We should be able to use static pinvokes on platforms that do not
provide or require extensions and calli instructions on platforms with
extension APIs. This dinstiction will be implemented as a parameter in
the rewriter.
By using untyped integers instead of typed integers in the unmanaged
callsites, we allow monolinker to keep the exact set of enums that are
used by the user. Without this, we’d have to keep every single enum in
place to avoid missing type exceptions.
This does not affect the public signatures or the generated code in any
way.
This includes arrays of primitives and arrays of generics. Our code is
similar to the code generated by the Mono C# compiler for the "fixed"
construct. The .Net compiler produces slightly different code (two local
variables instead of one) - more research is required.
Default results in a managed calling convention which does not generate
unmanaged thunking code for parameter marshaling.
System.Runtime.InteropServices.CallingConvention.Winapi appears to
correspond to StdCall for calli callsites (this might be different for
pinvoke, which supports an unmanaged "platformapi" calling convention.)
Needs more testing to prove this is doing the right thing on non-Windows
platforms.
WGL was autogenerated a few years ago but never touched after that.
Since we use a tiny fraction of all available methods, it makes sense to
remove the unused ones. This reduces dll size and improves startup
times.
The rewriter will patch the body of methods marked with [AutoGenerated].
Methods that are implemented manually (e.g. various math helper
overloads) should avoid this attribute.
.Net will happily execute a calli with a generic return type, whereas
Mono will refuse to. Mono is probably doing the right thing here. Fixed
by resolving the generic return into a concrete type.
On Windows, entry points for OpenGL 1.0 and 1.1 are not exposed by
wglGetProcAddress. We fall back to LoadLibrary+GetProcAddress when
wglProcAddress fails.
OpenTK normally uses reflection to load bindings, instead of generating
huge constructors. Although reflection is faster on first load (thanks
to reduced JIT overhead), it fails to work correctly with monolinker.
This branch explores the performance of a direct binding.
When we enter the modal resize loop on Windows with ClipCursor set, we
cause a feedback loop where every resize causes the cursor to move and
every move causes a new resize. To fix this, we need to ungrab the
cursor when we are enter the modal loop.
Implementations may reuse OpenGL context handles that have been
destroyed. If a context is finalized but not Disposed, then OpenTK may
keep a reference to the old context handle, causing a crash when the
same handle is returned for a new context. To fix that, new context
handles will now replace old handles in case of a clash.
SDL_DestroyWindow must be called on the main thread. If the window is
finalized, the finalizer will push a CLOSE event to the event loop
(thread-safe) and the window will be destroyed on the main thread.
Sdl2InputDriver.Dispose() would call SDL_DelEventWatch with a different
"user_data" parameter than SDL_AdEventWatch. This caused the EventFilter
to remain registered and subsequently crash when closing and reopening a
window.
Trim regex will now correctly match GetInteger64 and other functions
ending in "64". It also uses a correct ending anchor to avoid matches
in the middle of a function name.
Scan through the list of wrappers once, instead of multiple times, in
order to find out which functions use which enums. This speeds up enum
generation tremendously.
GetBoolean, GetInteger6, GetFixedvOES and Delete* are now matched in
the convenience wrapper generator. Methods returning vectors of fixed
size (e.g. 4 ints) are no longer matched.