The MIPS TCG backend implements qemu_ld with 64-bit targets using the v0
register (base) as a temporary to load the upper half of the QEMU TLB
comparator (see line 5 below), however this happens before the input
address is used (line 8 to mask off the low bits for the TLB
comparison, and line 12 to add the host-guest offset). If the input
address (addrl) also happens to have been placed in v0 (as in the second
column below), it gets clobbered before it is used.
addrl in t2 addrl in v0
1 srl a0,t2,0x7 srl a0,v0,0x7
2 andi a0,a0,0x1fe0 andi a0,a0,0x1fe0
3 addu a0,a0,s0 addu a0,a0,s0
4 lw at,9136(a0) lw at,9136(a0) set TCG_TMP0 (at)
5 lw v0,9140(a0) lw v0,9140(a0) set base (v0)
6 li t9,-4093 li t9,-4093
7 lw a0,9160(a0) lw a0,9160(a0) set addend (a0)
8 and t9,t9,t2 and t9,t9,v0 use addrl
9 bne at,t9,0x836d8c8 bne at,t9,0x836d838 use TCG_TMP0
10 nop nop
11 bne v0,t8,0x836d8c8 bne v0,a1,0x836d838 use base
12 addu v0,a0,t2 addu v0,a0,v0 use addrl, addend
13 lw t0,0(v0) lw t0,0(v0)
Fix by using TCG_TMP0 (at) as the temporary instead of v0 (base),
pushing the load on line 5 forward into the delay slot of the low
comparison (line 10). The early load of the addend on line 7 also needs
pushing even further for 64-bit targets, or it will clobber a0 before
we're done with it. The output for 32-bit targets is unaffected.
srl a0,v0,0x7
andi a0,a0,0x1fe0
addu a0,a0,s0
lw at,9136(a0)
-lw v0,9140(a0) load high comparator
li t9,-4093
-lw a0,9160(a0) load addend
and t9,t9,v0
bne at,t9,0x836d838
- nop
+ lw at,9140(a0) load high comparator
+lw a0,9160(a0) load addend
-bne v0,a1,0x836d838
+bne at,a1,0x836d838
addu v0,a0,v0
lw t0,0(v0)
Backports commit 33fca8589cf2aa7bf91564e6a8f26b3ba0910541 from qemu
When a function returns a null pointer on error and only on error, you
can do
if (!foo(foos, errp)) {
... handle error ...
}
instead of the more cumbersome
Error *err = NULL;
if (!foo(foos, &err)) {
error_propagate(errp, err);
... handle error ...
}
A StringProperty's getter, however, may return null on success! We
then fail to call visit_type_str().
Screwed up in 6a146eb, v1.1.
Fails tests/qom-test in my current, heavily hacked QAPI branch. No
reproducer for master known (but I didn't look hard).
Backports commit a479b21c111a87a50203a7413c4e5ec419fc88dd from qemu
In semihosting mode the SDBBP 1 instructions should trigger UHI syscall,
but in QEMU this does not happen for recently added microMIPS R6.
Consequently bare metal microMIPS R6 programs supporting UHI will not run.
Backports commit 060ebfef1a09b58fb219b3769b72efb407515bf1 from qemu
The add2 code in the tcg_out_addsub2 function doesn't take into account
the case where rl == al == bl. In that case we can't compute the carry
after the addition. As it corresponds to a multiplication by 2, the
carry bit is the bit 31.
While this is a corner case, this prevents x86-64 guests to boot on a
MIPS host.
Backports commit c99d69694af4ed15b33e3f7c2e3ef6972c14358d from qemu
Commit 2b7ec66f fixed TCGMemOp masking following the MO_AMASK addition,
but two cases were forgotten in the TCG S390 backend.
Backports commit 3c8691f568f49bf623dcb2850464d4156d95e61b from qemu
Commit 2b7ec66f fixed TCGMemOp masking following the MO_AMASK addition,
but two cases were forgotten in the TCG MIPS backend.
Backports commit 4214a8cb7c15ec43d4b2a43ebf248b273a0f4d45 from qemu
For 32-bit guest, we load a 32-bit address from the TLB, so there is no
need to compensate for the low or high part. This fixes 32-bit guests on
big-endian hosts.
Backports commit e72c4fb81db52be881c9356f1c60e0a7817d2d32 from qemu
Correct computation of vector offsets for EXCP_EXT_INTERRUPT.
For instance, if Cause.IV is 0 the vector offset should be 0x180.
