Making each output visitor provide its own output collection
function was the only remaining reason for exposing visitor
sub-types to the rest of the code base. Add a polymorphic
visit_complete() function which is a no-op for input visitors,
and which populates an opaque pointer for output visitors. For
maximum type-safety, also add a parameter to the output visitor
constructors with a type-correct version of the output pointer,
and assert that the two uses match.
This approach was considered superior to either passing the
output parameter only during construction (action at a distance
during visit_free() feels awkward) or only during visit_complete()
(defeating type safety makes it easier to use incorrectly).
Most callers were function-local, and therefore a mechanical
conversion; the testsuite was a bit trickier, but the previous
cleanup patch minimized the churn here.
The visit_complete() function may be called at most once; doing
so lets us use transfer semantics rather than duplication or
ref-count semantics to get the just-built output back to the
caller, even though it means our behavior is not idempotent.
Generated code is simplified as follows for events:
|@@ -26,7 +26,7 @@ void qapi_event_send_acpi_device_ost(ACP
| QDict *qmp;
| Error *err = NULL;
| QMPEventFuncEmit emit;
|- QmpOutputVisitor *qov;
|+ QObject *obj;
| Visitor *v;
| q_obj_ACPI_DEVICE_OST_arg param = {
| info
|@@ -39,8 +39,7 @@ void qapi_event_send_acpi_device_ost(ACP
|
| qmp = qmp_event_build_dict("ACPI_DEVICE_OST");
|
|- qov = qmp_output_visitor_new();
|- v = qmp_output_get_visitor(qov);
|+ v = qmp_output_visitor_new(&obj);
|
| visit_start_struct(v, "ACPI_DEVICE_OST", NULL, 0, &err);
| if (err) {
|@@ -55,7 +54,8 @@ void qapi_event_send_acpi_device_ost(ACP
| goto out;
| }
|
|- qdict_put_obj(qmp, "data", qmp_output_get_qobject(qov));
|+ visit_complete(v, &obj);
|+ qdict_put_obj(qmp, "data", obj);
| emit(QAPI_EVENT_ACPI_DEVICE_OST, qmp, &err);
and for commands:
| {
| Error *err = NULL;
|- QmpOutputVisitor *qov = qmp_output_visitor_new();
| Visitor *v;
|
|- v = qmp_output_get_visitor(qov);
|+ v = qmp_output_visitor_new(ret_out);
| visit_type_AddfdInfo(v, "unused", &ret_in, &err);
|- if (err) {
|- goto out;
|+ if (!err) {
|+ visit_complete(v, ret_out);
| }
|- *ret_out = qmp_output_get_qobject(qov);
|-
|-out:
| error_propagate(errp, err);
Backports commit 3b098d56979d2f7fd707c5be85555d114353a28d from qemu
Now that we have a polymorphic visit_free(), we no longer need
qmp_output_visitor_cleanup(); however, we still need to
expose the subtype for qmp_output_get_qobject().
Backports commit 1830f22a6777cedaccd67a08f675d30f7a85ebfd from qemu
Now that we have a polymorphic visit_free(), we no longer need
qmp_input_visitor_cleanup(); which in turn means we no longer
need to return a subtype from qmp_input_visitor_new() nor a
public upcast function.
Generated code changes to qmp-marshal.c look like:
|@@ -52,11 +52,10 @@ void qmp_marshal_add_fd(QDict *args, QOb
| {
| Error *err = NULL;
| AddfdInfo *retval;
|- QmpInputVisitor *qiv = qmp_input_visitor_new(QOBJECT(args), true);
| Visitor *v;
| q_obj_add_fd_arg arg = {0};
|
|- v = qmp_input_get_visitor(qiv);
|+ v = qmp_input_visitor_new(QOBJECT(args), true);
| visit_start_struct(v, NULL, NULL, 0, &err);
| if (err) {
| goto out;
Backports commit b70ce1018a251c0c33498d9c927a07cade655a5e from qemu
Now that we have a polymorphic visit_free(), we no longer need
string_input_visitor_cleanup(); which in turn means we no longer
need to return a subtype from string_input_visitor_new() nor a
public upcast function.
Backports commit 7a0525c7be6b38d32d586e3fd12e7377ded21faa from qemu
Making each visitor provide its own (awkwardly-named) FOO_cleanup()
is unusual, when we can instead have a polymorphic visit_free()
interface. Over the next few patches, we can use the polymorphic
functions to eliminate the need for a FOO_get_visitor() function
for accessing specific visitor functionality, once everything can
be accessed directly through the Visitor* interfaces.
