- Rephrase file/function/parameter/enum/define/error descriptions into full
and clear sentences.
- Make sure to adhere to the Arm writing guidelines.
- Fix missing/incorrect Doxygen tags.
- Standardize terminology used within the file.
- Add full standard name in file description.
GitHub PR: #1316
- Rephrase file/function/parameter/enum/define/error descriptions into full
and clear sentences.
- Make sure to adhere to the Arm writing guidelines.
- Fix missing/incorrect Doxygen tags.
- Standardize terminology used within the file.
- Rephrase the descriptions of all md_alg and hashlen parameters.
GitHub PR: #1327
- Rephrase file/function/parameter/enum/define/error descriptions into full
and clear sentences.
- Make sure to adhere to the Arm writing guidelines.
- Fix missing/incorrect Doxygen tags.
- Standardize terminology used within the file.
- Standardize defines documentation
GitHub PR: #1323
- Rephrase function/parameter/enum/define/error descriptions into full and
clear sentences.
- Make sure to adhere to the Arm writing guidelines.
- Fix missing/incorrect Doxygen tags.
- Standardize terminology used within the file.
GitHub PR: #1306
- Rephrase function/parameter/enum/define/error descriptions into full and
clear sentences.
- Make sure to adhering to the Arm writing guidelines.
- Fix missing/incorrect Doxygen tags.
- Standardize terminology used within the file.
- Fix iv_len values per the standard.
GitHub PR: #1305
- Separate "\file" blocks from copyright, so that Doxygen doesn't repeat
the copyright information in all the Detailed Descriptions.
- Improve phrasing and clarity of functions, parameters, defines and enums.
GitHub PR: #1292
A new test for mbedtls_timing_alarm(0) was introduced in PR 1136, which also
fixed it on Unix. Apparently test results on MinGW were not checked at that
point, so we missed that this new test was also failing on this platform.
Add MBEDTLS_ERR_XXX_HW_ACCEL_FAILED error codes for all cryptography
modules where the software implementation can be replaced by a hardware
implementation.
This does not include the individual message digest modules since they
currently have no way to return error codes.
This does include the higher-level md, cipher and pk modules since
alternative implementations and even algorithms can be plugged in at
runtime.
This commit allows users to provide alternative implementations of the
ECJPAKE interface through the configuration option MBEDTLS_ECJPAKE_ALT.
When set, the user must add `ecjpake_alt.h` declaring the same
interface as `ecjpake.h`, as well as add some compilation unit which
implements the functionality. This is in line with the preexisting
support for alternative implementations of other modules.
The corner cases fixed include:
* Allocating a buffer of size 0. With this change, the allocator now
returns a NULL pointer in this case. Note that changes in pem.c and
x509_crl.c were required to fix tests that did not work under this
assumption.
* Initialising the allocator with less memory than required for headers.
* Fix header chain checks for uninitialised allocator.
The _ext suffix suggests "new arguments", but the new functions have
the same arguments. Use _ret instead, to convey that the difference is
that the new functions return a value.
Conflict resolution:
* ChangeLog: put the new entries in their rightful place.
* library/x509write_crt.c: the change in development was whitespace
only, so use the one from the iotssl-1251 feature branch.
This commit adds some explicit downcasts from `size_t` to `uint8_t` in
the RSASSA signature encoding function `rsa_rsassa_pkcs1_v15_encode`.
The truncation is safe as it has been checked beforehand that the
respective values are in the range of a `uint8_t`.
1) `mbedtls_rsa_import_raw` used an uninitialized return
value when it was called without any input parameters.
While not sensible, this is allowed and should be a
succeeding no-op.
2) The MPI test for prime generation missed a return value
check for a call to `mbedtls_mpi_shift_r`. This is neither
critical nor new but should be fixed.
3) Both the RSA keygeneration example program and the
RSA test suites contained code initializing an RSA context
after a potentially failing call to CTR DRBG initialization,
leaving the corresponding RSA context free call in the
cleanup section of the respective function orphaned.
While this defect existed before, Coverity picked up on
it again because of newly introduced MPI's that were
also wrongly initialized only after the call to CTR DRBG
init. The commit fixes both the old and the new issue
by moving the initializtion of both the RSA context and
all MPI's prior to the first potentially failing call.
A previous commit changed the record encryption function
`ssl_encrypt_buf` to compute the MAC in a temporary buffer
and copying the relevant part of it (which is strictly smaller
if the truncated HMAC extension is used) to the outgoing message
buffer. However, the change was only made in case Encrypt-Then-MAC
was enabled, but not in case of MAC-Then-Encrypt. While this
doesn't constitute a problem, for the sake of uniformity this
commit changes `ssl_encrypt_buf` to compute the MAC in a temporary
buffer in this case, too.
The function `mbedtls_rsa_complete` is supposed to guarantee that
RSA operations will complete without failure. In contrast, it does
not ensure consistency of parameters, which is the task of the
checking functions `rsa_check_pubkey` and `rsa_check_privkey`.
Previously, the maximum allowed size of the RSA modulus was checked
in `mbedtls_rsa_check_pubkey`. However, exceeding this size would lead
to failure of some RSA operations, hence this check belongs to
`mbedtls_rsa_complete` rather than `mbedtls_rsa_check_pubkey`.
This commit moves it accordingly.
The function `pk_get_rsapubkey` originally performed some basic
sanity checks (e.g. on the size of public exponent) on the parsed
RSA public key by a call to `mbedtls_rsa_check_pubkey`.
This check was dropped because it is not possible to thoroughly
check full parameter sanity (i.e. that (-)^E is a bijection on Z/NZ).
Still, for the sake of not silently changing existing behavior,
this commit puts back the call to `mbedtls_rsa_check_pubkey`.
- Adapt the change in all.sh to the new keep-going mode
- Restore alphabetical order of configuration flags for
alternative implementations in config.h and rebuild
library/version_features.c
`mbedtls_rsa_deduce_primes` implicitly casts the result of a call to
`mbedtls_mpi_lsb` to a `uint16_t`. This is safe because of the size
of MPI's used in the library, but still may have compilers complain
about it. This commit makes the cast explicit.
Conflict resolution: additions in the same places as
upstream-public/pr/865, both adding into lexicographically sorted
lists, resolved by taking the additions in lexicographic order.
* development:
Timing self test: shorten redundant tests
Timing self test: increased duration
Timing self test: increased tolerance
Timing unit tests: more protection against infinite loops
Unit test for mbedtls_timing_hardclock
New timing unit tests
selftest: allow excluding a subset of the tests
selftest: allow running a subset of the tests
selftest: refactor to separate the list of tests from the logic
Timing self test: print some diagnosis information
mbedtls_timing_get_timer: don't use uninitialized memory
timing interface documentation: minor clarifications
Timing: fix mbedtls_set_alarm(0) on Unix/POSIX
* public/pr/1136:
Timing self test: shorten redundant tests
Timing self test: increased duration
Timing self test: increased tolerance
Timing unit tests: more protection against infinite loops
Unit test for mbedtls_timing_hardclock
New timing unit tests
selftest: allow excluding a subset of the tests
selftest: allow running a subset of the tests
selftest: refactor to separate the list of tests from the logic
Timing self test: print some diagnosis information
mbedtls_timing_get_timer: don't use uninitialized memory
timing interface documentation: minor clarifications
Timing: fix mbedtls_set_alarm(0) on Unix/POSIX
1. Surround the generate keys with
`#if ! defined(MBEDTLS_CMAC_ALT) || defined(MBEDTLS_SELF_TEST)`
to resolve build issue when `MBEDTLS_SELF_TEST` is defined for
alternative CMAC as well
2. Update ChangeLog
Increase the duration of the self test, otherwise it tends to fail on
a busy machine even with the recently upped tolerance. But run the
loop only once, it's enough for a simple smoke test.
mbedtls_timing_self_test fails annoyingly often when running on a busy
machine such as can be expected of a continous integration system.
Increase the tolerances in the delay test, to reduce the chance of
failures that are only due to missing a deadline on a busy machine.
Print some not-very-nice-looking but helpful diagnosis information if
the timing selftest fails. Since the failures tend to be due to heavy
system load that's hard to reproduce, this information is necessary to
understand what's going on.
mbedtls_timing_get_timer with reset=1 is called both to initialize a
timer object and to reset an already-initialized object. In an
initial call, the content of the data structure is indeterminate, so
the code should not read from it. This could crash if signed overflows
trap, for example.
As a consequence, on reset, we can't return the previously elapsed
time as was previously done on Windows. Return 0 as was done on Unix.
The POSIX/Unix implementation of mbedtls_set_alarm did not set the
mbedtls_timing_alarmed flag when called with 0, which was inconsistent
with what the documentation implied and with the Windows behavior.
* restricted/pr/403:
Correct record header size in case of TLS
Don't allocate space for DTLS header if DTLS is disabled
Improve debugging output
Adapt ChangeLog
Add run-time check for handshake message size in ssl_write_record
Add run-time check for record content size in ssl_encrypt_buf
Add compile-time checks for size of record content and payload
* development:
Don't split error code description across multiple lines
Register new error code in error.h
Move deprecation to separate section in ChangeLog
Extend scope of ERR_RSA_UNSUPPORTED_OPERATION error code
Adapt RSA test suite
Adapt ChangeLog
Deprecate usage of RSA primitives with wrong key type
* restricted/pr/397:
Don't split error code description across multiple lines
Register new error code in error.h
Move deprecation to separate section in ChangeLog
Extend scope of ERR_RSA_UNSUPPORTED_OPERATION error code
Adapt RSA test suite
Adapt ChangeLog
Deprecate usage of RSA primitives with wrong key type
In a previous PR (Fix heap corruption in implementation of truncated HMAC
extension #425) the place where MAC is computed was changed from the end of
the SSL I/O buffer to a local buffer (then (part of) the content of the local
buffer is either copied to the output buffer of compare to the input buffer).
Unfortunately, this change was made only for TLS 1.0 and later, leaving SSL
3.0 in an inconsistent state due to ssl_mac() still writing to the old,
hard-coded location, which, for MAC verification, resulted in later comparing
the end of the input buffer (containing the computed MAC) to the local buffer
(uninitialised), most likely resulting in MAC verification failure, hence no
interop (even with ourselves).
This commit completes the move to using a local buffer by using this strategy
for SSL 3.0 too. Fortunately ssl_mac() was static so it's not a problem to
change its signature.
Fix missing definition of mbedtls_zeroize when MBEDTLS_FS_IO is
disabled in the configuration.
Introduced by e7707228b4
Merge remote-tracking branch 'upstream-public/pr/1062' into development
In case truncated HMAC must be used but the Mbed TLS peer hasn't been updated
yet, one can use the compile-time option MBEDTLS_SSL_TRUNCATED_HMAC_COMPAT to
temporarily fall back to the old, non-compliant implementation of the truncated
HMAC extension.