Simplify the finding vector number logic for the Vectored Interrupts.
Backports commit da52a4dfcc4864fd2260ec4eab331f75b1f0240b from qemu
When a LWL, LWR, LDL or LDR instruction triggers a page fault, QEMU
currently reports the aligned address in CP0 BadVAddr, while the Windows
NT kernel expects the unaligned address.
This patch adds a byte access with the unaligned address at the
beginning of the LWL/LWR/LDL/LDR instructions to possibly trigger a page
fault and fill the QEMU TLB.
Backports commit 908680c6441ac468f4871d513f42be396ea0d264 from qemu
Fix Debug Mode flag clearing, and when DERET is placed between LL and SC
do not make SC fail.
Backports commit fe87c2b36ae9c1c9a5279f3891f3bce1b573baa0 from qemu
When syncing the task ASID with EntryHi, correctly or the value instead
of assigning it.
Backports commit 6a973e6b6584221bed89a01e755b88e58b496652 from qemu
MSACSR.Cause bits are needed to be cleared before a vector floating-point
instructions.
FEXDO.df, FEXUPL.df and FEXUPR.df were missed out.
Backports commit d4f4f0d5d9e74c19614479592c8bc865d92773d0 from qemu
Fix core configuration for MIPS64R6-generic to make it as close as
I6400.
I6400 core has 48-bit of Virtual Address available (SEGBITS).
MIPS SIMD Architecture is available.
Rearrange order of bits to match the specification.
Backports commit 4dc89b782095d7a0b919fafd7b1322b3cb1279f1 from qemu
W10 insider has a bug where it ignores CPUID level and interprets
CPUID.(EAX=07H, ECX=0H) incorrectly, because CPUID in fact returned
CPUID.(EAX=04H, ECX=0H); this resulted in execution of unsupported
instructions.
While it's a Windows bug, there is no reason to emulate incorrect level.
I used http://instlatx64.atw.hu/ as a source of CPUID and checked that
it matches Penryn Xeon X5472, Westmere Xeon W3520, SandyBridge i5-2540M,
and Haswell i5-4670T.
kvm64 and qemu64 were bumped to 0xD to allow all available features for
them (and to avoid the same Windows bug).
Backports commit 3046bb5debc8153a542acb1df93b2a1a85527a15 from qemu.
With the Intel microcode update that removed HLE and RTM, there will be
different kinds of Haswell and Broadwell CPUs out there: some that still
have the HLE and RTM features, and some that don't have the HLE and RTM
features. On both cases people may be willing to use the pc-*-2.3
machine-types.
So, to cover both cases, introduce Haswell-noTSX and Broadwell-noTSX CPU
models, for hosts that have Haswell and Broadwell CPUs without TSX support.
Backports commit a356850b80b3d13b2ef737dad2acb05e6da03753 from qemu
ARAT signals that the APIC timer does not stop in power saving states.
As our APICs are emulated, it's fine to expose this feature to guests,
at least when asking for KVM host features or with CPU types that
include the flag. The exact model number that introduced the feature is
not known, but reports can be found that it's at least available since
Sandy Bridge.
Backports commit 28b8e4d0bf93ba176b4b7be819d537383c5a9060 from qemu
This patch denies crossing the boundary of the pages in the replay mode,
because it can cause an exception. Do it only when boundary is
crossed by the first instruction in the block.
If current instruction already crossed the bound - it's ok,
because an exception hasn't stopped this code.
Backports commit 5b9efc39aee90bbd343793e942bf8f582a0c9e4f from qemu
TCG generates optimized code for i386 repz instructions in single step mode.
It means that when ecx becomes 0, execution of the string instruction breaks
immediately without an additional iteration for ecx==0 (which will only check
ecx and set the flags). Omitting this iteration leads to different
instructions counting in singlestep mode and in normal execution.
This patch disables optimization of this last iteration for icount mode
which should be deterministic.
Backport commit c4d4525c38cd93cc5d1a743976eb25ac571d435f from qemu
This patch simplifies the AES code, by directly accessing the newly added
S-Box, InvS-Box and InvMixColumns tables instead of recreating them by
using the AES_Te and AES_Td tables.
Backports commit 9551ea6991cfb7c777f7943ad69b30d0a4fadac3 from qemu
These represent xsave-related capabilities of the processor, and KVM may
or may not support them.
Add feature bits so that they are considered by "-cpu ...,enforce", and use
the new feature work instead of calling kvm_arch_get_supported_cpuid.
