mirror of
https://github.com/yuzu-emu/unicorn.git
synced 2025-01-09 19:25:38 +00:00
f31764dd5b
We are failing to take into account that tlb_fill() can cause a TLB resize, which renders prior TLB entry pointers/indices stale. Fix it by re-doing the TLB entry lookups immediately after tlb_fill. Fixes: 86e1eff8bc ("tcg: introduce dynamic TLB sizing", 2019-01-28) Backports commit 6d967cb86d5b4a60ba15b497126b621ce9ca6609 from qemu
842 lines
27 KiB
C
842 lines
27 KiB
C
/*
|
|
* Common CPU TLB handling
|
|
*
|
|
* Copyright (c) 2003 Fabrice Bellard
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/* Modified for Unicorn Engine by Nguyen Anh Quynh, 2015 */
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "cpu.h"
|
|
#include "exec/exec-all.h"
|
|
#include "exec/memory.h"
|
|
#include "exec/address-spaces.h"
|
|
#include "exec/cpu_ldst.h"
|
|
#include "exec/cputlb.h"
|
|
#include "exec/memory-internal.h"
|
|
#include "exec/ram_addr.h"
|
|
#include "tcg/tcg.h"
|
|
#include "exec/helper-proto.h"
|
|
#include "qemu/atomic.h"
|
|
#include "qemu/atomic128.h"
|
|
|
|
#include "uc_priv.h"
|
|
|
|
/* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
|
|
/* #define DEBUG_TLB */
|
|
/* #define DEBUG_TLB_LOG */
|
|
|
|
#ifdef DEBUG_TLB
|
|
# define DEBUG_TLB_GATE 1
|
|
# ifdef DEBUG_TLB_LOG
|
|
# define DEBUG_TLB_LOG_GATE 1
|
|
# else
|
|
# define DEBUG_TLB_LOG_GATE 0
|
|
# endif
|
|
#else
|
|
# define DEBUG_TLB_GATE 0
|
|
# define DEBUG_TLB_LOG_GATE 0
|
|
#endif
|
|
|
|
#define tlb_debug(fmt, ...) do { \
|
|
if (DEBUG_TLB_LOG_GATE) { \
|
|
qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
|
|
## __VA_ARGS__); \
|
|
} else if (DEBUG_TLB_GATE) { \
|
|
fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
|
|
} \
|
|
} while (0)
|
|
|
|
static void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr);
|
|
static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe);
|
|
static ram_addr_t qemu_ram_addr_from_host_nofail(struct uc_struct *uc, void *ptr);
|
|
static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
|
|
target_ulong size);
|
|
static void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr);
|
|
|
|
void tlb_init(CPUState *cpu)
|
|
{
|
|
}
|
|
|
|
/* This is OK because CPU architectures generally permit an
|
|
* implementation to drop entries from the TLB at any time, so
|
|
* flushing more entries than required is only an efficiency issue,
|
|
* not a correctness issue.
|
|
*/
|
|
void tlb_flush(CPUState *cpu)
|
|
{
|
|
CPUArchState *env = cpu->env_ptr;
|
|
|
|
memset(env->tlb_table, -1, sizeof(env->tlb_table));
|
|
memset(env->tlb_v_table, -1, sizeof(env->tlb_v_table));
|
|
cpu_tb_jmp_cache_clear(cpu);
|
|
|
|
env->vtlb_index = 0;
|
|
env->tlb_flush_addr = -1;
|
|
env->tlb_flush_mask = 0;
|
|
}
|
|
|
|
void tlb_flush_page(CPUState *cpu, target_ulong addr)
|
|
{
|
|
CPUArchState *env = cpu->env_ptr;
|
|
int mmu_idx;
|
|
|
|
tlb_debug("page :" TARGET_FMT_lx "\n", addr);
|
|
|
|
/* Check if we need to flush due to large pages. */
|
|
if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
|
|
tlb_debug("forcing full flush ("
|
|
TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
|
|
env->tlb_flush_addr, env->tlb_flush_mask);
|
|
|
|
tlb_flush(cpu);
|
|
return;
|
|
}
|
|
|
|