The truncated HMAC extension as described in
https://tools.ietf.org/html/rfc6066.html#section-7 specifies that when truncated
HMAC is used, only the HMAC output should be truncated, while the HMAC key
generation stays unmodified. This commit fixes Mbed TLS's behavior of also
truncating the key, potentially leading to compatibility issues with peers
running other stacks than Mbed TLS.
Details:
The keys for the MAC are pieces of the keyblock that's generated from the
master secret in `mbedtls_ssl_derive_keys` through the PRF, their size being
specified as the size of the digest used for the MAC, regardless of whether
truncated HMAC is enabled or not.
/----- MD size ------\ /------- MD size ----\
Keyblock +----------------------+----------------------+------------------+---
now | MAC enc key | MAC dec key | Enc key | ...
(correct) +----------------------+----------------------+------------------+---
In the previous code, when truncated HMAC was enabled, the HMAC keys
were truncated to 10 bytes:
/-10 bytes-\ /-10 bytes-\
Keyblock +-------------+-------------+------------------+---
previously | MAC enc key | MAC dec key | Enc key | ...
(wrong) +-------------+-------------+------------------+---
The reason for this was that a single variable `transform->maclen` was used for
both the keysize and the size of the final MAC, and its value was reduced from
the MD size to 10 bytes in case truncated HMAC was negotiated.
This commit fixes this by introducing a temporary variable `mac_key_len` which
permanently holds the MD size irrespective of the presence of truncated HMAC,
and using this temporary to obtain the MAC key chunks from the keyblock.
Previously, MAC validation for an incoming record proceeded as follows:
1) Make a copy of the MAC contained in the record;
2) Compute the expected MAC in place, overwriting the presented one;
3) Compare both.
This resulted in a record buffer overflow if truncated MAC was used, as in this
case the record buffer only reserved 10 bytes for the MAC, but the MAC
computation routine in 2) always wrote a full digest.
For specially crafted records, this could be used to perform a controlled write of
up to 6 bytes past the boundary of the heap buffer holding the record, thereby
corrupting the heap structures and potentially leading to a crash or remote code
execution.
This commit fixes this by making the following change:
1) Compute the expected MAC in a temporary buffer that has the size of the
underlying message digest.
2) Compare to this to the MAC contained in the record, potentially
restricting to the first 10 bytes if truncated HMAC is used.
A similar fix is applied to the encryption routine `ssl_encrypt_buf`.
* development: (30 commits)
update README file (#1144)
Fix typo in asn1.h
Improve leap year test names in x509parse.data
Correctly handle leap year in x509_date_is_valid()
Renegotiation: Add tests for SigAlg ext parsing
Parse Signature Algorithm ext when renegotiating
Minor style fix
config.pl get: be better behaved
config.pl get: don't rewrite config.h; detect write errors
Fixed "config.pl get" for options with no value
Fix typo and bracketing in macro args
Ensure failed test_suite output is sent to stdout
Remove use of GNU sed features from ssl-opt.sh
Fix typos in ssl-opt.sh comments
Add ssl-opt.sh test to check gmt_unix_time is good
Extend ssl-opt.h so that run_test takes function
Always print gmt_unix_time in TLS client
Restored note about using minimum functionality in makefiles
Note in README that GNU make is required
Fix changelog for ssl_server2.c usage fix
...
Fix the x509_get_subject_alt_name() function to not accept invalid
tags. The problem was that the ASN.1 class for tags consists of two
bits. Simply doing bit-wise and of the CONTEXT_SPECIFIC macro with the
input tag has the potential of accepting tag values 0x10 (private)
which would indicate that the certificate has an incorrect format.
This commit fixes a comparison of ssl_session->encrypt_then_mac against the
ETM-unrelated constant MBEDTLS_SSL_EXTENDED_MS_DISABLED. Instead,
MBEDTLS_SSL_ETM_DISABLED should be used.
The typo is has no functional effect since both constants have the same value 0.
Remove a check introduced in the previous buffer overflow fix with keys of
size 8N+1 which the subsequent fix for buffer start calculations made
redundant.
Added a changelog entry for the buffer start calculation fix.
For a key of size 8N+1, check that the first byte after applying the
public key operation is 0 (it could have been 1 instead). The code was
incorrectly doing a no-op check instead, which led to invalid
signatures being accepted. Not a security flaw, since you would need the
private key to craft such an invalid signature, but a bug nonetheless.
The check introduced by the previous security fix was off by one. It
fixed the buffer overflow but was not compliant with the definition of
PSS which technically led to accepting some invalid signatures (but
not signatures made without the private key).
I don't think this can cause a crash as the member accessed is in the
beginning of the context, so wouldn't be outside of valid memory if the actual
context was RSA.
Also, the mismatch will be caught later when checking signature, so the cert
chain will be rejected anyway.
Fix buffer overflow in RSA-PSS signature verification when the hash is
too large for the key size. Found by Seth Terashima, Qualcomm.
Added a non-regression test and a positive test with the smallest
permitted key size for a SHA-512 hash.
The function mbedtls_ecp_gen_keypair_base did not wipe the stack buffer used to
hold the private exponent before returning. This commit fixes this by not using
a stack buffer in the first place but instead calling mpi_fill_random directly
to acquire the necessary random MPI.
This commit modifies mpi_read_binary to always allocate the minimum number of
limbs required to hold the entire buffer provided to the function, regardless of
its content. Previously, leading zero bytes in the input data were detected and
used to reduce memory footprint and time, but this non-constant behavior turned
out to be non-tolerable for the cryptographic applications this function is used
for.
Previously, if `MBEDTLS_SSL_RENEGOTIATION` was disabled, incoming handshake
messages in `mbedtls_ssl_read` (expecting application data) lead to the
connection being closed. This commit fixes this, restricting the
`MBEDTLS_SSL_RENEGOTIATION`-guard to the code-paths responsible for accepting
renegotiation requests and aborting renegotiation attempts after too many
unexpected records have been received.
1) use `pk_get_rsapubkey` instead of reimplementing the parsing
2) rename the key files, according to their type and key size
3) comment in the data_files/Makefile hoe the keys were generated
4) Fix issue of failure parsing pkcs#1 DER format parsing, missed in previous commit
Signature algorithm extension was skipped when renegotiation was in
progress, causing the signature algorithm not to be known when
renegotiating, and failing the handshake. Fix removes the renegotiation
step check before parsing the extension.
As the optional RSA parameters DP, DQ and QP are effectively discarded (they are only considered for their length to
ensure that the key fills the entire buffer), it is not necessary to read them into separate MPI's.
The number of loop iterations per candidate in `mbedtls_deduce_primes` was off
by one. This commit corrects this and removes a toy non-example from the RSA
test suite, as it seems difficult to have the function fail on small values of N
even if D,E are corrupted.
Signature algorithm extension was skipped when renegotiation was in
progress, causing the signature algorithm not to be known when
renegotiating, and failing the handshake. Fix removes the renegotiation
step check before parsing the extension.
This commit splits off the RSA helper functions into separate headers and
compilation units to have a clearer separation of the public RSA interface,
intended to be used by end-users, and the helper functions which are publicly
provided only for the benefit of designers of alternative RSA implementations.
1) move the change into Features from Changes, in the changLog
2) Change the feature alternative configuration MBEDTLS_ECDH_ALT
definition to function alternative defintions
MBEDTLS_ECDH_COMPUTE_SHARED_ALT and MBEDTLS_ECDH_GEN_PUBLIC_ALT
1) update ChangLog to have new feature in Features instead of Changes
2) Change MBEDTLS_ECDSA_ALT to function specific alternative definitions:
MBEDTLS_ECDSA_SIGN_ALT, MBEDTLS_ECDSA_VERIFY_ALT and MBEDTLS_ECDSA_GENKEY_ALT
It is not necessary to pass a CSPRNG to `mbedtls_rsa_deduce_moduli`, as there
exist well-working static strategies, and even if a PRNG is preferred, a
non-secure one would be sufficient.
Further, the implementation is changed to use a static strategy for the choice
of candidates which according to some benchmarks even performs better than the
previous one using random candidate choices.
This commit reconciles the code path responsible for resending the
final DTLS handshake flight with the path for handling resending of
the other flights.
This commit restricts WANT_READ to indicate that no data is available on the
underlying transport. To signal the need for further processing - which was
previously also handled through this error code - a new internal error code
MBEDTLS_ERR_SSL_CONTINUE_PROCESSING is introduced.
DTLS records from previous epochs were incorrectly checked against the
current epoch transform's minimal content length, leading to the
rejection of entire datagrams. This commit fixed that and adapts two
test cases accordingly.
Internal reference: IOTSSL-1417
- Enhances the documentation of mbedtls_ssl_get_bytes_avail (return
the number of bytes left in the current application data record, if
there is any).
- Introduces a new public function mbedtls_ssl_check_pending for
checking whether any data in the internal buffers still needs to be
processed. This is necessary for users implementing event-driven IO
to decide when they can safely idle until they receive further
events from the underlying transport.
Give a note on the debugging output on the following occasions:
(1) The timer expires in mbedtls_ssl_fetch_input
(2) There's more than one records within a single datagram
Change ssl_parse_server_hello() so that the parsed first four random
bytes from the ServerHello message are printed by the TLS client as
a Unix timestamp regardless of whether MBEDTLS_DEBUG_C is defined. The
debug message will only be printed if debug_level is 3 or higher.
Unconditionally enabling the debug print enabled testing of this value.
Change ssl_parse_server_hello() so that the parsed first four random
bytes from the ServerHello message are printed by the TLS client as
a Unix timestamp regardless of whether MBEDTLS_DEBUG_C is defined. The
debug message will only be printed if debug_level is 3 or higher.
Unconditionally enabling the debug print enabled testing of this value.
Further, state explicitly that wrong key types need not be supported by alternative RSA implementations, and that those
may instead return the newly introduced error code MBEDTLS_ERR_RSA_UNSUPPORTED_OPERATION.
This commit returns to using constant macros instead of global variables for the DHM group constants. Further, macros
providing the binary encoding of the primes from RFC 3526 and RFC 7919 are added. The hex-string macros are deprecated.
This commit modifies the PKCS1 v1.5 signature verification function `mbedtls_rsa_rsassa_pkcs1_v15_verify` to prepare the
expected PKCS1-v1.5-encoded hash using the function also used by the signing routine `mbedtls_rsa_rsassa_pkcs1_v15_sign`
and comparing it to the provided byte-string afterwards. This comes at the benefits of (1) avoiding any error-prone
parsing, (2) removing the dependency of the RSA module on the ASN.1 parsing module, and (3) reducing code size.
