFER state is part of the CPU environment which is
preserved by do_cpu_init(), so if EFER.LME and EFER.LMA were set at the
time an INIT IPI was received, they will remain set after the init completes.
This is contrary to what the Intel architecture manual describes and what
happens on real hardware, and it leaves the CPU in a weird state that the
guest can't clear.
To fix this, the 'efer' member of the CPUX86State structure has been moved
to an area outside the region preserved by do_cpu_init(), so that it can
be properly re-initialized by x86_cpu_reset().
Backports commit 2188cc52cb363433751f72b991d8fb05fc60e39d from qemu
Rename ELF_MACHINE to be I386 specific. This is used as-is by the
multiboot loader.
Linux-user previously used this definition but will not anymore,
falling back to the default bahaviour of using ELF_ARCH as ELF_MACHINE.
This removes another architecture specific definition from the global
namespace.
Backports commit a5e8788f89312f19f54dba0454ee5bf7209b4cd7 from qemu
This patch introduces new versions of raise_exception functions
that receive TB return address as an argument.
Backports commit 9198009529d06b6489b68a7505942cca3a50893f from qemu
This is set to true when the index is for an instruction fetch
translation.
The core get_page_addr_code() sets it, as do the SOFTMMU_CODE_ACCESS
acessors.
All targets ignore it for now, and all other callers pass "false".
This will allow targets who wish to split the mmu index between
instruction and data accesses to do so. A subsequent patch will
do just that for PowerPC.
Backports commit 97ed5ccdee95f0b98bedc601ff979e368583472c from qemu
ARAT signals that the APIC timer does not stop in power saving states.
As our APICs are emulated, it's fine to expose this feature to guests,
at least when asking for KVM host features or with CPU types that
include the flag. The exact model number that introduced the feature is
not known, but reports can be found that it's at least available since
Sandy Bridge.
Backports commit 28b8e4d0bf93ba176b4b7be819d537383c5a9060 from qemu
This patch denies crossing the boundary of the pages in the replay mode,
because it can cause an exception. Do it only when boundary is
crossed by the first instruction in the block.
If current instruction already crossed the bound - it's ok,
because an exception hasn't stopped this code.
Backports commit 5b9efc39aee90bbd343793e942bf8f582a0c9e4f from qemu
These represent xsave-related capabilities of the processor, and KVM may
or may not support them.
Add feature bits so that they are considered by "-cpu ...,enforce", and use
the new feature work instead of calling kvm_arch_get_supported_cpuid.
Bit 3 (XSAVES) is not migratables because it requires saving MSR_IA32_XSS.
Neither KVM nor any commonly available hardware supports it anyway.
Backports commit 0bb0b2d2fe7f645ddaf1f0ff40ac669c9feb4aa1 from qemu
also backports 18cd2c17b5370369a886155c001da0a7f54bbcca
Remove un-needed usages of ENV_GET_CPU() by converting the APIs to use
CPUState pointers and retrieving the env_ptr as minimally needed.
Scripted conversion for target-* change:
for I in target-*/cpu.h; do
sed -i \
's/\(^int cpu_[^_]*_exec(\)[^ ][^ ]* \*s);$/\1CPUState *cpu);/' \
$I;
done
Backports commit ea3e9847408131abc840240bd61e892d28459452 from qemu
The TSC frequency fits comfortably in an int when expressed in kHz,
but it may overflow when converted to Hz. In this case,
tsc-frequency returns a negative value because x86_cpuid_get_tsc_freq
does a 32-bit multiplication before assigning to int64_t.
For simplicity just make tsc_khz a 64-bit value.
Backports commit 06ef227e5158cca6710e6c268d6a7f65a5e2811b from qemu
Apart from the MSR, the smi field of struct kvm_vcpu_events has to be
translated into the corresponding CPUX86State fields. Also,
memory transaction flags depend on SMM state, so pull it from struct
kvm_run on every exit from KVM to userspace.
Backports relevant parts of commit fc12d72e10828ca6ff75f2ad432b741f07a10cef from qemu
QEMU is not blocking NMIs on entry to SMM. Implementing this has to
cover a few corner cases, because:
- NMIs can then be enabled by an IRET instruction and there
is no mechanism to _set_ the "NMIs masked" flag on exit from SMM:
"A special case can occur if an SMI handler nests inside an NMI handler
and then another NMI occurs. [...] When the processor enters SMM while
executing an NMI handler, the processor saves the SMRAM state save map
but does not save the attribute to keep NMI interrupts disabled.
- However, there is some hidden state, because "If NMIs were blocked
before the SMI occurred [and no IRET is executed while in SMM], they
are blocked after execution of RSM." This is represented by the new
HF2_SMM_INSIDE_NMI_MASK bit. If it is zero, NMIs are _unblocked_
on exit from RSM.
Backports commit 9982f74bad70479939491b69522da047a3be5a0d from qemu
These include page table walks, SVM accesses and SMM state save accesses.
The bulk of the patch is obtained with
sed -i 's/\(\<[a-z_]*_phys\(_notdirty\)\?\>(cs\)->as,/x86_\1,/'
Backports commit b216aa6c0fcbaa8ff4128969c14594896a5485a4 from qemu
Existing definition triggers the following when using clang
-fsanitize=undefined:
hw/intc/apic_common.c:314:55: runtime error: left shift of 1048575 by 12
places cannot be represented in type 'int'
Fix it so we won't try to shift a 1 to the sign bit of a signed integer.
Backports commit 458cf469f4a1cb520b07092f5537c5a6d2389d23 from qemu
The field doesn't need to be inside CPUState, and it is not specific for
the CPUID instruction, so move and rename it.
Backports commit 9e9d3863adcbd1ffeca30f240f49805b00ba0d87 from qemu
Instead of putting extra logic inside cpu.h, just do everything inside
cpu_x86_init_user().
Backports commit 15258d46baef5f8265ad5f1002905664cf58f051 from qem
Right now, the AVX512 registers are split in many different fields:
xmm_regs for the low 128 bits of the first 16 registers, ymmh_regs
for the next 128 bits of the same first 16 registers, zmmh_regs
for the next 256 bits of the same first 16 registers, and finally
hi16_zmm_regs for the full 512 bits of the second 16 bit registers.
This makes it simple to move data in and out of the xsave region,
but would be a nightmare for a hypothetical TCG implementation and
leads to a proliferation of [XYZ]MM_[BWLSQD] macros. Instead,
this patch marshals data manually from the xsave region to a single
32x512-bit array, simplifying the macro jungle and clarifying which
bits are in which vmstate subsection.
The migration format is unaffected.
Backports commit b7711471f551aa4419f9d46a11121f48ced422da from qemu