It turns out that some hosts have a default malloc alignment less
than that required for vectors.
We assume that, with compiler annotation on CPUArchState, that we
can properly align the vector portion of the guest state. Fix the
alignment of the allocation by using qemu_memalloc when required.
Pass float_status structure pointer to the pickNaN so that
machine-specific settings are available to NaN selection code.
Add use_first_nan property to float_status and use it in Xtensa-specific
pickNaN.
Backports commit 913602e3ffe6bf50b869a14028a55cb267645ba3
target/xtensa, the only user of NO_SIGNALING_NANS macro has FPU
implementations with and without the corresponding property. With
NO_SIGNALING_NANS being a macro they cannot be a part of the same QEMU
executable.
Replace macro with new property in float_status to allow cores with
different FPU implementations coexist.
Backports cc43c6925113c5bc8f1a0205375931d2e4807c99
Quoting ISO C99 6.7.8p4, "All the expressions in an initializer for an
object that has static storage duration shall be constant expressions or
string literals".
The compound literal produced by the make_floatx80() macro is not such a
constant expression, per 6.6p7-9. (An implementation may accept it,
according to 6.6p10, but is not required to.)
Therefore using "floatx80_zero" and make_floatx80() for initializing
"f2xm1_table" and "fpatan_table" is not portable. And gcc-4.8 in RHEL-7.6
actually chokes on them:
> target/i386/fpu_helper.c:871:5: error: initializer element is not constant
> { make_floatx80(0xbfff, 0x8000000000000000ULL),
> ^
We've had the make_floatx80_init() macro for this purpose since commit
3bf7e40ab914 ("softfloat: fix for C99", 2012-03-17), so let's use that
macro again.
Fixes: eca30647fc0 ("target/i386: reimplement f2xm1 using floatx80 operations")
Fixes: ff57bb7b632 ("target/i386: reimplement fpatan using floatx80 operations")
Backports commit 163b3d1af2552845a60967979aca8d78a6b1b088 from qemu
According to the comment, this definition of invalid encoding is given
by intel developer's manual, and doesn't comply with 680x0 FPU.
With m68k, the explicit integer bit can be zero in the case of:
- zeros (exp == 0, mantissa == 0)
- denormalized numbers (exp == 0, mantissa != 0)
- unnormalized numbers (exp != 0, exp < 0x7FFF)
- infinities (exp == 0x7FFF, mantissa == 0)
- not-a-numbers (exp == 0x7FFF, mantissa != 0)
For infinities and NaNs, the explicit integer bit can be either one or
zero.
The IEEE 754 standard does not define a zero integer bit. Such a number
is an unnormalized number. Hardware does not directly support
denormalized and unnormalized numbers, but implicitly supports them by
trapping them as unimplemented data types, allowing efficient conversion
in software.
See "M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL",
"1.6 FLOATING-POINT DATA TYPES"
We will implement in the m68k TCG emulator the FP_UNIMP exception to
trap into the kernel to normalize the number. In case of linux-user,
the number will be normalized by QEMU.
Backports commit d159dd058c7dc48a9291fde92eaae52a9f26a4d1 from qemu
For contiguous predicated memory operations, we want to
minimize the number of tlb lookups performed. We have
open-coded this for sve_ld1_r, but for correctness with
MTE we will need this for all of the memory operations.
Create a structure that holds the bounds of active elements,
and metadata for two pages. Add routines to find those
active elements, lookup the pages, and run watchpoints
for those pages.
Temporarily mark the functions unused to avoid Werror.
Backports commit b4cd95d2f4c7197b844f51b29871d888063ea3e7 from qemu
Use the "normal" memory access functions, rather than the
softmmu internal helper functions directly.
Since fb901c9, cpu_mem_index is now a simple extract
from env->hflags and not a large computation. Which means
that it's now more work to pass around this value than it
is to recompute it.
This only adjusts the primitives, and does not clean up
all of the uses within sve_helper.c.
Now that we know that the operation is on a single page,
we need not loop over pages while probing.
Backports commit e26d0d226892f67435cadcce86df0ddfb9943174 from qemu
Both x87 and m68k need the low parts of the quotient for their
remainder operations. Arrange for floatx80_modrem to track those bits
and return them via a pointer.