addr &= TARGET_PAGE_MASK;
|
|
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
|
tlb_flush_entry(tlb_entry(env, mmu_idx, addr), addr);
|
|
}
|
|
|
|
/* check whether there are entries that need to be flushed in the vtlb */
|
|
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
|
int k;
|
|
for (k = 0; k < CPU_VTLB_SIZE; k++) {
|
|
tlb_flush_entry(&env->tlb_v_table[mmu_idx][k], addr);
|
|
}
|
|
}
|
|
|
|
tb_flush_jmp_cache(cpu, addr);
|
|
}
|
|
|
|
void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start,
|
|
uintptr_t length)
|
|
{
|
|
uintptr_t addr;
|
|
|
|
if (tlb_is_dirty_ram(tlb_entry)) {
|
|
addr = (tlb_addr_write(tlb_entry) & TARGET_PAGE_MASK) + tlb_entry->addend;
|
|
if ((addr - start) < length) {
|
|
tlb_entry->addr_write |= TLB_NOTDIRTY;
|
|
}
|
|
}
|
|
}
|
|
|
|
void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
|
|
{
|
|
CPUArchState *env;
|
|
|
|
int mmu_idx;
|
|
|
|
env = cpu->env_ptr;
|
|
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < CPU_TLB_SIZE; i++) {
|
|
tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
|
|
start1, length);
|
|
}
|
|
|
|
for (i = 0; i < CPU_VTLB_SIZE; i++) {
|
|
tlb_reset_dirty_range(&env->tlb_v_table[mmu_idx][i],
|
|
start1, length);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* update the TLB corresponding to virtual page vaddr
|
|
so that it is no longer dirty */
|
|
void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
|
|
{
|
|
CPUArchState *env = cpu->env_ptr;
|
|
int mmu_idx;
|
|
|
|
vaddr &= TARGET_PAGE_MASK;
|
|
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
|
tlb_set_dirty1(tlb_entry(env, mmu_idx, vaddr), vaddr);
|
|
}
|
|
|
|
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
|
int k;
|
|
for (k = 0; k < CPU_VTLB_SIZE; k++) {
|
|
tlb_set_dirty1(&env->tlb_v_table[mmu_idx][k], vaddr);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Add a new TLB entry. At most one entry for a given virtual address
|
|
is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
|
|
supplied size is only used by tlb_flush_page. */
|
|
void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
|
|
hwaddr paddr, MemTxAttrs attrs, int prot,
|
|
int mmu_idx, target_ulong size)
|
|
{
|
|
CPUArchState *env = cpu->env_ptr;
|
|
MemoryRegionSection *section;
|
|
unsigned int index;
|
|
target_ulong address;
|
|
target_ulong code_address;
|
|
uintptr_t addend;
|
|
CPUTLBEntry *te;
|
|
hwaddr iotlb, xlat, sz, paddr_page;
|
|
target_ulong vaddr_page;
|
|
unsigned vidx = env->vtlb_index++ % CPU_VTLB_SIZE;
|
|
int asidx = cpu_asidx_from_attrs(cpu, attrs);
|
|
|
|
if (size < TARGET_PAGE_SIZE) {
|
|
sz = TARGET_PAGE_SIZE;
|
|
} else {
|
|
if (size > TARGET_PAGE_SIZE) {
|
|
tlb_add_large_page(env, vaddr, size);
|
|
}
|
|
sz = size;
|
|
}
|
|
vaddr_page = vaddr & TARGET_PAGE_MASK;
|
|
paddr_page = paddr & TARGET_PAGE_MASK;
|
|
|
|
section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
|
|
&xlat, &sz, attrs, &prot);
|
|
assert(sz >= TARGET_PAGE_SIZE);
|
|
|
|
tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
|
|
" prot=%x idx=%d\n",
|
|
vaddr, paddr, prot, mmu_idx);
|
|
|
|
address = vaddr_page;
|
|
if (size < TARGET_PAGE_SIZE) {
|
|
/*
|
|
* Slow-path the TLB entries; we will repeat the MMU check and TLB
|
|
* fill on every access.