This commit moves the code preparing PKCS1 v1.5 encoded hashes from `mbedtls_rsa_rsassa_pkcs1_v15_sign` to a separate
non-public function `rsa_rsassa_pkcs1_v15_encode`. This code-path will then be re-used by the signature verification function
`mbetls_rsa_rsassa_pkcs1_v15_verify` in a later commit.
Original intention was to be allowed to perform in-place operations like changing the byte-order before importing
parameters into an HSM. Now a copy is needed in this case, but there's no more danger of a user expecting the arguments
to be left untouched.
State explicitly that `pk_parse_pkcs8_undencrypted_der` and `pk_parse_key_pkcs8_encrypted_der` are not responsible for
zeroizing and freeing the provided key buffer.
This commit changes the implementation of `mbedtls_rsa_get_len` to return
`ctx->len` instead of always re-computing the modulus' byte-size via
`mbedtls_mpi_size`.
Although the variable ret was initialised to an error, the
MBEDTLS_MPI_CHK macro was overwriting it. Therefore it ended up being
0 whenewer the bignum computation was successfull and stayed 0
independently of the actual check.
This commit renames the test-only flag MBEDTLS_ENTROPY_HAVE_STRONG to ENTROPY_HAVE_STRONG to make it more transparent
that it's an internal flag, and also to content the testscript tests/scripts/check-names.pl which previously complained
about the macro occurring in a comment in `entropy.c` without being defined in a library file.
This commit removes extension-writing code for X.509 non-v3 certificates from
mbedtls_x509write_crt_der. Previously, even if no extensions were present an
empty sequence would have been added.
Fix compilation error on Mingw32 when `_TRUNCATE` is defined. Use
`_TRUNCATE` only if `__MINGW32__` not defined. Fix suggested by
Thomas Glanzmann and Nick Wilson on issue #355
* mbedtls-2.6: (27 commits)
Update version number to 2.6.0
Fix language in Changelog for clarity
Improve documentation of PKCS1 decryption functions
Fix style and missing item in ChangeLog
Add credit to Changelog to fix for #666
Fix naked call to time() with platform call
Fix ChangeLog for duplication after merge
Rename time and index parameter to avoid name conflict.
Correct comment
Adapt ChangeLog
Reliably zeroize sensitive data in AES sample application
Reliably zeroize sensitive data in Crypt-and-Hash sample application
Fix potential integer overflow parsing DER CRT
Fix potential integer overflow parsing DER CRL
Move the git scripts to correct path
Update after @sbutcher-arm comments
Fix slash direction for linux path
Add note for the git_hoos README file
Pre push hook script
Check return code of mbedtls_mpi_fill_random
...
The stack buffer used to hold the decrypted key in pk_parse_pkcs8_encrypted_der
was statically sized to 2048 bytes, which is not enough for DER encoded 4096bit
RSA keys.
This commit resolves the problem by performing the key-decryption in-place,
circumventing the introduction of another stack or heap copy of the key.
There are two situations where pk_parse_pkcs8_encrypted_der is invoked:
1. When processing a PEM-encoded encrypted key in mbedtls_pk_parse_key.
This does not need adaption since the PEM context used to hold the decoded
key is already constructed and owned by mbedtls_pk_parse_key.
2. When processing a DER-encoded encrypted key in mbedtls_pk_parse_key.
In this case, mbedtls_pk_parse_key calls pk_parse_pkcs8_encrypted_der with
the buffer provided by the user, which is declared const. The commit
therefore adds a small code paths making a copy of the keybuffer before
calling pk_parse_pkcs8_encrypted_der.
If CRT is not used, the helper fields CRT are not assumed to be present in the
RSA context structure, so do the verification directly in this case. If CRT is
used, verification could be done using CRT, but we're sticking to ordinary
verification for uniformity.
This commit adds the function mbedtls_rsa_validate_crt for validating a set of CRT parameters. The function
mbedtls_rsa_check_crt is simplified accordingly.
If rsm != NULL then the curve type has to be Short Weierstrass, as we don't
implement restartable Montgomery now. If and when we do, then it's better to
check for the subcontext only, and not for the curve type.
Exactly one of three ways will be used, so make that clear by using an
if 1 else if 2 else 3 structure.
While at it, don't initialize variables at declaration, just to make extra
sure they're properly initialized afterwards in all code paths.
As done by previous commits for ECC and ECDSA:
- use explicit state assignments rather than increment
- always place the state update right before the operation label
This will make it easier to add restart support for other operations later if
desired.
SSL-specific changes:
- remove useless states: when the last restartable operation on a message is
complete, ssl->state is incremented already, so we don't need any additional
state update: ecrs_state is only meant to complement ssl->state
- rename remaining states consistently as <message>_<operation>
- move some labels closer to the actual operation when possible (no assignment
to variables used after the label between its previous and current position)
Systematically assign state just before the next operation that may return,
rather that just after the previous one. This makes things more local. (For
example, previously precompute_comb() has to handle a state reset for
mul_comb_core(), a kind of coupling that's best avoided.)
Note that this change doesn't move the location of state updates relative
to any potential return point, which is all that matters.
Incrementing the state is error-prone as we can end up doing it too many times
(loops) or not enough (skipped branches), or just make programming mistakes
(eg. the state was incremented twice at the end, so it ended up with a value
not in the enum...)
This is the first step of the rework, the next one will rationalize where the
state assignments are done.
Primality testing is guarded by the configuration flag MBEDTLS_GENPRIME and used in the new RSA helper functions. This
commit adds a corresponding preprocessor directive.
The call would anyway check for pointer equality and return early, but it
doesn't hurt to save a function call, and also this follows more uniformly the
pattern that those two lines go together:
#if defined(MBEDTLS_ECP_RESTARTBLE)
if( rs_ctx != NULL && ...
Alternative RSA implementations can be provided by defining MBEDTLS_RSA_ALT in
config.h, defining an mbedtls_rsa_context struct in a new file rsa_alt.h and
re-implementing the RSA interface specified in rsa.h.
Through the previous reworkings, the adherence to the interface is the only
implementation obligation - in particular, implementors are free to use a
different layout for the RSA context structure.
Child was almost redundant as it's already saved in ver_chain, except it was
multiplexed to also indicate whether an operation is in progress. This commit
removes it and introduces an explicit state variable instead.
This state can be useful later if we start returning IN_PROGRESS at other
points than find_parent() (for example when checking CRL).
Note that the state goes none -> find_parent and stays there until the context
is free(), as it's only on the first call that nothing was in progress.
Some parts were already implicitly using this as the two ifdefs were nested,
and some others didn't, which resulted in compile errors in some configs. This
fixes those errors and saves a bit of code+RAM that was previously wasted when
ECP_RESTARTABLE was defined but ECDSA_C wasn't
Previously we kept the ecdsa context created by the PK layer for ECDSA
operations on ECKEY in the ecdsa_restart_ctx structure, which was wrong, and
caused by the fact that we didn't have a proper handling of restart
sub-contexts in the PK layer.
The fact that you needed to pass a pointer to mbedtls_ecdsa_restart_ctx (or
that you needed to know the key type of the PK context) was a breach of
abstraction.
Change the API (and callers) now, and the implementation will be changed in
the next commit.
Goals include:
- reducing the number of local variables in the main function (so that we
don't have to worry about saving/restoring them)
- reducing the number exit points in the main function, making it easier to
update ssl->state only right before we return
- more consistent naming with ecrs prefix for everything
- always check it enabled before touching the rest
- rm duplicated code in parse_server_hello()
For selection of test cases, see comments added in the commit.
It makes the most sense to test with chains using ECC only, so for the chain
of length 2 we use server10 -> int-ca3 -> int-ca2 and trust int-ca2 directly.
Note: server10.crt was created by copying server10_int3_int-ca2.crt and
manually truncating it to remove the intermediates. That base can now be used
to create derived certs (without or with a chain) in a programmatic way.
This is mainly for the benefit of SSL modules, which only supports restart in
a limited number of cases. In the other cases (ECDHE_PSK) it would currently
return ERR_ECP_IN_PROGRESS and the user would thus call ssl_handshake() again,
but the SSL code wouldn't handle state properly and things would go wrong in
possibly unexpected ways. This is undesirable, so it should be possible for
the SSL module to choose if ECDHE should behave the old or the new way.
Not that it also brings ECDHE more in line with the other modules which
already have that choice available (by passing a NULL or valid restart
context).
For RSA, we could either have the function return an error code like
NOT_IMPLEMENTED or just run while disregarding ecp_max_ops. IMO the second
option makes more sense, as otherwise the caller would need to check whether
the key is EC or RSA before deciding to call either sign() or
sign_restartable(), and having to do this kind of check feels contrary to the
goal of the PK layer.
Two different changes:
- the first one will allow us to store k in the restart context while
restarting the following ecp_mul() operation
- the second one is an simplification, unrelated to restartability, made
possible by the fact that ecp_gen_privkey() is now public
(Unrelated to restartable work, just noticed while staring at the code.)
Checking at the end is inefficient as we might give up when we just generated
a valid signature or key.
Otherwise code that uses these functions in other modules will have to do:
#if defined(MBEDTLS_ECP_RESTARTABLE)
ret = do_stuff( there, may, be, many, args );
#else
ret = do_stuff( their, may, be, namy, args, rs_ctx );
#fi
and there is a risk that the arg list will differ when code is updated, and
this might not be caught immediately by tests because this depends on a
config.h compile-time option which are harder to test.
Always declaring the restartable variants of the API functions avoids this
problem; the cost in ROM size should be negligible.
This will be useful for restartable ECDH and ECDSA. Currently they call
mbedtls_ecp_gen_keypair(); one could make that one restartable, but that means
adding its own sub-context, while ECDH and ECDSA (will) have their own
contexts already, so switching to this saves one extra context.
This should only be done in the top-level function.
Also, we need to know if we indeed are the top-level function or not: for
example, when mbedtls_ecp_muladd() calls mbedtls_ecp_mul(), the later should
not reset ops_done. This is handled by the "depth" parameter in the restart
context.
When a restartable function calls another restartable function, the current
ops_count needs to be shared to avoid either doing too many operations or
returning IN_PROGRESS uselessly. So it needs to be in the top-level context
rather than a specific sub-context.
This was intended to detect aborted operations, but now that case is handled
by the caller freeing the restart context.
Also, as the internal sub-context is managed by the callee, no need for the
caller to free/reset the restart context between successful calls.
Following discussion in the team, it was deemed preferable for the restart
context to be explicitly managed by the caller.
This commits in the first in a series moving in that directly: it starts by
only changing the public API, while still internally using the old design.
Future commits in that series will change to the new design internally.
The test function was simplified as it no longer makes sense to test for some
memory management errors since that responsibility shifted to the caller.