The architectures using float32_rem and float64_rem do not appear to
need this information, so the *_rem interface is left unchanged and
the information returned only from floatx80_modrem. The logic used to
determine the low 7 bits of the quotient for m68k
(target/m68k/fpu_helper.c:make_quotient) appears completely bogus (it
looks at the result of converting the remainder to integer, the
quotient having been discarded by that point); this patch does not
change that, but the m68k maintainers may wish to do so.
Backports commit 445810ec915687d37b8ae0ef8d7340ab4a153efa from qemu
The m68k-specific softfloat code includes a function floatx80_mod that
is extremely similar to floatx80_rem, but computing the remainder
based on truncating the quotient toward zero rather than rounding it
to nearest integer. This is also useful for emulating the x87 fprem
and fprem1 instructions. Change the floatx80_rem implementation into
floatx80_modrem that can perform either operation, with both
floatx80_rem and floatx80_mod as thin wrappers available for all
targets.
There does not appear to be any use for the _mod operation for other
floating-point formats in QEMU (the only other architectures using
_rem at all are linux-user/arm/nwfpe, for FPA emulation, and openrisc,
for instructions that have been removed in the latest version of the
architecture), so no change is made to the code for other formats.
Backports commit 6b8b0136ab3018e4b552b485f808bf66bcf19ead from qemu
Replace the floatx80 compare specializations with inline functions
that call the standard floatx80_compare{,_quiet} functions.
Use bool as the return type.
Backports commit c6baf65000f826a713e8d9b5b35e617b0ca9ab5d from qemu
Replace the float128 compare specializations with inline functions
that call the standard float128_compare{,_quiet} functions.
Use bool as the return type.
Backports commit b7b1ac684fea49c6bfe1ad8b706aed7b09116d15 from qemu
Replace the float64 compare specializations with inline functions
that call the standard float64_compare{,_quiet} functions.
Use bool as the return type.
Backports commit 0673ecdf6cb2b1445a85283db8cbacb251c46516 from qemu
Replace the float32 compare specializations with inline functions
that call the standard float32_compare{,_quiet} functions.
Use bool as the return type.
Backports commit 5da2d2d8e53d80e92a61720ea995c86b33cbf25d from qemu
Give the previously unnamed enum a typedef name. Use it in the
prototypes of compare functions. Use it to hold the results
of the compare functions.
Backports commit 71bfd65c5fcd72f8af2735905415c7ce4220f6dc from qemu
Give the previously unnamed enum a typedef name. Use the packed
attribute so that we do not affect the layout of the float_status
struct. Use it in the prototypes of relevant functions.
Adjust switch statements as necessary to avoid compiler warnings.
Backports commit 3dede407cc61b64997f0c30f6dbf4df09949abc9 from qemu
Slightly tidies the usage within softfloat.c and the
representation in float_status.
Backports commit a828b373bdabc7e53d1e218e3fc76f85b6674688 from qemu
In commit a1a98357e3fd in 2018 we added some workarounds for Coverity
not being able to handle the _Float* types introduced by recent
glibc. Newer versions of the Coverity scan tools have support for
these types, and will fail with errors about duplicate typedefs if we
have our workaround. Remove our copy of the typedefs.
Backports commit c160f17cd6f5fc3f8698b408a451149b34b1a647 from qemu
According to the documentation in memory.h a ROM memory region will be
backed by RAM for reads, but is supposed to go through a callback for
writes. Currently we were not checking for the existence of the rom_device
flag when determining if we could perform a direct write or not.
To correct that add a check to memory_region_is_direct so that if the
memory region has the rom_device flag set we will return false for all
checks where is_write is set.
Backports commit d489ae4ac57ebe14bde8384556cbac237ead988d from qemu
Currently, helpers can only take up to 6 arguments. This patch adds the
capability for up to 7 arguments. I have tested it with the Hexagon port
that I am preparing for submission.
Backports commit e6cadf49c3d191f6984e56ec3bbeb0b103ca5bc2 from qemu
Several of the EL1/0 registers are redirected to the EL2 version when in
EL2 and HCR_EL2.E2H is set. Many of these registers have side effects.
Link together the two ARMCPRegInfo structures after they have been
properly instantiated. Install common dispatch routines to all of the
relevant registers.
The same set of registers that are redirected also have additional
EL12/EL02 aliases created to access the original register that was
redirected.
Omit the generic timer registers from redirection here, because we'll
need multiple kinds of redirection from both EL0 and EL2.