|
|
*/
|
|
address |= TLB_RECHECK;
|
|
}
|
|
if (!memory_region_is_ram(section->mr) &&
|
|
!memory_region_is_romd(section->mr)) {
|
|
/* IO memory case */
|
|
address |= TLB_MMIO;
|
|
addend = 0;
|
|
} else {
|
|
/* TLB_MMIO for rom/romd handled below */
|
|
addend = (uintptr_t)((char*)memory_region_get_ram_ptr(section->mr) + xlat);
|
|
}
|
|
|
|
code_address = address;
|
|
iotlb = memory_region_section_get_iotlb(cpu, section, vaddr_page,
|
|
paddr_page, xlat, prot, &address);
|
|
|
|
index = (vaddr_page >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
|
te = &env->tlb_table[mmu_idx][index];
|
|
|
|
/* do not discard the translation in te, evict it into a victim tlb */
|
|
env->tlb_v_table[mmu_idx][vidx] = *te;
|
|
env->iotlb_v[mmu_idx][vidx] = env->iotlb[mmu_idx][index];
|
|
|
|
/* refill the tlb */
|
|
/*
|
|
* At this point iotlb contains a physical section number in the lower
|
|
* TARGET_PAGE_BITS, and either
|
|
* + the ram_addr_t of the page base of the target RAM (if NOTDIRTY or ROM)
|
|
* + the offset within section->mr of the page base (otherwise)
|
|
* We subtract the vaddr_page (which is page aligned and thus won't
|
|
* disturb the low bits) to give an offset which can be added to the
|
|
* (non-page-aligned) vaddr of the eventual memory access to get
|
|
* the MemoryRegion offset for the access. Note that the vaddr we
|
|
* subtract here is that of the page base, and not the same as the
|
|
* vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
|
|
*/
|
|
env->iotlb[mmu_idx][index].addr = iotlb - vaddr_page;
|
|
env->iotlb[mmu_idx][index].attrs = attrs;
|
|
te->addend = addend - vaddr_page;
|
|
if (prot & PAGE_READ) {
|
|
te->addr_read = address;
|
|
} else {
|
|
te->addr_read = -1;
|
|
}
|
|
|
|
if (prot & PAGE_EXEC) {
|
|
te->addr_code = code_address;
|
|
} else {
|
|
te->addr_code = -1;
|
|
}
|
|
if (prot & PAGE_WRITE) {
|
|
if ((memory_region_is_ram(section->mr) && section->readonly)
|
|
|| memory_region_is_romd(section->mr)) {
|
|
/* Write access calls the I/O callback. */
|
|
te->addr_write = address | TLB_MMIO;
|
|
} else if (memory_region_is_ram(section->mr)) {
|
|
te->addr_write = address | TLB_NOTDIRTY;
|
|
} else {
|
|
te->addr_write = address;
|
|
}
|
|
} else {
|
|
te->addr_write = -1;
|
|
}
|
|
}
|
|
|
|
/* Add a new TLB entry, but without specifying the memory
|
|
* transaction attributes to be used.
|
|
*/
|
|
void tlb_set_page(CPUState *cpu, target_ulong vaddr,
|
|
hwaddr paddr, int prot,
|
|
int mmu_idx, target_ulong size)
|
|
{
|
|
tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
|
|
prot, mmu_idx, size);
|
|
}
|
|
|
|
static ram_addr_t qemu_ram_addr_from_host_nofail(struct uc_struct *uc, void *ptr)
|
|
{
|
|
ram_addr_t ram_addr;
|
|
|
|
ram_addr = qemu_ram_addr_from_host(uc, ptr);
|
|
if (ram_addr == RAM_ADDR_INVALID) {
|
|
//error_report("Bad ram pointer %p", ptr);
|
|
return RAM_ADDR_INVALID;
|
|
}
|
|
|
|
return ram_addr;
|
|
}
|
|
|
|
/* NOTE: this function can trigger an exception */
|
|
/* NOTE2: the returned address is not exactly the physical address: it
|
|
* is actually a ram_addr_t (in system mode; the user mode emulation
|
|
* version of this function returns a guest virtual address).