The dealloc visitor is the first one converted to completely use
the new entry point, since qapi_dealloc_visitor_cleanup() was the
only reason that qapi_dealloc_get_visitor() existed, and only
generated and testsuite code was even using it. With the new
visit_free() entry point in place, we no longer need to expose
the QapiDeallocVisitor subtype through qapi_dealloc_visitor_new(),
and can get by with less generated code, with diffs that look like:
| void qapi_free_ACPIOSTInfo(ACPIOSTInfo *obj)
| {
|- QapiDeallocVisitor *qdv;
| Visitor *v;
|
| if (!obj) {
| return;
| }
|
|- qdv = qapi_dealloc_visitor_new();
|- v = qapi_dealloc_get_visitor(qdv);
|+ v = qapi_dealloc_visitor_new();
| visit_type_ACPIOSTInfo(v, NULL, &obj, NULL);
|- qapi_dealloc_visitor_cleanup(qdv);
|+ visit_free(v);
|}
Backports commit 2c0ef9f411ae6081efa9eca5b3eab2dbeee45a6c from qemu
Rather than making the dealloc visitor track of stack of pointers
remembered during visit_start_* in order to free them during
visit_end_*, it's a lot easier to just make all callers pass the
same pointer to visit_end_*. The generated code has access to the
same pointer, while all other users are doing virtual walks and
can pass NULL. The dealloc visitor is then greatly simplified.
All three visit_end_*() functions intentionally take a void**,
even though the visit_start_*() functions differ between void**,
GenericList**, and GenericAlternate**. This is done for several
reasons: when doing a virtual walk, passing NULL doesn't care
what the type is, but when doing a generated walk, we already
have to cast the caller's specific FOO* to call visit_start,
while using void** lets us use visit_end without a cast. Also,
an upcoming patch will add a clone visitor that wants to use
the same implementation for all three visit_end callbacks,
which is made easier if all three share the same signature.
For visitors with already track per-object state (the QMP visitors
via a stack, and the string visitors which do not allow nesting),
add an assertion that the caller is indeed passing the same
pointer to paired calls.
Backports commit 1158bb2a058fcdd0c8fc3e60dc77f7a57ddbb271 from qemu
Range represents a range as follows. Member @start is the inclusive
lower bound, member @end is the exclusive upper bound. Zero @end is
special: if @start is also zero, the range is empty, else @end is to
be interpreted as 2^64. No other empty ranges may occur.
The range [0,2^64-1] cannot be represented. If you try to create it
with range_set_bounds1(), you get the empty range instead. If you try
to create it with range_set_bounds() or range_extend(), assertions
fail. Before range_set_bounds() existed, the open-coded creation
usually got you the empty range instead. Open deathtrap.
Moreover, the code dealing with the janus-faced @end is too clever by
half.
Dumb this down to a more pedestrian representation: members @lob and
@upb are inclusive lower and upper bounds. The empty range is encoded
as @lob = 1, @upb = 0.
Backports commit 6dd726a2bf1b800289d90a84d5fcb5ce7b78a8e1 from qemu
Users of struct Range mess liberally with its members, which makes
refactoring hard. Create a set of methods, and convert all users to
call them instead of accessing members. The methods have carefully
worded contracts, and use assertions to check them.
Backports commit a0efbf16604770b9d805bcf210ec29942321134f from qemu
Add a macro that creates a 64bit value which has length number of ones
shifted across by the value of shift.
Backports commit ae2923b5c20a21c6457680330506a9c13873485c from qemu
It doesn't make sense to pass a NULL ops argument to
memory_region_init_rom_device(), because the effect will
be that if the guest tries to write to the memory region
then QEMU will segfault. Catch the bug earlier by sanity
checking the arguments to this function, and remove the
misleading documentation that suggests that passing NULL
might be sensible.
Backports commit 39e0b03dec518254fabd2acff29548d3f1d2b754 from qemu
Provide a new helper function memory_region_init_rom() for memory
regions which are read-only (and unlike those created by
memory_region_init_rom_device() don't have special behaviour
for writes). This has the same behaviour as calling
memory_region_init_ram() and then memory_region_set_readonly()
(which is what we do today in boards with pure ROMs) but is a
more easily discoverable API for the purpose.