Bit 3 (XSAVES) is not migratables because it requires saving MSR_IA32_XSS.
Neither KVM nor any commonly available hardware supports it anyway.
Backports commit 0bb0b2d2fe7f645ddaf1f0ff40ac669c9feb4aa1 from qemu
also backports 18cd2c17b5370369a886155c001da0a7f54bbcca
With this, object_property_add_alias() callers can safely free the
target property name, like what already happens with the 'name' argument
to all object_property_add*() functions.
Backports commit 1590d266d96b3f9b42443d6388dfc38f527ac2d8 from qemu
The SCTLR_EL3 cpreg definition was implicitly resetting the
register state to 0, which is both wrong and clashes with
the reset done via the SCTLR definition (since sctlr[3]
is unioned with sctlr_s). This went unnoticed until recently,
when an unrelated change (commit a903c449b41f105aa) happened to
perturb the order of enumeration through the cpregs hashtable for
reset such that the erroneous reset happened after the correct one
rather than before it. Fix this by marking SCTLR_EL3 as an alias,
so its reset is left up to the AArch32 view.
Backports commit e46e1a74ef482f1ef773e750df9654ef4442ca29 from qemu
Remove un-needed usages of ENV_GET_CPU() by converting the APIs to use
CPUState pointers and retrieving the env_ptr as minimally needed.
Scripted conversion for target-* change:
for I in target-*/cpu.h; do
sed -i \
's/\(^int cpu_[^_]*_exec(\)[^ ][^ ]* \*s);$/\1CPUState *cpu);/' \
$I;
done
Backports commit ea3e9847408131abc840240bd61e892d28459452 from qemu
The callers (most of them in target-foo/cpu.c) to this function all
have the cpu pointer handy. Just pass it to avoid an ENV_GET_CPU() from
core code (in exec.c).
Backports commit 4bad9e392e788a218967167a38ce2ae7a32a6231 from qemu
The sole caller of this function navigates the cpu->env_ptr only for
this function to take it back the cpu pointer straight away. Pass in
cpu pointer instead and grab the env pointer locally in the function.
Removes a core code usage of ENV_GET_CPU().
Backports commit 3d57f7893c90d911d786cb2c622b0926fc808b57 from qemu
All of the core-code usages of this API have the cpu pointer handy so
pass it in. There are only 3 architecture specific usages (2 of which
are commented out) which can just use ENV_GET_CPU() locally to get the
cpu pointer. The reduces core code usage of the CPU env, which brings
us closer to common-obj'ing these core files.
Backports commit bbd77c180d7ff1b04a7661bb878939b2e1d23798 from qemu
QOM objects are already zero-filled when instantiated, there's no need
to explicitly set numa_node to 0.
Backports commit 199fc85acd0571902eeefef6ea861b8ba4c8201f from qemu
To prepare for a generic internal cipher API, move the
built-in AES implementation into the crypto/ directory
Backports commit 6f2945cde60545aae7f31ab9d5ef29531efbc94f from qemu
Introduce a new crypto/ directory that will (eventually) contain
all the cryptographic related code. This initially defines a
wrapper for initializing gnutls and for computing hashes with
gnutls. The former ensures that gnutls is guaranteed to be
initialized exactly once in QEMU regardless of CLI args. The
block quorum code currently fails to initialize gnutls so it
only works by luck, if VNC server TLS is not requested. The
hash APIs avoids the need to litter the rest of the code with
preprocessor checks and simplifies callers by allocating the
correct amount of memory for the requested hash.
Backports commit ddbb0d09661f5fce21b335ba9aea8202d189b98e from qemu
Make sure to not modify the branch target. This ensure that the
branch target is not corrupted during partial retranslation.
Backports commit cd3b29b745b0ff393b2d37317837bc726b8dacc8 from qemu
The TSC frequency fits comfortably in an int when expressed in kHz,
but it may overflow when converted to Hz. In this case,
tsc-frequency returns a negative value because x86_cpuid_get_tsc_freq
does a 32-bit multiplication before assigning to int64_t.
For simplicity just make tsc_khz a 64-bit value.
Backports commit 06ef227e5158cca6710e6c268d6a7f65a5e2811b from qemu
Currently the "host" page size alignment API is really aligning to both
host and target page sizes. There is the qemu_real_page_size which can
be used for the actual host page size but it's missing a mask and ALIGN
macro as provided for qemu_page_size. Complete the API. This allows
system level code that cares about the host page size to use a
consistent alignment interface without having to un-needingly align to
the target page size. This also reduces system level code dependency
on the cpu specific TARGET_PAGE_SIZE.