It's going to be convenient for each function that can generate a
MBEDTLS_ERR_ECP_IN_PROGRESS on its own (as opposed to just passing it around)
to have its own restart context that they can allocate and free as needed
independently of the restart context of other functions.
For example ecp_muladd() is going to have its own restart_muladd context that
in can managed, then when it calls ecp_mul() this will manage a restart_mul
context without interfering with the caller's context.
So, things need to be renames to avoid future name clashes.
From a user's perspective, you want a "basic operation" to take approximately
the same amount of time regardless of the curve size, especially since max_ops
is a global setting: otherwise if you pick a limit suitable for P-384 then
when you do an operation on P-256 it will return way more often than needed.
Said otherwise, a user is actually interested in actual running time, and we
do the API in terms of "basic ops" for practical reasons (no timers) but then
we should make sure it's a good proxy for running time.
Ok, so the original plan was to make mpi_inv_mod() the smallest block that
could not be divided. Updated plan is that the smallest block will be either:
- ecp_normalize_jac_many() (one mpi_inv_mod() + a number or mpi_mul_mpi()s)
- or the second loop in ecp_precompute_comb()
With default settings, the minimum non-restartable sequence is:
- for P-256: 222M
- for P-384: 341M
This is within a 2-3x factor of originally planned value of 120M. However,
that value can be approached, at the cost of some performance, by setting
ECP_WINDOW_SIZE (w below) lower than the default of 6. For example:
- w=4 -> 166M for any curve (perf. impact < 10%)
- w=2 -> 130M for any curve (perf. impact ~ 30%)
My opinion is that the current state with w=4 is a good compromise, and the
code complexity need to attain 120M is not warranted by the 1.4 factor between
that and the current minimum with w=4 (which is close to optimal perf).
This is the easy part: with the current steps, all information between steps
is passed via T which is already saved. Next we'll need to split at least the
first loop, and maybe calls to normalize_jac_many() and/or the second loop.
Separating main computation from filling of the auxiliary array makes things
clearer and easier to restart as we don't have to remember the in-progress
auxiliary array.
Previously there were only two states:
- T unallocated
- T allocated and valid
Now there are three:
- T unallocated
- T allocated and in progress
- T allocated and valid
Introduce new bool T_ok to distinguish the last two states.
Free it as soon as it's no longer needed, but as a backup free it in
ecp_group_free(), in case ecp_mul() is not called again after returning
ECP_IN_PROGRESS.
So far we only remember it when it's fully computed, next step is to be able
to compute it in multiple steps.
In case of argument change, freeing everything is not the most efficient
(wastes one free()+calloc()) but makes the code simpler, which is probably
more important here
We'll need to store MPIs and other things that allocate memory in this
context, so we need a place to free it. We can't rely on doing it before
returning from ecp_mul() as we might return MBEDTLS_ERR_ECP_IN_PROGRESS (thus
preserving the context) and never be called again (for example, TLS handshake
aborted for another reason). So, ecp_group_free() looks like a good place to
do this, if the restart context is part of struct ecp_group.
This means it's not possible to use the same ecp_group structure in different
threads concurrently, but:
- that's already the case (and documented) for other reasons
- this feature is precisely intended for environments that lack threading
An alternative option would be for the caller to have to allocate/free the
restart context and pass it explicitly, but this means creating new functions
that take a context argument, and putting a burden on the user.
The plan is to count basic operations as follows:
- call to ecp_add_mixed() -> 11
- call to ecp_double_jac() -> 8
- call to mpi_mul_mpi() -> 1
- call to mpi_inv_mod() -> 120
- everything else -> not counted
The counts for ecp_add_mixed() and ecp_double_jac() are based on the actual
number of calls to mpi_mul_mpi() they they make.
The count for mpi_inv_mod() is based on timing measurements on K64F and
LPC1768 boards, and are consistent with the usual very rough estimate of one
inversion = 100 multiplications. It could be useful to repeat that measurement
on a Cortex-M0 board as those have smaller divider and multipliers, so the
result could be a bit different but should be the same order of magnitude.
The documented limitation of 120 basic ops is due to the calls to mpi_inv_mod()
which are currently not interruptible nor planned to be so far.
This is the first step towards making verify_chain() iterative. While from a
readability point of view the current recursive version is fine, one of the
goals of this refactoring is to prepare for restartable ECC integration, which
will need the explicit stack anyway.
Besides avoiding near-duplication, this avoids having three generations of
certificate (child, parent, grandparent) in one function, with all the
off-by-one opportunities that come with it.
This also allows to simplify the signature of verify_child(), which will be
done in next commit.
This is from the morally 5th (and soon obsolete) invocation of this function
in verify_top().
Doing this badtime-skipping when we search for a parent in the provided chain
is a change of behaviour, but it's backwards-compatible: it can only cause us
to accept valid chains that we used to reject before. Eg if the peer has a
chain with two version of an intermediate certificate with different validity
periods, the first non valid and the second valid - such cases are probably
rare or users would have complained already, but it doesn't hurt to handle it
properly as it allows for more uniform code.
This may look like a behaviour change because one check has been added to the
function that was previously done in only one of the 3 call sites. However it
is not, because:
- for the 2 call sites in verify(), the test always succeeds as path_cnt is 0.
- for the call site in verify_child(), the same test was done later anyway in
verify_top()
There are 3 instance that were replaced, but 2 instances of variants of this
function exist and will be handled next (the extra parameter that isn't used
so far is in preparation for that):
- one in verify_child() where path_cnt constraint is handled too
- one in verify_top() where there is extra logic to skip parents that are
expired or future, but only if there are better parents to be found
This is a slight change of behaviour in that the previous condition was:
- same subject
- signature matches
while the new condition is:
- exact same certificate
However the documentation for mbedtls_x509_crt_verify() (note on trust_ca)
mentions the new condition, so code that respected the documentation will keep
working.
In addition, this is a bit faster as it doesn't check the self-signature
(which never needs to be checked for certs in the trusted list).
When we're looking for a parent, in trusted CAs, 'top' should be 1.
This only impacted which call site for verify_top() was chosen, and the error
was then fixed inside verify_top() by iterating over CAs again, this time
correctly setting 'top' to 1.
This is the beginning of a series of commits refactoring the chain
building/verification functions in order to:
- make it simpler to understand and work with
- prepare integration of restartable ECC
md() already checks for md_info == NULL. Also, in the future it might also
return other errors (eg hardware errors if acceleration is used), so it make
more sense to check its return value than to check for NULL ourselves and then
assume no other error can occur.
Also, currently, md_info == NULL can never happen except if the MD and OID modules
get out of sync, or if the user messes with members of the x509_crt structure
directly.
This commit does not change the current behaviour, which is to treat MD errors
the same way as a bad signature or no trusted root.
There were preprocessor directives in pk.c and pk_wrap.c that cheked
whether the bit length of size_t was greater than that of unsigned int.
However, the check relied on the MBEDTLS_HAVE_INT64 macro being defined
which is not directly related to size_t. This might result in errors in
some platforms. This change modifies the check to use the macros
SIZE_MAX and UINT_MAX instead making the code more robust.
As noted in #557, several functions use 'index' resp. 'time'
as parameter names in their declaration and/or definition, causing name
conflicts with the functions in the C standard library of the same
name some compilers warn about.
This commit renames the arguments accordingly.
Modify the function mbedtls_x509_csr_parse_der() so that it checks the
parsed CSR version integer before it increments the value. This prevents
a potential signed integer overflow, as these have undefined behaviour
in the C standard.
Rename the macro MBEDTLS_PLATFORM_SETUP_ALT to
MBEDTLS_PLATFORM_SETUP_TEARDOWN_ALT to make the name more descriptive
as this macro enables/disables both functions.
Add the following two functions to allow platform setup and teardown
operations for the full library to be hooked in:
* mbedtls_platform_setup()
* mbedtls_platform_teardown()
An mbedtls_platform_context C structure is also added and two internal
functions that are called by the corresponding setup and teardown
functions above:
* mbedtls_internal_platform_setup()
* mbedtls_internal_plartform_teardown()
Finally, the macro MBEDTLS_PLATFORM_SETUP_ALT is also added to allow
mbedtls_platform_context and internal function to be overriden by the
user as needed for a platform.
The previous commit bd5ceee484f201b90a384636ba12de86bd330cba removed
the definition of the global constants
- mbedtls_test_ca_crt_rsa_len,
- mbedtls_test_cli_crt_rsa_len,
- mbedtls_test_ca_crt_rsa, and
- mbedtls_test_cli_crt_rsa.
This commit restores these to maintain ABI compatibility.
Further, it was noticed that without SHA256_C being enabled the
previous code failed to compile because because the SHA1 resp. SHA256
certificates were only defined when the respective SHAXXX_C options
were set, but the emission of the global variable mbedtls_test_ca_crt
was unconditionally defined through the SHA256
certificate. Previously, the RSA SHA1 certificate was unconditionally
defined and used for that.
As a remedy, this commit makes sure some RSA certificate is defined
and exported through the following rule:
1. If SHA256_C is active, define an RSA SHA256 certificate and export
it as mbedtls_test_ca_crt. Also, define SHA1 certificates only if
SHA1_C is set.
2. If SHA256_C is not set, always define SHA1 certificate and export
it as mbedtls_test_ca_crt.
Fix a resource leak on windows platform, in mbedtls_x509_crt_parse_path,
in case a failure. when an error occurs, goto cleanup, and free the
resource, instead of returning error code immediately.
Protecting the ECP hardware acceleratior with mutexes is inconsistent with the
philosophy of the library. Pre-existing hardware accelerator interfaces
leave concurrency support to the underlying platform.
Fixes#863
Modify the function mbedtls_x509_csr_parse_der() so that it checks the
parsed CSR version integer before it increments the value. This prevents
a potential signed integer overflow, as these have undefined behaviour
in the C standard.
Rename the macro MBEDTLS_PLATFORM_SETUP_ALT to
MBEDTLS_PLATFORM_SETUP_TEARDOWN_ALT to make the name more descriptive
as this macro enables/disables both functions.
Add the following two functions to allow platform setup and teardown
operations for the full library to be hooked in:
* mbedtls_platform_setup()
* mbedtls_platform_teardown()
An mbedtls_platform_context C structure is also added and two internal
functions that are called by the corresponding setup and teardown
functions above:
* mbedtls_internal_platform_setup()
* mbedtls_internal_plartform_teardown()
Finally, the macro MBEDTLS_PLATFORM_SETUP_ALT is also added to allow
mbedtls_platform_context and internal function to be overriden by the
user as needed for a platform.