|
|
*/
|
|
tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr)
|
|
{
|
|
uintptr_t mmu_idx = cpu_mmu_index(env, true);
|
|
uintptr_t index = tlb_index(env, mmu_idx, addr);
|
|
CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
|
|
void *p;
|
|
MemoryRegion *mr;
|
|
MemoryRegionSection *section;
|
|
ram_addr_t ram_addr;
|
|
CPUState *cpu = ENV_GET_CPU(env);
|
|
CPUIOTLBEntry *iotlbentry;
|
|
hwaddr physaddr, mr_offset;
|
|
|
|
if (unlikely(!tlb_hit(entry->addr_code, addr))) {
|
|
cpu_ldub_code(env, addr);
|
|
//check for NX related error from softmmu
|
|
if (env->invalid_error == UC_ERR_FETCH_PROT) {
|
|
return RAM_ADDR_INVALID;
|
|
}
|
|
}
|
|
|
|
if (unlikely(env->tlb_table[mmu_idx][index].addr_code & TLB_RECHECK)) {
|
|
/*
|
|
* This is a TLB_RECHECK access, where the MMU protection
|
|
* covers a smaller range than a target page, and we must
|
|
* repeat the MMU check here. This tlb_fill() call might
|
|
* longjump out if this access should cause a guest exception.
|
|
*/
|
|
int index;
|
|
target_ulong tlb_addr;
|
|
|
|
tlb_fill(cpu, addr, 0, MMU_INST_FETCH, mmu_idx, 0);
|
|
|
|
index = tlb_index(env, mmu_idx, addr);
|
|
entry = tlb_entry(env, mmu_idx, addr);
|
|
tlb_addr = env->tlb_table[mmu_idx][index].addr_code;
|
|
if (!(tlb_addr & ~(TARGET_PAGE_MASK | TLB_RECHECK))) {
|
|
/* RAM access. We can't handle this, so for now just stop */
|
|
cpu_abort(cpu, "Unable to handle guest executing from RAM within "
|
|
"a small MPU region at 0x" TARGET_FMT_lx, addr);
|
|
}
|
|
/*
|
|
* Fall through to handle IO accesses (which will almost certainly
|
|
* also result in failure)
|
|
*/
|
|
}
|
|
|
|
iotlbentry = &env->iotlb[mmu_idx][index];
|
|
section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
|
|
mr = section->mr;
|
|
if (memory_region_is_unassigned(cpu->uc, mr)) {
|
|
/* Give the new-style cpu_transaction_failed() hook first chance
|
|
* to handle this.
|
|
* This is not the ideal place to detect and generate CPU
|
|
* exceptions for instruction fetch failure (for instance
|
|
* we don't know the length of the access that the CPU would
|
|
* use, and it would be better to go ahead and try the access
|
|
* and use the MemTXResult it produced). However it is the
|
|
* simplest place we have currently available for the check.
|
|
*/
|
|
mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
|
|
physaddr = mr_offset +
|
|
section->offset_within_address_space -
|
|
section->offset_within_region;
|
|
cpu_transaction_failed(cpu, physaddr, addr, 0, MMU_INST_FETCH, mmu_idx,
|
|
iotlbentry->attrs, MEMTX_DECODE_ERROR, 0);
|
|
|
|
cpu_unassigned_access(cpu, addr, false, true, 0, 4);
|
|
/* The CPU's unassigned access hook might have longjumped out
|
|
* with an exception. If it didn't (or there was no hook) then
|
|
* we can't proceed further.
|
|
*/
|
|
env->invalid_addr = addr;
|
|
env->invalid_error = UC_ERR_FETCH_UNMAPPED;
|
|
return RAM_ADDR_INVALID;
|
|
}
|
|
p = (void *)((uintptr_t)addr + entry->addend);
|
|
ram_addr = qemu_ram_addr_from_host_nofail(cpu->uc, p);
|
|
if (ram_addr == RAM_ADDR_INVALID) {
|
|
env->invalid_addr = addr;
|
|
env->invalid_error = UC_ERR_FETCH_UNMAPPED;
|
|
return RAM_ADDR_INVALID;
|
|
} else {
|
|
return ram_addr;
|
|
}
|
|
}
|
|
|
|
static void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
|
|
{
|
|
if (tlb_addr_write(tlb_entry) == (vaddr | TLB_NOTDIRTY)) {
|
|
tlb_entry->addr_write = vaddr;
|
|
}
|
|
}
|
|
|
|
/* Our TLB does not support large pages, so remember the area covered by
|
|
large pages and trigger a full TLB flush if these are invalidated. */
|
|
static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
|
|
target_ulong size)
|
|
{
|
|
target_ulong mask = ~(size - 1);
|
|
|
|
if (env->tlb_flush_addr == (target_ulong)-1) {
|
|
env->tlb_flush_addr = vaddr & mask;
|
|
env->tlb_flush_mask = mask;
|
|
return;
|
|
}
|
|
/* Extend the existing region to include the new page.
