This is not a normal header and should only be included in the main
softfloat.c file to bring in the various target specific
specialisations. Indeed as it contains non-inlined C functions it is
not even a legal header. Rename it to match our included C convention.
Backports commit 00f43279a3e5e7ea3a0fa853157863663e838e2e from qemu
The macros use the "flags" type and to be consistent if anyone just
needs the macros we should bring in the header we need. There is an
outstanding TODO to audit the use of "flags" and replace with bool at
which point this include could be dropped.
Backports commit 5937fb63a92d54cc4e5270256e4387c4d3a70091 from qemu
There are a bunch of users of the inline helpers who do not need
access to the entire softfloat API. Move those inline helpers into a
new header file which can be included without bringing in the rest of
the world.
Backports commit e34c47ea3fb5f324b58db117b3c010a494c8d6ca from qemu
In our quest to eliminate the home rolled LIT64 macro we fixup usage
inside for m68k's many constants.
Backports commit e23263004d5fea809ad0f78c523f498e04ba788f from qemu
In our quest to eliminate the home rolled LIT64 macro we fixup usage
inside the softfloat code. While we are at it we remove some of the
extraneous spaces to closer fit the house style.
Backports commit e932112420f063776f2b9d9e5512830cd6890a7a from qemu
Remove some more use of LIT64 while making the meaning more clear. We
also avoid the need of casts as the results by definition fit into the
return type.
Backports commit 2c217da0fc9f1127bda804e2a500b8138b02c581 from qemu
This also allows us to remove the extractFloat16exp/frac helpers. We
avoid using the floatXX_pack_raw functions as they are slight overkill
for masking out all but the top bit of the number. The generated code
is almost exactly the same as makes no difference to the
pre-conversion code.
Backports commit e6b405fe00d8e6424a58492b37a1656d1ef0929b from qemu
We have a wrapper that does the right thing from stdint.h so lets use
it for our constants in softfloat-specialize.h
Backports commit f7e81a945737631c19405a39d510d2284257c3ff from qemu
Separate shift + extract low will result in one extra insn
for hosts like RISC-V, MIPS, and Sparc.
Backports commit 664b7e3b97d6376f3329986c465b3782458b0f8b from qemu
All of the inputs to these instructions are 32-bits. Rather than
extend each input to 64-bits and then extract the high 32-bits of
the output, use tcg_gen_muls2_i32 and other 32-bit generator functions.
Backports commit 5f8cd06ebcf57420be8fea4574de2e074de46709 from qemu
Rotate is the more compact and obvious way to swap 16-bit
elements of a 32-bit word.
Backports commit adefba76e8bf10dfb342094d2f5debfeedb1a74d from qemu
The helper function is more documentary, and also already
handles the case of rotate by zero.
Backports commit dd861b3f29be97a9e3cdb9769dcbc0c7d7825185 from qemu
The immediate shift generator functions already test for,
and eliminate, the case of a shift by zero.
Backports commit 464eaa9571fae5867d9aea7d7209c091c8a50223 from qemu
Unless we're guaranteed to always increase ARM_MAX_VQ by a multiple of
four, then we should use DIV_ROUND_UP to ensure we get an appropriate
array size.
Backports commit 46417784d21c89446763f2047228977bdc267895 from qemu
The current implementation of ZCR_ELx matches the architecture, only
implementing the lower four bits, with the rest RAZ/WI. This puts
a strict limit on ARM_MAX_VQ of 16. Make sure we don't let ARM_MAX_VQ
grow without a corresponding update here.
Backports commit 7b351d98709d3f77d6bb18562e1bf228862b0d57 from qemu
Replace x = double_saturate(y) with x = add_saturate(y, y).
There is no need for a separate more specialized helper.
Backports commit 640581a06d14e2d0d3c3ba79b916de6bc43578b0 from qemu
Promote this function from aarch64 to fully general use.
Use it to unify the code sequences for generating illegal
opcode exceptions.
Backports commit 3cb36637157088892e9e33ddb1034bffd1251d3b from qemu
Unlike the other more generic gen_exception{,_internal}_insn
interfaces, breakpoints always refer to the current instruction.