Backports commit a1777f7f6462c66e1ee6e98f0d5c431bfe988aa5 from qemu
The IOMMU driver may change behavior depending on whether a notifier
client is present. In the case of POWER, this represents a change in
the visibility of the IOTLB, for other drivers such as intel-iommu and
future AMD-Vi emulation, notifier support is not yet enabled and this
provides the opportunity to flag that incompatibility.
Backports commit d22d8956b185c002b50a4d0883aff61f857347ef from qemu
Commit 7f8f9ef1 introduced the ability to store a list of
integers as a sorted list of ranges, but when merging ranges,
it leaks one or more ranges. It was also using range_get_last()
incorrectly within range_compare() (a range is a start/end pair,
but range_get_last() is for start/len pairs), and will also
mishandle a range ending in UINT64_MAX (remember, we document
that no range covers 2**64 bytes, but that ranges that end on
UINT64_MAX have end < begin).
The whole merge algorithm was rather complex, and included
unnecessary passes over data within glib functions, and enough
indirection to make it hard to easily plug the data leaks.
Since we are already hard-coding things to a list of ranges,
just rewrite the thing to open-code the traversal and
comparisons, by making the range_compare() helper function give
us an answer that is easier to use, at which point we avoid the
need to pass any callbacks to g_list_*(). Then by reusing
range_extend() instead of duplicating effort with range_merge(),
we cover the corner cases correctly.
Drop the now-unused range_merge() and ranges_can_merge().
Doing this lets test-string-{input,output}-visitor pass under
valgrind without leaks.
Backports commit db486cc334aafd3dbdaf107388e37fc3d6d3e171 from qemu
Calling our function g_list_insert_sorted_merged is a misnomer,
since we are NOT writing a glib function. Furthermore, we are
making every caller pass the same comparator function of
range_merge(): any caller that would try otherwise would break
in weird ways since our internal call to ranges_can_merge() is
hard-coded to operate only on ranges, rather than paying
attention to the caller's comparator.
Better is to fix things so that callers don't have to care about
our internal comparator, by picking a function name and updating
the parameter type away from a gratuitous use of void*, to make
it obvious that we are operating specifically on a list of ranges
and not a generic list. Plus, refactoring the code here will
make it easier to plug a memory leak in the next patch.
range_compare() is now internal only, and moves to the .c file.
Backports commit 7c47959d0cb05db43014141a156ada0b6d53a750 from qemu
g_list_insert_sorted_merged() is rather large to be an inline
function; move it to its own file. range_merge() and
ranges_can_merge() can likewise move, as they are only used
internally. Also, it becomes obvious that the condition within
range_merge() is already satisfied by its caller, and that the
return value is not used.
The diffstat is misleading, because of the copyright boilerplate.
Backports commit fec0fc0a13ac7f1a1130433a6740cd850c3db34a from qemu
If a QAPI struct has a mandatory alternate member which is not
present on input, the input visitor reports an error for the
missing alternate without setting the discriminator, but the
cleanup code for the struct still tries to use the dealloc
visitor to clean up the alternate.
Commit dbf11922 changed visit_start_alternate to set *obj to NULL
when an error occurs, where it was previously left untouched.
Thus, before the patch, the dealloc visitor is blindly trying to
cleanup whatever branch corresponds to (*obj)->type == 0 (that is,
QTYPE_NONE, because *obj still pointed to zeroed memory), which
selects the default branch of the switch and sets an error, but
this second error is ignored by the way the dealloc visitor is
used; but after the patch, the attempt to switch dereferences NULL.
When cleaning up after a partial object parse, we specifically
check for !*obj after visit_start_struct() (see gen_visit_object());
doing the same for alternates fixes the crash. Enhance the testsuite
to give coverage for both missing struct and missing alternate
members.
Also add an abort - we expect visit_start_alternate() to either set an
error or to set (*obj)->type to a valid QType that corresponds to
actual user input, and QTYPE_NONE should never be reachable from valid
input. Had the abort() been in place earlier, we might have noticed
the dealloc visitor dereferencing bogus zeroed memory prior to when
commit dbf11922 forced our hand by setting *obj to NULL and causing a
fault.