|
|
This is a compromise between unnecessary flushes and the cost
|
|
of maintaining a full variable size TLB. */
|
|
mask &= env->tlb_flush_mask;
|
|
while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
|
|
mask <<= 1;
|
|
}
|
|
env->tlb_flush_addr &= mask;
|
|
env->tlb_flush_mask = mask;
|
|
}
|
|
|
|
static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe)
|
|
{
|
|
return (tlb_addr_write(tlbe) & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0;
|
|
}
|
|
|
|
static inline void v_tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
|
|
{
|
|
CPUArchState *env = cpu->env_ptr;
|
|
unsigned long mmu_idx_bitmask = idxmap;
|
|
int mmu_idx;
|
|
|
|
tlb_debug("start\n");
|
|
|
|
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
|
if (test_bit(mmu_idx, &mmu_idx_bitmask)) {
|
|
tlb_debug("%d\n", mmu_idx);
|
|
|
|
memset(env->tlb_table[mmu_idx], -1, sizeof(env->tlb_table[0]));
|
|
memset(env->tlb_v_table[mmu_idx], -1, sizeof(env->tlb_v_table[0]));
|
|
}
|
|
}
|
|
|
|
cpu_tb_jmp_cache_clear(cpu);
|
|
}
|
|
|
|
void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
|
|
{
|
|
v_tlb_flush_by_mmuidx(cpu, idxmap);
|
|
}
|
|
|
|
static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
|
|
{
|
|
if (tlb_hit_page(tlb_entry->addr_read, addr) ||
|
|
tlb_hit_page(tlb_addr_write(tlb_entry), addr) ||
|
|
tlb_hit_page(tlb_entry->addr_code, addr)) {
|
|
memset(tlb_entry, -1, sizeof(*tlb_entry));
|
|
}
|
|
}
|
|
|
|
void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
|
|
{
|
|
CPUArchState *env = cpu->env_ptr;
|
|
unsigned long mmu_idx_bitmap = idxmap;
|
|
int i, page, mmu_idx;
|
|
|
|
tlb_debug("addr "TARGET_FMT_lx"\n", addr);
|
|
|
|
/* Check if we need to flush due to large pages. */
|
|
if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
|
|
tlb_debug("forced full flush ("
|
|
TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
|
|
env->tlb_flush_addr, env->tlb_flush_mask);
|
|
|
|
v_tlb_flush_by_mmuidx(cpu, idxmap);
|
|
return;
|
|
}
|
|
|
|
addr &= TARGET_PAGE_MASK;
|
|
page = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
|
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
|
if (test_bit(mmu_idx, &mmu_idx_bitmap)) {
|
|
tlb_flush_entry(&env->tlb_table[mmu_idx][page], addr);
|
|
/* check whether there are vltb entries that need to be flushed */
|
|
for (i = 0; i < CPU_VTLB_SIZE; i++) {
|
|
tlb_flush_entry(&env->tlb_v_table[mmu_idx][i], addr);
|
|
}
|
|
}
|
|
}
|
|
|
|
tb_flush_jmp_cache(cpu, addr);
|
|
}
|
|
|
|
static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
|
|
int mmu_idx,
|
|
target_ulong addr, uintptr_t retaddr,
|
|
bool recheck, int size)
|
|
{
|
|
CPUState *cpu = ENV_GET_CPU(env);
|
|
hwaddr mr_offset;
|
|
MemoryRegionSection *section;
|
|
MemoryRegion *mr;
|
|
uint64_t val;
|
|
MemTxResult r;
|
|
|
|
if (recheck) {
|
|
/*
|
|
* This is a TLB_RECHECK access, where the MMU protection
|
|
* covers a smaller range than a target page, and we must
|
|
* repeat the MMU check here. This tlb_fill() call might
|
|
* longjump out if this access should cause a guest exception.