Backports commit 4e51361d79289aee2985dfed472f8d87bd53a8df from qemu
Apart from the MSR, the smi field of struct kvm_vcpu_events has to be
translated into the corresponding CPUX86State fields. Also,
memory transaction flags depend on SMM state, so pull it from struct
kvm_run on every exit from KVM to userspace.
Backports relevant parts of commit fc12d72e10828ca6ff75f2ad432b741f07a10cef from qemu
Loading the BIOS in the mac99 machine is interesting, because there is a
PROM in the middle of the BIOS region (from 16K to 32K). Before memory
region accesses were clamped, when QEMU was asked to load a BIOS from
0xfff00000 to 0xffffffff it would put even those 16K from the BIOS file
into the region. This is weird because those 16K were not actually
visible between 0xfff04000 and 0xfff07fff. However, it worked.
After clamping was added, this also worked. In this case, the
cpu_physical_memory_write_rom_internal function split the write in
three parts: the first 16K were copied, the PROM area (second 16K) were
ignored, then the rest was copied.
Problems then started with commit 965eb2f (exec: do not clamp accesses
to MMIO regions, 2015-06-17). Clamping accesses is not done for MMIO
regions because they can overlap wildly, and MMIO registers can be
expected to perform full-width accesses based only on their address
(with no respect for adjacent registers that could decode to completely
different MemoryRegions). However, this lack of clamping also applied
to the PROM area! cpu_physical_memory_write_rom_internal thus failed
to copy the third range above, i.e. only copied the first 16K of the BIOS.
In effect, address_space_translate is expecting _something else_ to do
the clamping for MMIO regions if the incoming length is large. This
"something else" is memory_access_size in the case of address_space_rw,
so use the same logic in cpu_physical_memory_write_rom_internal.
Backports commit b242e0e0e2969c044a318e56f7988bbd84de1f63 from qemu
Including qemu-common.h from other header files is generally a bad
idea, because it means it's very easy to end up with a circular
dependency. For instance, if we wanted to include memory.h from
qom/cpu.h we'd end up with this loop:
memory.h -> qemu-common.h -> cpu.h -> cpu-qom.h -> qom/cpu.h -> memory.h
Remove the include from memory.h. This requires us to fix up a few
other files which were inadvertently getting declarations indirectly
through memory.h.
The biggest change is splitting the fprintf_function typedef out
into its own header so other headers can get at it without having
to include qemu-common.h.
Backports commit fba0a593b2809ecdda68650952cf3d3332ac1990 from qemu
This introduces the memory region property "global_locking". It is true
by default. By setting it to false, a device model can request BQL-free
dispatching of region accesses to its r/w handlers. The actual BQL
break-up will be provided in a separate patch.
Backports commit 196ea13104f802c508e57180b2a0d2b3418989a3 from qemu
This makes it more consistent with all other core code files, which
either just rely on qemu-common.h inclusion or precede cpu.h with
qemu-common.h.
cpu-all.h should not be included in addition to cpu.h. Remove it.
Backports commit 94beb661bd90bcb477eed6d3b07aced988c40163 from qemu
These are not Architecture specific in any way so move them out of
cpu-defs.h. tb-hash.h is an appropriate place as a leading user and
their strong relationship to TB hashing and caching.
Backports commit 41da4bd6420afd1209c408974920f63ff9c658e1 from qemu
This is one of very few things in exec-all with a genuine CPU
architecture dependency. Move these hashing helpers to a new
header to trim exec-all.h down to a near architecture-agnostic
header.
The defs are only used by cpu-exec and translate-all which are both
arch-obj's so the new tb-hash.h has no core code usage.
Backports commit e1b89321bafea9fb33d87852fc91fee579d17dfe from qemu
These exception indicies are generic and don't have any reliance on the
per-arch cpu.h defs. Move them to cpu-all.h so they can be used by core
code that does not have access to cpu-defs.h.
Backports commit 9e0dc48c9f05505b53cb28f860456a0648e56ddf from qemu
Intel C Compiler version 15.0.3.187 Build 20150407 doesn't support
'|' function for non floating-point simd operands.
Define VEC_OR macro which uses _mm_or_si128 supported
both in icc and gcc on x86 platform.
Backports commit 34664507c7f038842f20a2c787915680b1fabba2 from qemu