Test case:
{'execute':'blockdev-add', 'arguments':{'options':{'driver':'raw'}}}
The choice of 'driver':'raw' selects a BlockdevOptionsGenericFormat
struct, which has a mandatory 'file':'BlockdevRef' in QAPI. Since
'file' is missing as a sibling of 'driver', this should report a
graceful error rather than fault. After this patch, we are back to:
{"error": {"class": "GenericError", "desc": "Parameter 'file' is missing"}}
Generated code in qapi-visit.c changes as:
|@@ -2444,6 +2444,9 @@ void visit_type_BlockdevRef(Visitor *v,
| if (err) {
| goto out;
| }
|+ if (!*obj) {
|+ goto out_obj;
|+ }
| switch ((*obj)->type) {
| case QTYPE_QDICT:
| visit_start_struct(v, name, NULL, 0, &err);
|@@ -2459,10 +2462,13 @@ void visit_type_BlockdevRef(Visitor *v,
| case QTYPE_QSTRING:
| visit_type_str(v, name, &(*obj)->u.reference, &err);
| break;
|+ case QTYPE_NONE:
|+ abort();
| default:
| error_setg(&err, QERR_INVALID_PARAMETER_TYPE, name ? name : "null",
| "BlockdevRef");
| }
|+out_obj:
| visit_end_alternate(v);
Backports commit 9b4e38fe6a35890bb1d995316d7be08de0b30ee5 from qemu
Add preprocessor definition of FCR31's FS bit, and update related
code for setting this bit.
Backports commit 77be419980114d75605811e1681115d0919cfa1a from qemu
This patch implements read and write access rules for Mips floating
point control and status register (FCR31). The change can be divided
into following parts:
- Add fields that will keep FCR31's R/W bitmask in procesor
definitions and processor float_status structure.
- Add appropriate value for FCR31's R/W bitmask for each supported
processor.
- Add function for setting snan_bit_is_one, and integrate it in
appropriate places.
- Modify handling of CTC1 (case 31) instruction to use FCR31's R/W
bitmask.
- Modify handling user mode executables for Mips, in relation to the
bit EF_MIPS_NAN2008 from ELF header, that is in turn related to
reading and writing to FCR31.
- Modify gdb behavior in relation to FCR31.
Backports commit 599bc5e89c46f95f86ccad0d747d041c89a28806 from qemu
New set of helpers for handling nan2008-syle versions of instructions
<CEIL|CVT|FLOOR|ROUND|TRUNC>.<L|W>.<S|D>, for Mips R6.
All involved instructions have float operand and integer result. Their
core functionality is implemented via invocations of appropriate SoftFloat
functions. The problematic cases are when the operand is a NaN, and also
when the operand (float) is out of the range of the result.
Here one can distinguish three cases:
CASE MIPS-A: (FCR31.NAN2008 == 1)
1. Operand is a NaN, result should be 0;
2. Operand is larger than INT_MAX, result should be INT_MAX;
3. Operand is smaller than INT_MIN, result should be INT_MIN.
CASE MIPS-B: (FCR31.NAN2008 == 0)
1. Operand is a NaN, result should be INT_MAX;
2. Operand is larger than INT_MAX, result should be INT_MAX;
3. Operand is smaller than INT_MIN, result should be INT_MAX.
CASE SoftFloat:
1. Operand is a NaN, result is INT_MAX;
2. Operand is larger than INT_MAX, result is INT_MAX;
3. Operand is smaller than INT_MIN, result is INT_MIN.
Current implementation of <CEIL|CVT|FLOOR|ROUND|TRUNC>.<L|W>.<S|D>
implements case MIPS-B. This patch relates to case MIPS-A. For case
MIPS-A, only return value for NaN-operands should be corrected after
appropriate SoftFloat library function is called.
Related MSA instructions FTRUNC_S and FTINT_S already handle well
all cases, in the fashion similar to the code from this patch.
Backports commit 87552089b62fa229d2ff86906e4e779177fb5835 from qemu
Updated handling of instructions <ABS|NEG>.<S|D>. Note that legacy
(pre-abs2008) ABS and NEG instructions are arithmetic (and, therefore,
any NaN operand causes signaling invalid operation), while abs2008
ones are non-arithmetic, always and only changing the sign bit, even
for NaN-like operands. Details on these instructions are documented
in [1] p. 35 and 359.
Implementation-wise, abs2008 versions are implemented without helpers,
for simplicity and performance sake.
[1] "MIPS Architecture For Programmers Volume II-A:
The MIPS64 Instruction Set Reference Manual",
Imagination Technologies LTD, Revision 6.04, November 13, 2015
Backports commit 6be77480052b1a71557081896e7080363a8a2f95 from qemu
Function msa_reset() is updated so that flag snan_bit_is_one is
properly set to 0.