The previous commit bd5ceee484f201b90a384636ba12de86bd330cba removed
the definition of the global constants
- mbedtls_test_ca_crt_rsa_len,
- mbedtls_test_cli_crt_rsa_len,
- mbedtls_test_ca_crt_rsa, and
- mbedtls_test_cli_crt_rsa.
This commit restores these to maintain ABI compatibility.
Further, it was noticed that without SHA256_C being enabled the
previous code failed to compile because because the SHA1 resp. SHA256
certificates were only defined when the respective SHAXXX_C options
were set, but the emission of the global variable mbedtls_test_ca_crt
was unconditionally defined through the SHA256
certificate. Previously, the RSA SHA1 certificate was unconditionally
defined and used for that.
As a remedy, this commit makes sure some RSA certificate is defined
and exported through the following rule:
1. If SHA256_C is active, define an RSA SHA256 certificate and export
it as mbedtls_test_ca_crt. Also, define SHA1 certificates only if
SHA1_C is set.
2. If SHA256_C is not set, always define SHA1 certificate and export
it as mbedtls_test_ca_crt.
Fix a resource leak on windows platform, in mbedtls_x509_crt_parse_path,
in case a failure. when an error occurs, goto cleanup, and free the
resource, instead of returning error code immediately.
Protecting the ECP hardware acceleratior with mutexes is inconsistent with the
philosophy of the library. Pre-existing hardware accelerator interfaces
leave concurrency support to the underlying platform.
Fixes#863
Modify the function mbedtls_x509_csr_parse_der() so that it checks the
parsed CSR version integer before it increments the value. This prevents
a potential signed integer overflow, as these have undefined behaviour
in the C standard.
The RSA key generation test needs strong entropy to succeed. This commit captures the presence of a strong entropy
source in a preprocessor flag and only runs the key generation test if that flag is set.
Rename the macro MBEDTLS_PLATFORM_SETUP_ALT to
MBEDTLS_PLATFORM_SETUP_TEARDOWN_ALT to make the name more descriptive
as this macro enables/disables both functions.
Add the following two functions to allow platform setup and teardown
operations for the full library to be hooked in:
* mbedtls_platform_setup()
* mbedtls_platform_teardown()
An mbedtls_platform_context C structure is also added and two internal
functions that are called by the corresponding setup and teardown
functions above:
* mbedtls_internal_platform_setup()
* mbedtls_internal_plartform_teardown()
Finally, the macro MBEDTLS_PLATFORM_SETUP_ALT is also added to allow
mbedtls_platform_context and internal function to be overriden by the
user as needed for a platform.
The previous commit bd5ceee484f201b90a384636ba12de86bd330cba removed
the definition of the global constants
- mbedtls_test_ca_crt_rsa_len,
- mbedtls_test_cli_crt_rsa_len,
- mbedtls_test_ca_crt_rsa, and
- mbedtls_test_cli_crt_rsa.
This commit restores these to maintain ABI compatibility.
Further, it was noticed that without SHA256_C being enabled the
previous code failed to compile because because the SHA1 resp. SHA256
certificates were only defined when the respective SHAXXX_C options
were set, but the emission of the global variable mbedtls_test_ca_crt
was unconditionally defined through the SHA256
certificate. Previously, the RSA SHA1 certificate was unconditionally
defined and used for that.
As a remedy, this commit makes sure some RSA certificate is defined
and exported through the following rule:
1. If SHA256_C is active, define an RSA SHA256 certificate and export
it as mbedtls_test_ca_crt. Also, define SHA1 certificates only if
SHA1_C is set.
2. If SHA256_C is not set, always define SHA1 certificate and export
it as mbedtls_test_ca_crt.
Fix a resource leak on windows platform, in mbedtls_x509_crt_parse_path,
in case a failure. when an error occurs, goto cleanup, and free the
resource, instead of returning error code immediately.
Protecting the ECP hardware acceleratior with mutexes is inconsistent with the
philosophy of the library. Pre-existing hardware accelerator interfaces
leave concurrency support to the underlying platform.
Fixes#863
If we didn't walk the whole chain, then there may be any kind of errors in the
part of the chain we didn't check, so setting all flags looks like the safe
thing to do.
This change moves the calls to mbedtls_sha256_starts() and
mbedtls_sha512_starts() out of the mbedtls_entropy_init() function as
these now have return codes which need to be checked.
This patch modifies the entropy.c module to ensure that the sha256 and
sha512 contexts are correctly initialised and freed instead of skipping
these calls or simply zeroizing with memset() or mbedtls_zeroize().
This is important as the sha contexts might otherwise leak memory or
other resources, and even more so in the context of hardware
accelerators where the configuration of the device might be done in the
init and free calls.
This patch modifies the internal md context structure in md_wrap.c to
add return values to the function pointers. This enables us to use the
new API in the corresponding MD modules so that failures can be
found at any point in an MD computation.
The following function calls are being deprecated to introduce int
return values.
* mbedtls_sha512()
* mbedtls_sha512_starts()
* mbedtls_sha512_update()
* mbedtls_sha512_finish()
* mbedtls_sha512_process()
The return codes can be used to return error values. This is important
when using hardware accelerators.
The following function calls are being deprecated to introduce int
return values.
* mbedtls_sha256()
* mbedtls_sha256_starts()
* mbedtls_sha256_update()
* mbedtls_sha256_finish()
* mbedtls_sha256_process()
The return codes can be used to return error values. This is important
when using hardware accelerators.
The following function calls are being deprecated to introduce int
return values.
* mbedtls_ripemd160()
* mbedtls_ripemd160_starts()
* mbedtls_ripemd160_update()
* mbedtls_ripemd160_finish()
* mbedtls_ripemd160_process()
The return codes can be used to return error values. This is important
when using hardware accelerators.
The following function calls are being deprecated to introduce int
return values.
* mbedtls_md5()
* mbedtls_md5_starts()
* mbedtls_md5_update()
* mbedtls_md5_finish()
* mbedtls_md5_process()
The return codes can be used to return error values. This is important
when using hardware accelerators.
The following function calls are being deprecated to introduce int
return values.
* mbedtls_md4()
* mbedtls_md4_starts()
* mbedtls_md4_update()
* mbedtls_md4_finish()
* mbedtls_md4_process()
The return codes can be used to return error values. This is important
when using hardware accelerators.
The following function calls are being deprecated to introduce int
return values.
* mbedtls_md2()
* mbedtls_md2_starts()
* mbedtls_md2_update()
* mbedtls_md2_finish()
* mbedtls_md2_process()
The return codes can be used to return error values. This is important
when using hardware accelerators.
The following function calls are being deprecated to introduce int
return values.
* mbedtls_sha1()
* mbedtls_sha1_starts()
* mbedtls_sha1_update()
* mbedtls_sha1_finish()
* mbedtls_sha1_process()
The return codes can be used to return error values. This is important
when using hardware accelerators.
The check `if( *p + n > end )` in `ssl_parse_client_psk_identity` is
unsafe because `*p + n` might overflow, thus bypassing the check. As
`n` is a user-specified value up to 65K, this is relevant if the
library happens to be located in the last 65K of virtual memory.
This commit replaces the check by a safe version.
This patch modifies the function mbedtls_gcm_self_test() function to
ensure that AES-GCM-192 tests are only run if the key size is supported
by the available implementation. This is useful when using
MBEDTLS_AES_ALT as some hardware crypto accelerators might not support
AES-192.
This patch modifies the function mbedtls_aes_selftest() function to
ensure that AES-192 tests are only run if the key size is supported by
the available implementation. This is useful when using MBEDTLS_AES_ALT
as some hardware crypto accelerators might not support AES-192.
This commit renames the new AES table packing option introduced in the
previous MBEDTLS_AES_PACK_TABLES and documents its use and memory vs.
speed tradeoff. It also enhances the documentation of the other
AES-related option MBEDTLS_AES_ROM_TABLES.
* restricted/iotssl-1398:
Add ChangeLog entry
Ensure application data records are not kept when fully processed
Add hard assertion to mbedtls_ssl_read_record_layer
Fix mbedtls_ssl_read
Simplify retaining of messages for future processing
This commit fixes the following case: If a client is both expecting a
SERVER_HELLO and has an application data record that's partially
processed in flight (that's the situation the client gets into after
receiving a ServerHelloRequest followed by ApplicationData), a
subsequent call to mbedtls_ssl_read will set keep_current_message = 1
when seeing the unexpected application data, but not reset it to 0
after the application data has been processed. This commit fixes this.
It also documents and suggests how the problem might be solved in a
more structural way on the long run.
This commit adds a hard assertion to mbedtls_ssl_read_record_layer
triggering if both ssl->in_hslen and ssl->in_offt are not 0. This
should never happen, and if it does, there's no sensible way of
telling whether the previous message was a handshake or an application
data message.
There are situations in which it is not clear what message to expect
next. For example, the message following the ServerHello might be
either a Certificate, a ServerKeyExchange or a CertificateRequest. We
deal with this situation in the following way: Initially, the message
processing function for one of the allowed message types is called,
which fetches and decodes a new message. If that message is not the
expected one, the function returns successfully (instead of throwing
an error as usual for unexpected messages), and the handshake
continues to the processing function for the next possible message. To
not have this function fetch a new message, a flag in the SSL context
structure is used to indicate that the last message was retained for
further processing, and if that's set, the following processing
function will not fetch a new record.
This commit simplifies the usage of this message-retaining parameter
by doing the check within the record-fetching routine instead of the
specific message-processing routines. The code gets cleaner this way
and allows retaining messages to be used in other situations as well
without much effort. This will be used in the next commits.
This commit adds four tests to tests/ssl-opt.sh:
(1) & (2): Check behaviour of optional/required verification when the
trusted CA chain is empty.
(3) & (4): Check behaviour of optional/required verification when the
client receives a server certificate with an unsupported curve.
This commit changes the behaviour of mbedtls_ssl_parse_certificate
to make the two authentication modes MBEDTLS_SSL_VERIFY_REQUIRED and
MBEDTLS_SSL_VERIFY_OPTIONAL be in the following relationship:
Mode == MBEDTLS_SSL_VERIFY_REQUIRED
<=> Mode == MBEDTLS_SSL_VERIFY_OPTIONAL + check verify result
Also, it changes the behaviour to perform the certificate chain
verification even if the trusted CA chain is empty. Previously, the
function failed in this case, even when using optional verification,
which was brought up in #864.
* gilles/IOTSSL-1330/development:
Changelog entry for the bug fixes
SSLv3: when refusing renegotiation, stop processing
Ignore failures when sending fatal alerts
Cleaned up double variable declaration
Code portability fix
Added changelog entry
Send TLS alerts in many more cases
Skip all non-executables in run-test-suites.pl
SSL tests: server requires auth, client has no certificate
Balanced braces across preprocessor conditionals
Support setting the ports on the command line
By default, keep allowing SHA-1 in key exchange signatures. Disabling
it causes compatibility issues, especially with clients that use
TLS1.2 but don't send the signature_algorithms extension.