Backports commit e2cce18f5c1d0d55328c585c8372cdb096bbf528 from qemu
Add an option to trigger memory writeback to sync given memory region
with the corresponding backing store, case one is available.
This extends the support for persistent memory, allowing syncing on-demand.
Backports commit 61c490e25e081af39ff40556f6c1229b8b011585 from qemu
Background: s390x implements Low-Address Protection (LAP). If LAP is
enabled, writing to effective addresses (before any translation)
0-511 and 4096-4607 triggers a protection exception.
So we have subpage protection on the first two pages of every address
space (where the lowcore - the CPU private data resides).
By immediately invalidating the write entry but allowing the caller to
continue, we force every write access onto these first two pages into
the slow path. we will get a tlb fault with the specific accessed
addresses and can then evaluate if protection applies or not.
We have to make sure to ignore the invalid bit if tlb_fill() succeeds.
Backports commit f52bfb12143e29d7c8bd827bdb751aee47a9694e from qemu
... similar to tlb_vaddr_to_host(); however, allow access to the host
page except when TLB_NOTDIRTY or TLB_MMIO is set.
Backports commit fef39ccd567032d3ad520ed80f3576068e6eb2e3 from qemu
The raising of exceptions from check_watchpoint, buried inside
of the I/O subsystem, is fundamentally broken. We do not have
the helper return address with which we can unwind guest state.
Replace PHYS_SECTION_WATCH and io_mem_watch with TLB_WATCHPOINT.
Move the call to cpu_check_watchpoint into the cputlb helpers
where we do have the helper return address.
This allows watchpoints on RAM to bypass the full i/o access path.
Backports commit 50b107c5d617eaf93301cef20221312e7a986701 from qemu
We had two different mechanisms to force a recheck of the tlb.
Before TLB_RECHECK was introduced, we had a PAGE_WRITE_INV bit
that would immediate set TLB_INVALID_MASK, which automatically
means that a second check of the tlb entry fails.
We can use the same mechanism to handle small pages.
Conserve TLB_* bits by removing TLB_RECHECK.
Backports commit 30d7e098d5c38644359820317fcf72e3e129ec53 from qemu
Factor it out into common code. Similar to the !CONFIG_USER_ONLY variant,
let's not allow to cross page boundaries.
Backports commit 59e96ac6cb13951dd09afc70622858089abf3384 from qemu
Notice new attribute, byte swap, and force the transaction through the
memory slow path.
Required by architectures that can invert endianness of memory
transaction, e.g. SPARC64 has the Invert Endian TTE bit.
Backports commit a26fc6f5152b47f1d7ed928f9c9d462d01ff1624 from qemu
Preparation for collapsing the two byte swaps adjust_endianness and
handle_bswap into the former.
Backports commit be5c4787e9a6eed12fd765d9e890f7cc6cd63220 from qemu
Preparation for collapsing the two byte swaps adjust_endianness and
handle_bswap into the former.
Call memory_region_dispatch_{read|write} with endianness encoded into
the "MemOp op" operand.
This patch does not change any behaviour as
memory_region_dispatch_{read|write} is yet to handle the endianness.
Once it does handle endianness, callers with byte swaps can collapse
them into adjust_endianness.
Backports commit d5d680cacc66ef7e3c02c81dc8f3a34eabce6dfe from qemu
Convert memory_region_dispatch_{read|write} operand "unsigned size"
into a "MemOp op".
Backports commit e67c904668d82ca4416cd91d37d9f5abcceef747 from qemu
Introduce no-op size_memop to aid preparatory conversion of
interfaces.
Once interfaces are converted, size_memop will be implemented to
return a MemOp from size in bytes.
Backports commit 66b9b24375ac215cdcbdf9e14d665395360abff4 from qemu
Preparation for collapsing the two byte swaps, adjust_endianness and
handle_bswap, along the I/O path.
Target dependant attributes are conditionalized upon NEED_CPU_H.
Backports commit 14776ab5a12972ea439c7fb2203a4c15a09094b4 from qemu
This patch moves the define of target access alignment earlier from
target/foo/cpu.h to configure.
Suggested in Richard Henderson's reply to "[PATCH 1/4] tcg: TCGMemOp is now
accelerator independent MemOp"
Backports commit 52bf9771fdfce98e98cea36a17a18915be6f6b7f from qemu