By applying this patch, a number of incorrect MSA behaviors that
require IEEE 754-2008 compliance will be fixed. Those are behaviors
that (up to the moment of applying this patch) did not get the desired
functionality from SoftFloat library with respect to distinguishing
between quiet and signaling NaN, getting default NaN values (both
quiet and signaling), establishing if a floating point number is NaN
or not, etc.
Two examples:
* FMAX, FMIN will now correctly detect and propagate NaNs.
* FCLASS.D ans FCLASS.S will now correcty detect NaN flavors
Backports commit 40bd6dd456e61a36e454fb9dd2cc739b67c224cf from qemu
Only for Mips platform, and only for cases when snan_bit_is_one is 0,
correct the order of argument comparisons in pickNaNMulAdd().
For more info, see [1], page 53, section "3.5.3 NaN Propagation".
[1] "MIPS Architecture for Programmers Volume IV-j:
The MIPS32 SIMD Architecture Module",
Imagination Technologies LTD, Revision 1.12, February 3, 2016
Backports commit c27644f0e9659471e1c9355da5b667960d311937 from qemu
Only for Mips platform, and only for cases when snan_bit_is_one is 0,
correct default NaN values (in their 16-, 32-, and 64-bit flavors).
For more info, see [1], page 84, Table 6.3 "Value Supplied When a New
Quiet NaN Is Created", and [2], page 52, Table 3.7 "Default NaN
Encodings".
[1] "MIPS Architecture For Programmers Volume II-A:
The MIPS64 Instruction Set Reference Manual",
Imagination Technologies LTD, Revision 6.04, November 13, 2015
[2] "MIPS Architecture for Programmers Volume IV-j:
The MIPS32 SIMD Architecture Module",
Imagination Technologies LTD, Revision 1.12, February 3, 2016
Backports commit a7c04d545a97126c9df9d96623747d8613aaf7db from qemu
fpu/softfloat-specialize.h is the most critical file in SoftFloat
library, since it handles numerous differences between platforms in
relation to floating point arithmetics. This patch makes the code
in this file more consistent format-wise, and hopefully easier to
debug and maintain.
Backports commit a59eaea64686c8966b7653303660f8c26f285c77 from qemu
This patch modifies SoftFloat library so that it can be configured in
run-time in relation to the meaning of signaling NaN bit, while, at the
same time, strictly preserving its behavior on all existing platforms.
Background:
In floating-point calculations, there is a need for denoting undefined or
unrepresentable values. This is achieved by defining certain floating-point
numerical values to be NaNs (which stands for "not a number"). For additional
reasons, virtually all modern floating-point unit implementations use two
kinds of NaNs: quiet and signaling. The binary representations of these two
kinds of NaNs, as a rule, differ only in one bit (that bit is, traditionally,
the first bit of mantissa).
Up to 2008, standards for floating-point did not specify all details about
binary representation of NaNs. More specifically, the meaning of the bit
that is used for distinguishing between signaling and quiet NaNs was not
strictly prescribed. (IEEE 754-2008 was the first floating-point standard
that defined that meaning clearly, see [1], p. 35) As a result, different
platforms took different approaches, and that presented considerable
challenge for multi-platform emulators like QEMU.
Mips platform represents the most complex case among QEMU-supported
platforms regarding signaling NaN bit. Up to the Release 6 of Mips
architecture, "1" in signaling NaN bit denoted signaling NaN, which is
opposite to IEEE 754-2008 standard. From Release 6 on, Mips architecture
adopted IEEE standard prescription, and "0" denotes signaling NaN. On top of
that, Mips architecture for SIMD (also known as MSA, or vector instructions)
also specifies signaling bit in accordance to IEEE standard. MSA unit can be
implemented with both pre-Release 6 and Release 6 main processor units.
QEMU uses SoftFloat library to implement various floating-point-related
instructions on all platforms. The current QEMU implementation allows for
defining meaning of signaling NaN bit during build time, and is implemented
via preprocessor macro called SNAN_BIT_IS_ONE.
On the other hand, the change in this patch enables SoftFloat library to be
configured in run-time. This configuration is meant to occur during CPU
initialization, at the moment when it is definitely known what desired
behavior for particular CPU (or any additional FPUs) is.