SHA-1 is forbidden in certificates by default, since it's vulnerable
to offline collision-based attacks.
In the TLS test client, allow SHA-1 as a signature hash algorithm.
Without this, the renegotation tests failed.
A previous commit had allowed SHA-1 via the certificate profile but
that only applied before the initial negotiation which includes the
signature_algorithms extension.
Default to forbidding the use of SHA-1 in TLS where it is unsafe: for
certificate signing, and as the signature hash algorithm for the TLS
1.2 handshake signature. SHA-1 remains allowed in HMAC-SHA-1 in the
XXX_SHA ciphersuites and in the PRF for TLS <= 1.1.
For easy backward compatibility for use in controlled environments,
turn on the MBEDTLS_TLS_DEFAULT_ALLOW_SHA1 compiled-time option.
* hanno/sig_hash_compatibility:
Improve documentation
Split long lines
Remember suitable hash function for any signature algorithm.
Introduce macros and functions to characterize certain ciphersuites.
Add missing return code checks in the functions pem_des_decrypt(),
pem_3des_decrypt() and pem_aes_decrypt() so that the calling function
mbedtls_pem_read_buffer() is notified of errors reported by the crypto
primitives AES, DES and 3DES.
Fixed a bug in ssl_srv.c when parsing TLS_FALLBACK_SCSV in the
ciphersuite list that caused it to miss it sometimes. Reported by Hugo
Leisink as issue #810. Fix initially by @andreasag01; this commit
isolates the bug fix and adds a non-regression test.
This patch modifies the following 2 functions in the AES module to
change the return type from void to int:
* mbedtls_aes_encrypt() -> mbedtls_internal_aes_encrypt()
* mbedtls_aes_decrypt() -> mbedtls_internal_aes_decrypt()
This change is necessary to allow users of MBEDTLS_AES_ALT,
MBEDTLS_AES_DECRYPT_ALT and MBEDTLS_AES_ENCRYPT_ALT to return an error
code when replacing the default with their own implementation, e.g.
a hardware crypto accelerator.
The RSA private key functions rsa_rsaes_pkcs1_v15_decrypt and
rsa_rsaes_oaep_decrypt put sensitive data (decryption results) on the
stack. Wipe it before returning.
Thanks to Laurent Simon for reporting this issue.
The sliding window exponentiation algorithm is vulnerable to
side-channel attacks. As a countermeasure we add exponent blinding in
order to prevent combining the results of different measurements.
This commit handles the case when the Chinese Remainder Theorem is used
to accelerate the computation.
The sliding window exponentiation algorithm is vulnerable to
side-channel attacks. As a countermeasure we add exponent blinding in
order to prevent combining the results of fifferent measurements.
This commits handles the case when the Chinese Remainder Theorem is NOT
used to accelerate computations.
According to RFC5246 the server can indicate the known Certificate
Authorities or can constrain the aurhorisation space by sending a
certificate list. This part of the message is optional and if omitted,
the client may send any certificate in the response.
The previous behaviour of mbed TLS was to always send the name of all the
CAs that are configured as root CAs. In certain cases this might cause
usability and privacy issues for example:
- If the list of the CA names is longer than the peers input buffer then
the handshake will fail
- If the configured CAs belong to third parties, this message gives away
information on the relations to these third parties
Therefore we introduce an option to suppress the CA list in the
Certificate Request message.
Providing this feature as a runtime option comes with a little cost in
code size and advantages in maintenance and flexibility.
This commit changes `ssl_parse_signature_algorithms_ext` to remember
one suitable ( := supported by client and by our config ) hash
algorithm per signature algorithm.
It also modifies the ciphersuite checking function
`ssl_ciphersuite_match` to refuse a suite if there
is no suitable hash algorithm.
Finally, it adds the corresponding entry to the ChangeLog.
The routine `mbedtls_ssl_write_server_key_exchange` heavily depends on
what kind of cipher suite is active: some don't need a
ServerKeyExchange at all, some need (EC)DH parameters but no server
signature, some require both. Each time we want to restrict a certain
piece of code to some class of ciphersuites, it is guarded by a
lengthy concatentation of configuration checks determining whether at
least one of the relevant cipher suites is enabled in the config; on
the code level, it is guarded by the check whether one of these
cipher suites is the active one.
To ease readability of the code, this commit introduces several helper
macros and helper functions that can be used to determine whether a
certain class of ciphersuites (a) is active in the config, and
(b) contains the currently present ciphersuite.
With this commit the Elliptic Curve Point interface is rewised. Two
compile time options has been removed to simplify the interface and
the function names got a new prefix that indicates that these functions
are for internal use and not part of the public interface.
The intended use of the abstraction layer for Elliptic Curve Point
arithmetic is to enable using hardware cryptographic accelerators.
These devices are a shared resource and the driver code rarely provides
thread safety.
This commit adds mutexes to the abstraction layer to protect the device
in a multi-threaded environment.
The primary use case behind providing an abstraction layer to enable
alternative Elliptic Curve Point arithmetic implementation, is making
use of cryptographic acceleration hardware if it is present.
To provide thread safety for the hardware accelerator we need a mutex
to guard it.
The compile time macros enabling the initialisation and deinitialisation
in the alternative Elliptic Curve Point arithmetic implementation had
names that did not end with '_ALT' as required by check-names.sh.
This patch introduces some additional checks in the PK module for 64-bit
systems only. The problem is that the API functions in the PK
abstraction accept a size_t value for the hashlen, while the RSA module
accepts an unsigned int for the hashlen. Instead of silently casting
size_t to unsigned int, this change checks whether the hashlen overflows
an unsigned int and returns an error.
The test case was generated by modifying our signature code so that it
produces a 7-byte long padding (which also means garbage at the end, so it is
essential in to check that the error that is detected first is indeed the
padding rather than the final length check).
In many places in TLS handling, some code detects a fatal error, sends
a fatal alert message, and returns to the caller. If sending the alert
fails, then return the error that triggered the alert, rather than
overriding the return status. This effectively causes alert sending
failures to be ignored. Formerly the code was inconsistently sometimes
doing one, sometimes the other.
In general ignoring the alert is the right thing: what matters to the
caller is the original error. A typical alert failure is that the
connection is already closed.
One case which remains not handled correctly is if the alert remains
in the output buffer (WANT_WRITE). Then it won't be sent, or will be
truncated. We'd need to either delay the application error or record
the write buffering notice; to be done later.
When provided with an empty line, mpi_read_file causes a numeric
underflow resulting in a stack underflow. This commit fixes this and
adds some documentation to mpi_read_file.
The modular inversion function hangs when provided with the modulus 1. This commit refuses this modulus with a BAD_INPUT error code. It also adds a test for this case.
The TLS client and server code was usually closing the connection in
case of a fatal error without sending an alert. This commit adds
alerts in many cases.
Added one test case to detect that we send the alert, where a server
complains that the client's certificate is from an unknown CA (case
tracked internally as IOTSSL-1330).
Fix a buffer overflow when writting a string representation of an MPI
number to a buffer in hexadecimal. The problem occurs because hex
digits are written in pairs and this is not accounted for in the
calculation of the required buffer size when the number of digits is
odd.
When using ssl_cookie with MBEDTLS_THREADING_C, fix a resource leak caused by
initiating a mutex in mbedtls_ssl_cookie_free instead of freeing it.
Raised and fix suggested by lan Gillingham in the mbed TLS forum
Tracked in #771
The function ecp_mod_koblitz computed the space for the result of a
multiplication optimally for that specific case, but unfortunately
the function mbedtls_mpi_mul_mpi performs a generic, suboptimal
calculation and needs one more limb for the result. Since the result's
buffer is on the stack, the best case scenario is that the program
stops.
This only happened on 64 bit platforms.
Fixes#569
A heap overread might happen when parsing malformed certificates.
Reported by Peng Li and Yueh-Hsun Lin.
Refactoring the parsing fixes the problem. This commit applies the
relevant part of the OpenVPN contribution applied to mbed TLS 1.3
in commit 17da9dd829.
Fixes a regression introduced by an earlier commit that modified
x509_crt_verify_top() to ensure that valid certificates that are after past or
future valid in the chain are processed. However the change introduced a change
in behaviour that caused the verification flags MBEDTLS_X509_BADCERT_EXPIRED and
MBEDTLS_BADCERT_FUTURE to always be set whenever there is a failure in the
verification regardless of the cause.
The fix maintains both behaviours:
* Ensure that valid certificates after future and past are verified
* Ensure that the correct verification flags are set.
Modifies the function mbedtls_x509_crl_parse() to ensure that a CRL in PEM
format with trailing characters after the footer does not result in the
execution of an infinite loop.
Fix potential integer overflows in the function mbedtls_base64_decode().
This overflow would mainly be exploitable in 32-bit systems and could
cause buffer bound checks to be bypassed.
Fix potential integer overflows in the following functions:
* mbedtls_md2_update() to be bypassed and cause
* mbedtls_cipher_update()
* mbedtls_ctr_drbg_reseed()
This overflows would mainly be exploitable in 32-bit systems and could
cause buffer bound checks to be bypassed.
Fix an incorrect condition in ssl_check_ctr_renegotiate() that compared
64 bits of record counter instead of 48 bits as described in RFC 6347
Section 4.3.1. This would cause the function's return value to be
occasionally incorrect and the renegotiation routines to be triggered
at unexpected times.
This PR fixes a number of unused variable/function compilation warnings
that arise when using a config.h that does not define the macro
MBEDTLS_PEM_PARSE_C.
Fixes many typos, and errors in comments.
* Clarifies many comments
* Grammar correction in config.pl help text
* Removed comment about MBEDTLS_X509_EXT_NS_CERT_TYPE.
* Comment typo fix (Dont => Don't)
* Comment typo fix (assure => ensure)
* Comment typo fix (byes => bytes)
* Added citation for quoted standard
* Comment typo fix (one complement => 1's complement)
The is some debate about whether to prefer "one's complement", "ones'
complement", or "1's complement". The more recent RFCs related to TLS
(RFC 6347, RFC 4347, etc) use " 1's complement", so I followed that
convention.
* Added missing ")" in comment
* Comment alignment
* Incorrect comment after #endif
Fix an incorrect condition in ssl_check_ctr_renegotiate() that compared
64 bits of record counter instead of 48 bits as described in RFC 6347
Section 4.3.1. This would cause the function's return value to be
occasionally incorrect and the renegotiation routines to be triggered
at unexpected times.
This PR fixes a number of unused variable/function compilation warnings
that arise when using a config.h that does not define the macro
MBEDTLS_PEM_PARSE_C.