Backports commit 06bcbda3f64d464b6ecac789bce4bd69f199cd68 from qemu
The offset is variable depending on the instruction set.
Passing in the actual value is clearer in intent.
Backpors commit aee828e7541a5895669ade3a4b6978382b6b094a from qemu
We must update s->base.pc_next when we return from the translate_insn
hook to the main translator loop. By incrementing s->base.pc_next
immediately after reading the insn word, "pc_next" contains the address
of the next instruction throughout translation.
All remaining uses of s->pc are referencing the address of the next insn,
so this is now a simple global replacement. Remove the "s->pc" field.
Backports commit a04159166b880b505ccadc16f2fe84169806883d from qemu
Provide a common routine for the places that require ALIGN(PC, 4)
as the base address as opposed to plain PC. The two are always
the same for A32, but the difference is meaningful for thumb mode.
Backports commit 16e0d8234ef9291747332d2c431e46808a060472 from qemu
We currently have 3 different ways of computing the architectural
value of "PC" as seen in the ARM ARM.
The value of s->pc has been incremented past the current insn,
but that is all. Thus for a32, PC = s->pc + 4; for t32, PC = s->pc;
for t16, PC = s->pc + 2. These differing computations make it
impossible at present to unify the various code paths.
With the newly introduced s->pc_curr, we can compute the correct
value for all cases, using the formula given in the ARM ARM.
This changes the behaviour for load_reg() and load_reg_var()
when called with reg==15 from a 32-bit Thumb instruction:
previously they would have returned the incorrect value
of pc_curr + 6, and now they will return the architecturally
correct value of PC, which is pc_curr + 4. This will not
affect well-behaved guest software, because all of the places
we call these functions from T32 code are instructions where
using r15 is UNPREDICTABLE. Using the architectural PC value
here is more consistent with the T16 and A32 behaviour.
Backports commit fdbcf6329d0c2984c55d7019419a72bf8e583c36 from qemu
Add a new field to retain the address of the instruction currently
being translated. The 32-bit uses are all within subroutines used
by a32 and t32. This will become less obvious when t16 support is
merged with a32+t32, and having a clear definition will help.
Convert aarch64 as well for consistency. Note that there is one
instance of a pre-assert fprintf that used the wrong value for the
address of the current instruction.
Backports commit 43722a6d4f0c92f7e7e1e291580039b0f9789df1 from qemu
This function is used in two different contexts, and it will be
clearer if the function is given the address to which it applies.
Backports commit 331b1ca616cb708db30dab68e3262d286e687f24 from qemu
When generating an architectural single-step exception we were
routing it to the "default exception level", which is to say
the same exception level we execute at except that EL0 exceptions
go to EL1. This is incorrect because the debug exception level
can be configured by the guest for situations such as single
stepping of EL0 and EL1 code by EL2.
We have to track the target debug exception level in the TB
flags, because it is dependent on CPU state like HCR_EL2.TGE
and MDCR_EL2.TDE. (That we were previously calling the
arm_debug_target_el() function to determine dc->ss_same_el
is itself a bug, though one that would only have manifested
as incorrect syndrome information.) Since we are out of TB
flag bits unless we want to expand into the cs_base field,
we share some bits with the M-profile only HANDLER and
STACKCHECK bits, since only A-profile has this singlestep.
Fixes: https://bugs.launchpad.net/qemu/+bug/1838913
Backports commit 8bd587c1066f4456ddfe611b571d9439a947d74c from qemu
Factor out code to 'generate a singlestep exception', which is
currently repeated in four places.
To do this we need to also pull the identical copies of the
gen-exception() function out of translate-a64.c and translate.c
into translate.h.
(There is a bug in the code: we're taking the exception to the wrong
target EL. This will be simpler to fix if there's only one place to
do it.)
Backports commit c1d5f50f094ab204accfacc2ee6aafc9601dd5c4 from qemu
While most features are now detected by probing the ID_* registers
kernels can (and do) use MIDR_EL1 for working out of they have to
apply errata. This can trip up warnings in the kernel as it tries to
work out if it should apply workarounds to features that don't
actually exist in the reported CPU type.