The change is implemented so that it is consistent with existing
implementation of similar cases. This means that structure float_status is
used for passing the information about desired signaling NaN bit on each
invocation of SoftFloat functions. The additional field in float_status is
called snan_bit_is_one, which supersedes macro SNAN_BIT_IS_ONE.
IMPORTANT:
This change is not meant to create any change in emulator behavior or
functionality on any platform. It just provides the means for SoftFloat
library to be used in a more flexible way - in other words, it will just
prepare SoftFloat library for usage related to Mips platform and its
specifics regarding signaling bit meaning, which is done in some of
subsequent patches from this series.
Further break down of changes:
1) Added field snan_bit_is_one to the structure float_status, and
correspondent setter function set_snan_bit_is_one().
2) Constants <float16|float32|float64|floatx80|float128>_default_nan
(used both internally and externally) converted to functions
<float16|float32|float64|floatx80|float128>_default_nan(float_status*).
This is necessary since they are dependent on signaling bit meaning.
At the same time, for the sake of code cleanup and simplicity, constants
<floatx80|float128>_default_nan_<low|high> (used only internally within
SoftFloat library) are removed, as not needed.
3) Added a float_status* argument to SoftFloat library functions
XXX_is_quiet_nan(XXX a_), XXX_is_signaling_nan(XXX a_),
XXX_maybe_silence_nan(XXX a_). This argument must be present in
order to enable correct invocation of new version of functions
XXX_default_nan(). (XXX is <float16|float32|float64|floatx80|float128>
here)
4) Updated code for all platforms to reflect changes in SoftFloat library.
This change is twofolds: it includes modifications of SoftFloat library
functions invocations, and an addition of invocation of function
set_snan_bit_is_one() during CPU initialization, with arguments that
are appropriate for each particular platform. It was established that
all platforms zero their main CPU data structures, so snan_bit_is_one(0)
in appropriate places is not added, as it is not needed.
[1] "IEEE Standard for Floating-Point Arithmetic",
IEEE Computer Society, August 29, 2008.
Backports commit af39bc8c49224771ec0d38f1b693ea78e221d7bc from qemu
Every IOMMU has some granularity which MemoryRegionIOMMUOps::translate
uses when translating, however this information is not available outside
the translate context for various checks.
This adds a get_min_page_size callback to MemoryRegionIOMMUOps and
a wrapper for it so IOMMU users (such as VFIO) can know the minimum
actual page size supported by an IOMMU.
As IOMMU MR represents a guest IOMMU, this uses TARGET_PAGE_SIZE
as fallback.
This removes vfio_container_granularity() and uses new helper in
memory_region_iommu_replay() when replaying IOMMU mappings on added
IOMMU memory region.
Backports the relevant parts of commit f682e9c244af7166225f4a50cc18ff296bb9d43e from qemu
Information is tracked inside the TCGContext structure, and later used
by tracing events with the 'tcg' and 'vcpu' properties.
The 'cpu' field is used to check tracing of translation-time
events ("*_trans"). The 'tcg_env' field is used to pass it to
execution-time events ("*_exec").
Backports commit 7c2550432abe62f53e6df878ceba6ceaf71f0e7e from qemu
This patch simplifies code that uses a local_err variable just to
immediately use it for an error_propagate() call.
Coccinelle patch used to perform the changes added to
scripts/coccinelle/remove_local_err.cocci.
Backports commit 6b62d961373e0327f2af8fb77d6d5d6308864180 from qemu
The GICv3 CPU interface needs to know when the CPU it is attached
to makes an exception level or mode transition that changes the
security state, because whether it is asserting IRQ or FIQ can change
depending on these things. Provide a mechanism for letting the GICv3
device register a hook to be called on such changes.
Backports commit bd7d00fc50c9960876dd194ebf0c88889b53e765 from qemu
The GICv3 system registers need to know if the CPU is AArch64
in EL3 or AArch32 in Monitor mode. This happens to be the first
part of the check for arm_is_secure(), so factor it out into a
new arm_is_el3_or_mon() function that the GIC can also use.
Backports commit 712058764da29b2908f6fbf56760ca4f15980709 from qemu
A half-shuffle operation takes a word with zeros in the high half:
0000 0000 0000 0000 ABCD EFGH IJKL MNOP
and spreads the bits out so they are in every other bit of the word:
0A0B 0C0D 0E0F 0G0H 0I0J 0K0L 0M0N 0O0P
A half-unshuffle performs the reverse operation.