This change fixes a regression introduced by an earlier commit that
modified x509_crt_verify_top() to ensure that valid certificates
that are after past or future valid in the chain are processed. However
the change introduced a change in behaviour that caused the
verification flags MBEDTLS_X509_BADCERT_EXPIRED and
MBEDTLS_BADCERT_FUTURE to always be set whenever there is a failure in
the verification regardless of the cause.
The fix maintains both behaviours:
* Ensure that valid certificates after future and past are verified
* Ensure that the correct verification flags are set.
To do so, a temporary pointer to the first future or past valid
certificate is maintained while traversing the chain. If a truly valid
certificate is found then that one is used, otherwise if no valid
certificate is found and the end of the chain is reached, the program
reverts back to using the future or past valid certificate.
This patch modifies the function mbedtls_x509_crl_parse() to ensure
that a CRL in PEM format with trailing characters after the footer does
not result in the execution of an infinite loop.
Fix an incorrect condition in ssl_check_ctr_renegotiate() that compared
64 bits of record counter instead of 48 bits as described in RFC 6347
Section 4.3.1. This would cause the function's return value to be
occasionally incorrect and the renegotiation routines to be triggered
at unexpected times.
This PR fixes a number of unused variable/function compilation warnings
that arise when using a config.h that does not define the macro
MBEDTLS_PEM_PARSE_C.
Fixes many typos, and errors in comments.
* Clarifies many comments
* Grammar correction in config.pl help text
* Removed comment about MBEDTLS_X509_EXT_NS_CERT_TYPE.
* Comment typo fix (Dont => Don't)
* Comment typo fix (assure => ensure)
* Comment typo fix (byes => bytes)
* Added citation for quoted standard
* Comment typo fix (one complement => 1's complement)
The is some debate about whether to prefer "one's complement", "ones'
complement", or "1's complement". The more recent RFCs related to TLS
(RFC 6347, RFC 4347, etc) use " 1's complement", so I followed that
convention.
* Added missing ")" in comment
* Comment alignment
* Incorrect comment after #endif
The PKCS#1 standard says nothing about the relation between P and Q
but many libraries guarantee P>Q and mbed TLS did so too in earlier
versions.
This commit restores this behaviour.
Fix implementation and documentation missmatch for the function
arguments to mbedtls_gcm_finish(). Also, removed redundant if condition
that always evaluates to true.
The bracketing in some expressions where an assignment was being made in an if statement in cmac.c had been accidentally broken and was causing compiler warnings with armcc.
Minor fixes following review including:
* formatting changes including indentation and code style
* corrections
* removal of debug code
* clarification of code through variable renaming
* memory leak
* compiler warnings
Change the CMAC interface to match the mbedtls_md_hmac_xxxx() interface. This
changes the overall design of the CMAC interface to make it more consistent with
the existing HMAC interface, and will allow incremental updates of input data
rather than requiring all data to be presented at once, which is what the
current interface requires.
- use one less temporary buffer
- pedantic: in_len + 15 was a potential overflow
- use a more explicit name instead of 'flag'
- Mn was a bit misleading
The previous version had secret-dependent memory accesses. While it was
probably not an issue in practice cause the two bytes of the array are
probably on the same cache line anyway, as a matter of principle this should
be avoided.
Due to inconsistent freeing strategy in pkparse.c the sample mutex
implementation in threading.c could lead to undefined behaviour by
destroying the same mutex several times.
This fix prevents mutexes from being destroyed several times in the
sample threading implementation.
The library/net.c and its corresponding include/mbedtls/net.h file are
renamed to library/net_sockets.c and include/mbedtls/net_sockets.h
respectively. This is to avoid naming collisions in projects which also
have files with the common name 'net'.
The PKCS#1 standard says nothing about the relation between P and Q
but many libraries guarantee P>Q and mbed TLS did so too in earlier
versions.
This commit restores this behaviour.
Fix implementation and documentation missmatch for the function
arguments to mbedtls_gcm_finish(). Also, removed redundant if condition
that always evaluates to true.
Certificates with unsupported algorithms in the certificate chain
prevented verification even if a certificate before the unsupported
ones was already trusted.
We change the behaviour to ignoring every certificate with unknown
(unsupported) signature algorithm oid when parsing the certificate
chain received from the peer.
The bracketing in some expressions where an assignment was being made in an if statement in cmac.c had been accidentally broken and was causing compiler warnings with armcc.
Minor fixes following review including:
* formatting changes including indentation and code style
* corrections
* removal of debug code
* clarification of code through variable renaming
* memory leak
* compiler warnings
Change the CMAC interface to match the mbedtls_md_hmac_xxxx() interface. This
changes the overall design of the CMAC interface to make it more consistent with
the existing HMAC interface, and will allow incremental updates of input data
rather than requiring all data to be presented at once, which is what the
current interface requires.
- use one less temporary buffer
- pedantic: in_len + 15 was a potential overflow
- use a more explicit name instead of 'flag'
- Mn was a bit misleading
The previous version had secret-dependent memory accesses. While it was
probably not an issue in practice cause the two bytes of the array are
probably on the same cache line anyway, as a matter of principle this should
be avoided.
Due to inconsistent freeing strategy in pkparse.c the sample mutex
implementation in threading.c could lead to undefined behaviour by
destroying the same mutex several times.
This fix prevents mutexes from being destroyed several times in the
sample threading implementation.
The library/net.c and its corresponding include/mbedtls/net.h file are
renamed to library/net_sockets.c and include/mbedtls/net_sockets.h
respectively. This is to avoid naming collisions in projects which also
have files with the common name 'net'.
Allow the size of the entry_name character array in x509_crt.c to be
configurable through a macro in config.h. entry_name holds a
path/filename string. The macro introduced in
MBEDTLS_X509_MAX_FILE_PATH_LEN.
Ensure that the entropy self test always fails whenever
MBEDTLS_TEST_NULL_ENTROPY is defined. This is because the option is
meant to be for testing and development purposes rather than production
quality software. Also, this patch enhances the documentation for
mbedtls_entropy_source_self_test() and mbedtls_entropy_self_test().
Instead of polling the hardware entropy source a single time and
comparing the output with itself, the source is polled at least twice
and make sure that the separate outputs are different.
The self test is a quick way to check at startup whether the entropy
sources are functioning correctly. The self test only polls 8 bytes
from the default entropy source and performs the following checks:
- The bytes are not all 0x00 or 0xFF.
- The hardware does not return an error when polled.
- The entropy does not provide data in a patter. Only check pattern
at byte, word and long word sizes.
In platform.c, made the time functions dependent on the configuration
MBEDTLS_HAVE_TIME to fix a build break where the functions could be
built but the mbedtls_time_t was not defined.
Separates platform time abstraction into it's own header from the
general platform abstraction as both depend on different build options.
(MBEDTLS_PLATFORM_C vs MBEDTLS_HAVE_TIME)
This commit fixes following warning:
> CC: aes.c
> aes.c: In function 'mbedtls_aes_self_test':
> aes.c:1225:19: error: unused variable 'iv' [-Werror=unused-variable]
> unsigned char iv[16];
> ^
> cc1: all warnings being treated as errors
If the option MBEDTLS_TEST_NULL_ENTROPY is enabled, the cmake generated
makefile will generate an error unless a UNSAFE_BUILD switch is also enabled.
Equally, a similar warning will always be generated if the Makefile is built,
and another warning is generated on every compilation of entropy.c.
This is to ensure the user is aware of what they're doing when they enable the
null entropy option.
Update the NV entropy seed before generating any entropy for outside
use. The reason this is triggered here and not in mbedtls_entropy_init(),
is that not all entropy sources mights have been added at that time.
Introduces mbedtls_nv_seed_read() and mbedtls_nv_seed_write().
The platform-layer functions are only available when
MBEDTLS_ENTROPY_NV_SEED is enabled.
Add a switch that turns entropy collecting off entirely, but enables
mbed TLS to run in an entirely unsafe mode. Enables to test mbed TLS
on platforms that don't have their entropy sources integrated yet.
Commit daf534d from PR #457 breaks the build. This may reintroduce a
clang-analyse warning, but this is the wrong fix for that.
The fix removed a call to mbedtls_ecp_curve_info_from_grp_id() to find
the curve info. This fix adds that back in.
The check is already effectively performed later in the function, but
implicitly, so Clang's analysis fail to notice the functions are in
fact safe. Pulling the check up to the top helps Clang to verify the
behaviour.
Since the buffer is used in a few places, it seems Clang isn't clever
enough to realise that the first byte is never touched. So, even though
the function has a correct null check for ssl->handshake, Clang
complains. Pulling the handshake type out into its own variable is
enough for Clang's analysis to kick in though.
The function appears to be safe, since grow() is called with sensible
arguments in previous functions. Ideally Clang would be clever enough to
realise this. Even if N has size MBEDTLS_MPI_MAX_LIMBS, which will
cause the grow to fail, the affected lines in montmul won't be reached.
Having this sanity check can hardly hurt though.
It is used only by `mbedtls_sha512_process()`, and in case `MBEDTLS_SHA512_PROCESS_ALT` is defined, it still cannot be reused because of `static` declaration.
On x32 systems, pointers are 4-bytes wide and are therefore stored in %e?x
registers (instead of %r?x registers). These registers must be accessed using
"addl" instead of "addq", however the GNU assembler will acccept the generic
"add" instruction and determine the correct opcode based on the registers
passed to it.
The server code parses the client hello extensions even when the
protocol is SSLv3 and this behaviour is non compliant with rfc6101.
Also the server sends extensions in the server hello and omitting
them may prevent interoperability problems.
Commit daf534d from PR #457 breaks the build. This may reintroduce a
clang-analyse warning, but this is the wrong fix for that.
The fix removed a call to mbedtls_ecp_curve_info_from_grp_id() to find
the curve info. This fix adds that back in.
The check is already effectively performed later in the function, but
implicitly, so Clang's analysis fail to notice the functions are in
fact safe. Pulling the check up to the top helps Clang to verify the
behaviour.
Since the buffer is used in a few places, it seems Clang isn't clever
enough to realise that the first byte is never touched. So, even though
the function has a correct null check for ssl->handshake, Clang
complains. Pulling the handshake type out into its own variable is
enough for Clang's analysis to kick in though.
The function appears to be safe, since grow() is called with sensible
arguments in previous functions. Ideally Clang would be clever enough to
realise this. Even if N has size MBEDTLS_MPI_MAX_LIMBS, which will
cause the grow to fail, the affected lines in montmul won't be reached.
Having this sanity check can hardly hurt though.
Fix an issue that caused valid certificates being rejected whenever an
expired or not yet valid version of the trusted certificate was before the
valid version in the trusted certificate list.