|
|
*/
|
|
int index;
|
|
target_ulong tlb_addr;
|
|
|
|
tlb_fill(cpu, addr, size, MMU_DATA_LOAD, mmu_idx, retaddr);
|
|
|
|
index = tlb_index(env, mmu_idx, addr);
|
|
tlb_addr = env->tlb_table[mmu_idx][index].addr_read;
|
|
if (!(tlb_addr & ~(TARGET_PAGE_MASK | TLB_RECHECK))) {
|
|
/* RAM access */
|
|
uintptr_t haddr = addr + env->tlb_table[mmu_idx][index].addend;
|
|
|
|
return ldn_p((void *)haddr, size);
|
|
}
|
|
/* Fall through for handling IO accesses */
|
|
}
|
|
|
|
section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
|
|
mr = section->mr;
|
|
mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
|
|
cpu->mem_io_pc = retaddr;
|
|
if (mr != &cpu->uc->io_mem_rom && mr != &cpu->uc->io_mem_notdirty && !cpu->can_do_io) {
|
|
cpu_io_recompile(cpu, retaddr);
|
|
}
|
|
|
|
cpu->mem_io_vaddr = addr;
|
|
r = memory_region_dispatch_read(mr, mr_offset,
|
|
&val, size, iotlbentry->attrs);
|
|
if (r != MEMTX_OK) {
|
|
hwaddr physaddr = mr_offset +
|
|
section->offset_within_address_space -
|
|
section->offset_within_region;
|
|
|
|
cpu_transaction_failed(cpu, physaddr, addr, size, MMU_DATA_LOAD,
|
|
mmu_idx, iotlbentry->attrs, r, retaddr);
|
|
}
|
|
return val;
|
|
}
|
|
|
|
static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
|
|
int mmu_idx,
|
|
uint64_t val, target_ulong addr,
|
|
uintptr_t retaddr, bool recheck, int size)
|
|
{
|
|
CPUState *cpu = ENV_GET_CPU(env);
|
|
hwaddr mr_offset;
|
|
MemoryRegionSection *section;
|
|
MemoryRegion *mr;
|
|
MemTxResult r;
|
|
|
|
if (recheck) {
|
|
/*
|
|
* This is a TLB_RECHECK access, where the MMU protection
|
|
* covers a smaller range than a target page, and we must
|
|
* repeat the MMU check here. This tlb_fill() call might
|
|
* longjump out if this access should cause a guest exception.
|
|
*/
|
|
int index;
|
|
target_ulong tlb_addr;
|
|
|
|
tlb_fill(cpu, addr, size, MMU_DATA_STORE, mmu_idx, retaddr);
|
|
|
|
index = tlb_index(env, mmu_idx, addr);
|
|
tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
|
|
if (!(tlb_addr & ~(TARGET_PAGE_MASK | TLB_RECHECK))) {
|
|
/* RAM access */
|
|
uintptr_t haddr = addr + env->tlb_table[mmu_idx][index].addend;
|
|
|
|
stn_p((void *)haddr, size, val);
|
|
return;
|
|
}
|
|
/* Fall through for handling IO accesses */
|
|
}
|
|
|
|
section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
|
|
mr = section->mr;
|
|
mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
|
|
if (mr != &cpu->uc->io_mem_rom && mr != &cpu->uc->io_mem_notdirty && !cpu->can_do_io) {
|
|
cpu_io_recompile(cpu, retaddr);
|
|
}
|
|
|
|
cpu->mem_io_vaddr = addr;
|
|
cpu->mem_io_pc = retaddr;
|
|
r = memory_region_dispatch_write(mr, mr_offset,
|
|
val, size, iotlbentry->attrs);
|
|
if (r != MEMTX_OK) {
|
|
hwaddr physaddr = mr_offset +
|
|
section->offset_within_address_space -
|
|
section->offset_within_region;
|
|
|
|
cpu_transaction_failed(cpu, physaddr, addr, size, MMU_DATA_STORE,
|
|
mmu_idx, iotlbentry->attrs, r, retaddr);
|
|
}
|
|
}
|
|
|
|
/* Return true if ADDR is present in the victim tlb, and has been copied
|
|
back to the main tlb. */
|
|
static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
|
|
size_t elt_ofs, target_ulong page)
|
|
{
|
|
size_t vidx;
|
|
for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
|
|
CPUTLBEntry *vtlb = &env->tlb_v_table[mmu_idx][vidx];
|
|
target_ulong cmp;
|
|
|
|
/* elt_ofs might correspond to .addr_write, so use atomic_read */
|
|
#if TCG_OVERSIZED_GUEST
|
|
cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs);
|
|
#else
|
|
cmp = atomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs));
|
|
#endif
|
|
|
|
if (cmp == page) {
|
|
/* Found entry in victim tlb, swap tlb and iotlb. */
|
|
CPUTLBEntry tmptlb, *tlb = &env->tlb_table[mmu_idx][index];
|
|
CPUIOTLBEntry tmpio, *io = &env->iotlb[mmu_idx][index];
|
|
CPUIOTLBEntry *vio = &env->iotlb_v[mmu_idx][vidx];
|
|
|
|
tmptlb = *tlb; *tlb = *vtlb; *vtlb = tmptlb;
|
|
tmpio = *io; *io = *vio; *vio = tmpio;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Macro to call the above, with local variables from the use context. */
|
|
#define VICTIM_TLB_HIT(TY, ADDR) \
|
|
victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \
|
|
(ADDR) & TARGET_PAGE_MASK)
|
|
|
|
/* Probe for whether the specified guest write access is permitted.