Provide functions in bitops.h which implement these operations
for 32-bit and 64-bit inputs, and add tests for them.
Backports commit b355438de52d0782983bf4bdc47936189a0c988b from qemu
Add an API object_type_get_size(const char *typename) that returns the
instance_size of the give typename.
Backports commit 3f97b53a682d2595747c926c00d78b9d406f1be0 from qemu
MinGW seems to compile currently without warnings, so it should
be safe to enable -Werror now for this environment, too.
Backports commit e4650c81b3d15ba67236815defbb475c4bdf8690 from qemu
Making x86_cpu_parse_featurestr() a pure convertor
of legacy feature string into global properties, needs
it to be called before a CPU instance is created so
parser shouldn't modify CPUState directly or access
it at all. Hence move current hack that directly pokes
into CPUState, to set/unset +-feats, from parser to
CPU's realize method.
Backports commit dc15c0517b010a9444a2c05794dae980f2a2cbd9 from qemu
The "fixup will be removed in future versions" warnings are
present since QEMU 1.7.0, at least, so users should have fixed
their scripts and configurations, already.
In the case of libvirt users, libvirt doesn't use the "xlevel"
option, and already rejects HyperV spinlock retry count < 0xFFF.
Backports commit c19b85216b5d47d922ac010931d4c7b2d79b2f68 from qemu
I looked at a dozen Intel CPU that have this CPUID and all of them
always had Core offset as 1 (a wasted bit when hyperthreading is
disabled) and Package offset at least 4 (wasted bits at <= 4 cores).
QEMU uses more compact IDs and it doesn't make much sense to change it
now. I keep the SMT and Core sub-leaves even if there is just one
thread/core; it makes the code simpler and there should be no harm.
Backports commit 5232d00a041c8f3628b3532ef35d703a1f0dac19 from qemu
Introduce Skylake-Client cpu mode which inherits the features from
Broadwell and supports some additional features that are: MPX,
XSAVEC, and XGETBV1.
Backports commit f6f949e9295889fb272698aea763dcea77d616ce from qemu
The Neon instructions VCVTA, VCVTM, VCVTN, VCVTP, VRINTA, VRINTM,
VRINTN, VRINTP, VRINTX, and VRINTZ were only introduced with ARMv8,
so they need a guard to make them UNDEF if the CPU only supports ARMv7.
(We got this right for all the other new-in-v8 insns, but forgot
it for these Neon 2-reg-misc ops.)
Backports commit fe8fcf3d642b4de1369841bf6acac13e0ec8770d from qemu
Commit 6459b94c26dd666badb3 broke reset and migration of the AArch32
TTBCR(S) register if the guest used non-LPAE page tables. This is
because the AArch32 TTBCR register definition is marked as ARM_CP_ALIAS,
meaning that the AArch64 variant has to handle migration and reset.
Although AArch64 TCR_EL3 doesn't need to care about the mask and
base_mask fields, AArch32 may do so, and so we must use the special
TTBCR reset and raw write functions to ensure they are set correctly.
This doesn't affect TCR_EL2, because the AArch32 equivalent of that
is HTCR, which never uses the non-LPAE page table variant.
Backports commit 811595a2d4ab8c6354857a50ffd29fafce52a892 from qemu
Check if kvm supports guest PMUv3. If so, set the corresponding feature
bit for vcpu.
Backports commit 5c0a3819f009639f67ce0453dff6ec7211bfee54 from qemu
For some workloads such as arm bootup, tb_phys_hash is performance-critical.
The is due to the high frequency of accesses to the hash table, originated
by (frequent) TLB flushes that wipe out the cpu-private tb_jmp_cache's.
More info:
https://lists.nongnu.org/archive/html/qemu-devel/2016-03/msg05098.html
To dig further into this I modified an arm image booting debian jessie to
immediately shut down after boot. Analysis revealed that quite a bit of time
is unnecessarily spent in tb_phys_hash: the cause is poor hashing that
results in very uneven loading of chains in the hash table's buckets;
the longest observed chain had ~550 elements.
The appended addresses this with two changes:
1) Use xxhash as the hash table's hash function. xxhash is a fast,
high-quality hashing function.
2) Feed the hashing function with not just tb_phys, but also pc and flags.