The callback typedefs defined for mbedtls_ssl_set_bio() and
mbedtls_ssl_set_timer_cb() were not used consistently where the callbacks were
referenced in structures or in code.
- basicContraints checks are done during verification
- there is no need to set extensions that are not present to default values,
as the code using the extension will check if it was present using
ext_types. (And default values would not make sense anyway.)
- document why we made that choice
- remove the two TODOs about checking hash and CA
- remove the code that parsed certificate_type: it did nothing except store
the selected type in handshake->cert_type, but that field was never accessed
afterwards. Since handshake_params is now an internal type, we can remove that
field without breaking the ABI.
We don't implement anonymous key exchanges, and we don't intend to, so it can
never happen that an unauthenticated server requests a certificate from us.
After the record contents are decompressed, in_len is no longer
accessed directly, only in_msglen is accessed. in_len is only read by
ssl_parse_record_header() which happens before ssl_prepare_record_contents().
This is also made clear by the fact that in_len is not touched after
decrypting anyway, so if it was accessed after that it would be wrong unless
decryption is used - as this is not the case, it show in_len is not accessed.
Previously it was failing with errors about headers not found, which is
suboptimal in terms of clarity. Now give a clean error with pointer to the
documentation.
Do the checks in the .c files rather than check_config.h as it keeps them
closer to the platform-specific implementations.
It is used only by `mbedtls_sha512_process()`, and in case `MBEDTLS_SHA512_PROCESS_ALT` is defined, it still cannot be reused because of `static` declaration.
armar doesn't understand the syntax without dash. OTOH, the syntax with dash
is the only one specified by POSIX, and it's accepted by GNU ar, BSD ar (as
bundled with OS X) and armar, so it looks like the most portable syntax.
fixes#386
* yanesca/iss309:
Improved on the previous fix and added a test case to cover both types of carries.
Removed recursion from fix#309.
Improved on the fix of #309 and extended the test to cover subroutines.
Tests and fix added for #309 (inplace mpi doubling).
On x32 systems, pointers are 4-bytes wide and are therefore stored in %e?x
registers (instead of %r?x registers). These registers must be accessed using
"addl" instead of "addq", however the GNU assembler will acccept the generic
"add" instruction and determine the correct opcode based on the registers
passed to it.
See for example page 8 of
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
The previous constant probably came from a typo as it was 2^26 - 2^5 instead
of 2^36 - 2^5. Clearly the intention was to allow for a constant bigger than
2^32 as the ull suffix and cast to uint64_t show.
fixes#362
By looking just at that test, it looks like 2 + dn_size could overflow. In
fact that can't happen as that would mean we've read a CA cert of size is too
big to be represented by a size_t.
However, it's best for code to be more obviously free of overflow without
having to reason about the bigger picture.
In case an entry with the given OID already exists in the list passed to
mbedtls_asn1_store_named_data() and there is not enough memory to allocate
room for the new value, the existing entry will be freed but the preceding
entry in the list will sill hold a pointer to it. (And the following entries
in the list are no longer reachable.) This results in memory leak or a double
free.
The issue is we want to leave the list in a consistent state on allocation
failure. (We could add a warning that the list is left in inconsistent state
when the function returns NULL, but behaviour changes that require more care
from the user are undesirable, especially in a stable branch.)
The chosen solution is a bit inefficient in that there is a time where both
blocks are allocated, but at least it's safe and this should trump efficiency
here: this code is only used for generating certificates, which is unlikely to
be done on very constrained devices, or to be in the critical loop of
anything. Also, the sizes involved should be fairly small anyway.
fixes#367
When the peer retransmits a flight with many record in the same datagram, and
we already saw one of the records in that datagram, we used to drop the whole
datagram, resulting in interoperability failure (spurious handshake timeouts,
due to ignoring record retransmitted by the peer) with some implementations
(issues with Chrome were reported).
So in those cases, we want to only drop the current record, and look at the
following records (if any) in the same datagram. OTOH, this is not something
we always want to do, as sometime the header of the current record is not
reliable enough.
This commit introduces a new return code for ssl_parse_header() that allows to
distinguish if we should drop only the current record or the whole datagram,
and uses it in mbedtls_ssl_read_record()
fixes#345
Remove check on the pathLenConstraint value when looking for a parent to the
EE cert, as the constraint is on the number of intermediate certs below the
parent, and that number is always 0 at that point, so the constraint is always
satisfied.
The check was actually off-by-one, which caused valid chains to be rejected
under the following conditions:
- the parent certificate is not a trusted root, and
- it has pathLenConstraint == 0 (max_pathlen == 1 in our representation)
fixes#280
* iotssl-519-asn1write-overflows-restricted:
Fix other int casts in bounds checking
Fix other occurrences of same bounds check issue
Fix potential buffer overflow in asn1write
* iotssl-515-max-pathlen:
Add Changelog entries for this branch
Fix a style issue
Fix whitespace at EOL issues
Use symbolic constants in test data
Fixed pathlen contraint enforcement.
Additional corner cases for testing pathlen constrains. Just in case.
Added test case for pathlen constrains in intermediate certificates
fixes#310
Actually all key exchanges that use a certificate use signatures too, and
there is no key exchange that uses signatures but no cert, so merge those two
flags.
Not a security issue as here we know the buffer is large enough (unless
something else if badly wrong in the code), and the value cast to int is less
than 2^16 (again, unless issues elsewhere).
Still changing to a more correct check as a matter of principle
Two causes:
- the buffer is too short (missing 4 bytes for encoding id_len)
- the test was wrong
Would only happen when MBEDTLS_ECP_MAX_BITS == the bitsize of the curve
actually used (does not happen in the default config).
Could not be triggered remotely.
* development: (73 commits)
Bump yotta dependencies version
Fix typo in documentation
Corrected misleading fn description in ssl_cache.h
Corrected URL/reference to MPI library
Fix yotta dependencies
Fix minor spelling mistake in programs/pkey/gen_key.c
Bump version to 2.1.2
Fix CVE number in ChangeLog
Add 'inline' workaround where needed
Fix references to non-standard SIZE_T_MAX
Fix yotta version dependencies again
Upgrade yotta dependency versions
Fix compile error in net.c with musl libc
Add missing warning in doc
Remove inline workaround when not useful
Fix macroization of inline in C++
Changed attribution for Guido Vranken
Merge of IOTSSL-476 - Random malloc in pem_read()
Fix for IOTSSL-473 Double free error
Fix potential overflow in CertificateRequest
...
Conflicts:
include/mbedtls/ssl_internal.h
library/ssl_cli.c
- "master secret" is the usual name
- move key block arg closer to the related lengths
- document lengths
Also fix some trailing whitespace while at it
In BER encoding, any boolean with a non-zero value is considered as
TRUE. However, DER encoding require a value of 255 (0xFF) for TRUE.
This commit makes `mbedtls_asn1_write_bool` function uses `255` instead
of `1` for BOOLEAN values.
With this fix, boolean values are now reconized by OS X keychain (tested
on OS X 10.11).
Fixes#318.
Two possible integer overflows (during << 2 or addition in BITS_TO_LIMB())
could result in far too few memory to be allocated, then overflowing the
buffer in the subsequent for loop.
Both integer overflows happen when slen is close to or greater than
SIZE_T_MAX >> 2 (ie 2^30 on a 32 bit system).
Note: one could also avoid those overflows by changing BITS_TO_LIMB(s << 2) to
CHARS_TO_LIMB(s >> 1) but the solution implemented looks more robust with
respect to future code changes.
Found by Guido Vranken.
Two possible integer overflows (during << 2 or addition in BITS_TO_LIMB())
could result in far too few memory to be allocated, then overflowing the
buffer in the subsequent for loop.
Both integer overflows happen when slen is close to or greater than
SIZE_T_MAX >> 2 (ie 2^30 on a 32 bit system).
Note: one could also avoid those overflows by changing BITS_TO_LIMB(s << 2) to
CHARS_TO_LIMB(s >> 1) but the solution implemented looks more robust with
respect to future code changes.
This extension is quite costly to generate, and we don't want to re-do it
again when the server performs a DTLS HelloVerify. So, cache the result the
first time and re-use if/when we build a new ClientHello.
Note: re-send due to timeouts are different, as the whole message is cached
already, so they don't need any special support.
This bug becomes noticeable when the extension following the "supported point
formats" extension has a number starting with 0x01, which is the case of the
EC J-PAKE extension, which explains what I noticed the bug now.
This will be immediately backported to the stable branches,
see the corresponding commits for impact analysis.
This is more consistent, as it doesn't make any sense for a user to be able to
set up an EC J-PAKE password with TLS if the corresponding key exchange is
disabled.
Arguably this is what we should de for other key exchanges as well instead of
depending on ECDH_C etc, but this is an independent issue, so let's just do
the right thing with the new key exchange and fix the other ones later. (This
is a marginal issue anyway, since people who disable all ECDH key exchange are
likely to also disable ECDH_C in order to minimize footprint.)
When we don't have a password, we want to skip the costly process of
generating the extension. So for consistency don't offer the ciphersuite
without the extension.
There is only one length byte but for some reason we skipped two, resulting in
reading one byte past the end of the extension. Fortunately, even if that
extension is at the very end of the ClientHello, it can't be at the end of the
buffer since the ClientHello length is at most SSL_MAX_CONTENT_LEN and the
buffer has some more room after that for MAC and so on. So there is no
buffer overread.
Possible consequences are:
- nothing, if the next byte is 0x00, which is a comment first byte for other
extensions, which is why the bug remained unnoticed
- using a point format that was not offered by the peer if next byte is 0x01.
In that case the peer will reject our ServerKeyExchange message and the
handshake will fail.
- thinking that we don't have a common point format even if we do, which will
cause us to immediately abort the handshake.
None of these are a security issue.
The same bug was fixed client-side in fd35af15
The Thread spec says we need those for EC J-PAKE too.
However, we won't be using the information, so we can skip the parsing
functions in an EC J-PAKE only config; keep the writing functions in order to
comply with the spec.
Especially for resumed handshake, it's entirely possible for an epoch=0
ClientHello to be retransmitted or arrive so late that the server is already
at epoch=1. There is no good way to detect whether it's that or a reconnect.
However:
- a late ClientHello seems more likely that client going down and then up
again in the middle of a handshake
- even if that's the case, we'll time out on that handshake soon enough
- we don't want to break handshake flows that used to work
So the safest option is to not treat that as a reconnect.
Don't depend on srv.c in config.h, but add explicit checks. This is more
in line with other options that only make sense server-side, and also it
allows to test full config minus srv.c more easily.
Use a custom function that minimally parses the message an creates a reply
without the overhead of a full SSL context.
Also fix dependencies: needs DTLS_HELLO_VERIFY for the cookie types, and let's
also depend on SRV_C as is doesn't make sense on client.