|
|
* If it is not permitted then an exception will be taken in the same
|
|
* way as if this were a real write access (and we will not return).
|
|
* Otherwise the function will return, and there will be a valid
|
|
* entry in the TLB for this access.
|
|
*/
|
|
void probe_write(CPUArchState *env, target_ulong addr, int size, int mmu_idx,
|
|
uintptr_t retaddr)
|
|
{
|
|
uintptr_t index = tlb_index(env, mmu_idx, addr);
|
|
CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
|
|
|
|
if (!tlb_hit(tlb_addr_write(entry), addr)) {
|
|
/* TLB entry is for a different page */
|
|
if (!VICTIM_TLB_HIT(addr_write, addr)) {
|
|
tlb_fill(ENV_GET_CPU(env), addr, size, MMU_DATA_STORE,
|
|
mmu_idx, retaddr);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Probe for a read-modify-write atomic operation. Do not allow unaligned
|
|
* operations, or io operations to proceed. Return the host address. */
|
|
static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
size_t mmu_idx = get_mmuidx(oi);
|
|
uintptr_t index = tlb_index(env, mmu_idx, addr);
|
|
CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
|
|
target_ulong tlb_addr = tlb_addr_write(tlbe);
|
|
TCGMemOp mop = get_memop(oi);
|
|
int a_bits = get_alignment_bits(mop);
|
|
int s_bits = mop & MO_SIZE;
|
|
|
|
/* Adjust the given return address. */
|
|
retaddr -= GETPC_ADJ;
|
|
|
|
/* Enforce guest required alignment. */
|
|
if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
|
|
/* ??? Maybe indicate atomic op to cpu_unaligned_access */
|
|
cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
|
|
mmu_idx, retaddr);
|
|
}
|
|
|
|
/* Enforce qemu required alignment. */
|
|
if (unlikely(addr & ((1 << s_bits) - 1))) {
|
|
/* We get here if guest alignment was not requested,
|
|
or was not enforced by cpu_unaligned_access above.
|
|
We might widen the access and emulate, but for now
|
|
mark an exception and exit the cpu loop. */
|
|
goto stop_the_world;
|
|
}
|
|
|
|
/* Check TLB entry and enforce page permissions. */
|
|
if (!tlb_hit(tlb_addr, addr)) {
|
|
if (!VICTIM_TLB_HIT(addr_write, addr)) {
|
|
tlb_fill(ENV_GET_CPU(env), addr, 1 << s_bits, MMU_DATA_STORE,
|
|
mmu_idx, retaddr);
|
|
index = tlb_index(env, mmu_idx, addr);
|
|
tlbe = tlb_entry(env, mmu_idx, addr);
|
|
}
|
|
tlb_addr = tlb_addr_write(tlbe);
|
|
}
|
|
|
|
/* Check notdirty */
|
|
if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
|
|
tlb_set_dirty(ENV_GET_CPU(env), addr);
|
|
tlb_addr = tlb_addr & ~TLB_NOTDIRTY;
|
|
}
|
|
|
|
/* Notice an IO access or a needs-MMU-lookup access */
|
|
if (unlikely(tlb_addr & (TLB_MMIO | TLB_RECHECK))) {
|
|
/* There's really nothing that can be done to
|
|
support this apart from stop-the-world. */
|
|
goto stop_the_world;
|
|
}
|
|
|
|
/* Let the guest notice RMW on a write-only page. */
|
|