This improves performance over using just tb_phys for hashing, since that
resulted in some hash buckets having many TB's, while others getting very few;
with these changes, the longest observed chain on a single hash bucket is
brought down from ~550 to ~40.
Tests show that the other element checked for in tb_find_physical,
cs_base, is always a match when tb_phys+pc+flags are a match,
so hashing cs_base is wasteful. It could be that this is an ARM-only
thing, though. UPDATE:
On Tue, Apr 05, 2016 at 08:41:43 -0700, Richard Henderson wrote:
> The cs_base field is only used by i386 (in 16-bit modes), and sparc (for a TB
> consisting of only a delay slot).
> It may well still turn out to be reasonable to ignore cs_base for hashing.
BTW, after this change the hash table should not be called "tb_hash_phys"
anymore; this is addressed later in this series.
This change gives consistent bootup time improvements. I tested two
host machines:
- Intel Xeon E5-2690: 11.6% less time
- Intel i7-4790K: 19.2% less time
Increasing the number of hash buckets yields further improvements. However,
using a larger, fixed number of buckets can degrade performance for other
workloads that do not translate as many blocks (600K+ for debian-jessie arm
bootup). This is dealt with later in this series.
Backports commit 42bd32287f3a18d823f2258b813824a39ed7c6d9 from qemu
This will be used by upcoming changes for hashing the tb hash.
Add this into a separate file to include the copyright notice from
xxhash.
Backports commit dc8b295d05ec35a8c032f9abca421772347ba5d4 from qemu
The exception_action() function in user-exec.c is just a call to
cpu_loop_exit() for every target CPU except i386. Since this
function is only called if the target's handle_mmu_fault() hook has
indicated an MMU fault, and that hook is only called from the
handle_cpu_signal() code path, we can simply move the x86-specific
setup into that hook, which allows us to remove the TARGET_I386
ifdef from user-exec.c.
Of the actions that were done by the call to raise_interrupt_err():
* cpu_svm_check_intercept_param() is a no-op in user mode
* check_exception() is a no-op since double faults are impossible
for user-mode
* assignments to cs->exception_index and env->error_code are no-ops
* assigning to env->exception_next_eip is unnecessary because it
is not used unless env->exception_is_int is true
* cpu_loop_exit_restore() is equivalent to cpu_loop_exit() since
pc is 0
which leaves just setting env_>exception_is_int as the action that
needs to be added to x86_cpu_handle_mmu_fault().
Backports commit 0c33682d5f29b0a4ae53bdec4c8e52e4fae37b34 from qemu
Add a comment to do_interrupt_user() along the same lines as the
existing one for do_interrupt_all() noting that the next_eip
argument is not used unless is_int is true or intno is EXCP_SYSCALL.
Backports commit 33271823323483b4ede1ae99de83d33b25875402 from qemu
The function cpu_resume_from_signal() is now always called with a
NULL puc argument, and is rather misnamed since it is never called
from a signal handler. It is essentially forcing an exit to the
top level cpu loop but without raising any exception, so rename
it to cpu_loop_exit_noexc() and drop the useless unused argument.
Backports commit 6886b98036a8f8f5bce8b10756ce080084cef11b from qemu
Since the only caller of page_unprotect() which might cause it to
need to call cpu_resume_from_signal() is handle_cpu_signal() in
the user-mode code, push the longjump handling out to that function.
Since this is the only caller of cpu_resume_from_signal() which
passes a non-NULL puc argument, split the non-NULL handling into
a new cpu_exit_tb_from_sighandler() function. This allows us
to merge the softmmu and usermode implementations of the
cpu_resume_from_signal() function, which are now identical.
Backports commit f213e72f2356b77768b9cb73814a3b26ad5a0099 from qemu
The user-mode-only function tb_invalidate_phys_page() is only
called from two places:
* page_unprotect(), which passes in a non-zero pc, a puc pointer
and the value 'true' for the locked argument
* page_set_flags(), which passes in a zero pc, a NULL puc pointer
and a 'false' locked argument
If the pc is non-zero then we may call cpu_resume_from_signal(),
which does a longjmp out of the calling code (and out of the
signal handler); this is to cover the case of a target CPU with
"precise self-modifying code" (currently only x86) executing
a store instruction which modifies code in the same TB as the
store itself. Rather than doing the longjump directly here,
return a flag to the caller which indicates whether the current
TB was modified, and move the longjump to page_unprotect.
Backports commit 75809229bbf28b371afce14921ff5be98ddc5faa from qemu