if (unlikely(tlbe->addr_read != tlb_addr)) {
|
|
tlb_fill(ENV_GET_CPU(env), addr, 1 << s_bits, MMU_DATA_LOAD,
|
|
mmu_idx, retaddr);
|
|
/* Since we don't support reads and writes to different addresses,
|
|
and we do have the proper page loaded for write, this shouldn't
|
|
ever return. But just in case, handle via stop-the-world. */
|
|
goto stop_the_world;
|
|
}
|
|
|
|
return (void *)((uintptr_t)addr + tlbe->addend);
|
|
|
|
stop_the_world:
|
|
cpu_loop_exit_atomic(ENV_GET_CPU(env), retaddr);
|
|
}
|
|
|
|
#ifdef TARGET_WORDS_BIGENDIAN
|
|
# define TGT_BE(X) (X)
|
|
# define TGT_LE(X) BSWAP(X)
|
|
#else
|
|
# define TGT_BE(X) BSWAP(X)
|
|
# define TGT_LE(X) (X)
|
|
#endif
|
|
|
|
#define MMUSUFFIX _mmu
|
|
|
|
#define DATA_SIZE 1
|
|
#include "softmmu_template.h"
|
|
|
|
#define DATA_SIZE 2
|
|
#include "softmmu_template.h"
|
|
|
|
#define DATA_SIZE 4
|
|
#include "softmmu_template.h"
|
|
|
|
#define DATA_SIZE 8
|
|
#include "softmmu_template.h"
|
|
|
|
/* First set of helpers allows passing in of OI and RETADDR. This makes
|
|
them callable from other helpers. */
|
|
|
|
#define EXTRA_ARGS , TCGMemOpIdx oi, uintptr_t retaddr
|
|
#define ATOMIC_NAME(X) \
|
|
HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu))
|
|
#define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, retaddr)
|
|
#define ATOMIC_MMU_CLEANUP do { } while (0)
|
|
|
|
#define DATA_SIZE 1
|
|
#include "atomic_template.h"
|
|
|
|
#define DATA_SIZE 2
|
|
#include "atomic_template.h"
|
|
|
|
#define DATA_SIZE 4
|
|
#include "atomic_template.h"
|
|
|
|
#ifdef CONFIG_ATOMIC64
|
|
#define DATA_SIZE 8
|
|
#include "atomic_template.h"
|
|
#endif
|
|
|
|
#if HAVE_CMPXCHG128 || HAVE_ATOMIC128
|
|
#define DATA_SIZE 16
|
|
#include "atomic_template.h"
|
|
#endif
|
|
|
|
/* Second set of helpers are directly callable from TCG as helpers. */
|
|
|
|
#undef EXTRA_ARGS
|
|
#undef ATOMIC_NAME
|
|
#undef ATOMIC_MMU_LOOKUP
|
|
#define EXTRA_ARGS , TCGMemOpIdx oi
|
|
#define ATOMIC_NAME(X) HELPER(glue(glue(atomic_ ## X, SUFFIX), END))
|
|
#define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, GETPC())
|
|
|
|
#define DATA_SIZE 1
|
|
#include "atomic_template.h"
|
|
|
|
#define DATA_SIZE 2
|
|
#include "atomic_template.h"
|
|
|
|
#define DATA_SIZE 4
|
|
#include "atomic_template.h"
|
|
|
|
#ifdef CONFIG_ATOMIC64
|
|
#define DATA_SIZE 8
|
|
#include "atomic_template.h"
|
|
#endif
|
|
|
|
/* Code access functions. */
|
|
|
|
#undef MMUSUFFIX
|
|
#define MMUSUFFIX _cmmu
|
|
#undef GETPC
|
|
#define GETPC() ((uintptr_t)0)
|
|
#define SOFTMMU_CODE_ACCESS
|
|
|
|
#define DATA_SIZE 1
|
|
#include "softmmu_template.h"
|
|
|
|
#define DATA_SIZE 2
|
|
#include "softmmu_template.h"
|
|
|
|
#define DATA_SIZE 4
|
|
#include "softmmu_template.h"
|
|
|
|
#define DATA_SIZE 8
|
|
#include "softmmu_template.h"
|