Avoid this problem by synthesising our own MIDR value.
Backports commit 2bd5f41c00686a1f847a60824d0375f3df2c26bf from qemu
MemoryRegionSection includes an Int128 'size' field;
on some platforms the compiler causes an alignment of this to
a 128bit boundary, leaving 8 bytes of dead space.
This deadspace can be filled with junk.
Move the size field to the top avoiding unnecessary alignment.
Backports commit c0aca9352d51c102c55fe29ce5c1bf8e74a5183e from qemu
rt==15 is a special case when reading the flags: it means the
destination is APSR. This patch avoids rejecting vmrs apsr_nzcv, fpscr
as illegal instruction.
Backports commit cdc6896659b85f7ed8f7552850312e55170de0c5 from qemu
An attempt to do an exception-return (branch to one of the magic
addresses) in linux-user mode for M-profile should behave like
a normal branch, because linux-user mode is always going to be
in 'handler' mode. This used to work, but we broke it when we added
support for the M-profile security extension in commit d02a8698d7ae2bfed.
In that commit we allowed even handler-mode calls to magic return
values to be checked for and dealt with by causing an
EXCP_EXCEPTION_EXIT exception to be taken, because this is
needed for the FNC_RETURN return-from-non-secure-function-call
handling. For system mode we added a check in do_v7m_exception_exit()
to make any spurious calls from Handler mode behave correctly, but
forgot that linux-user mode would also be affected.
How an attempted return-from-non-secure-function-call in linux-user
mode should be handled is not clear -- on real hardware it would
result in return to secure code (not to the Linux kernel) which
could then handle the error in any way it chose. For QEMU we take
the simple approach of treating this erroneous return the same way
it would be handled on a CPU without the security extensions --
treat it as a normal branch.
The upshot of all this is that for linux-user mode we should never
do any of the bx_excret magic, so the code change is simple.
This ought to be a weird corner case that only affects broken guest
code (because Linux user processes should never be attempting to do
exception returns or NS function returns), except that the code that
assigns addresses in RAM for the process and stack in our linux-user
code does not attempt to avoid this magic address range, so
legitimate code attempting to return to a trampoline routine on the
stack can fall into this case. This change fixes those programs,
but we should also look at restricting the range of memory we
use for M-profile linux-user guests to the area that would be
real RAM in hardware.
Backports commit 9027d3fba605d8f6093342ebe4a1da450d374630 from qemu
The function neon_store_reg32() doesn't free the TCG temp that it
is passed, so the caller must do that. We got this right in most
places but forgot to free the TCG temps in trans_VMOV_64_sp().
Backports commit 38fb634853ac6547326d9f88b9a068d9fc6b4ad4 from qemu
* activate CP0C3_ULRI for CONFIG3, mips
* updated with mips patches
* updated with mips patches
* remove hardcoded config3
* git ignore vscode
* fix spacing issue and turn on floating point
Backports most of commit 24f55a7973278f20f0de21b904851d99d4716263 from
unicorn. Ignores internal core modifications, as this would be
special-casing non-upstreamed behavior.
In Arm v8.0 M-profile CPUs without the Security Extension and also in
v7M CPUs, there is no NSACR register. However, the code we have to handle
the FPU does not always check whether the ARM_FEATURE_M_SECURITY bit
is set before testing whether env->v7m.nsacr permits access to the
FPU. This means that for a CPU with an FPU but without the Security
Extension we would always take a bogus fault when trying to stack
the FPU registers on an exception entry.
We could fix this by adding extra feature bit checks for all uses,
but it is simpler to just make the internal value of nsacr 0xcff
("all non-secure accesses allowed"), since this is not guest
visible when the Security Extension is not present. This allows
us to continue to follow the Arm ARM pseudocode which takes a
similar approach. (In particular, in the v8.1 Arm ARM the register
is documented as reading as 0xcff in this configuration.)
Fixes: https://bugs.launchpad.net/qemu/+bug/1838475
Backports commit 02ac2f7f613b47f6a5b397b20ab0e6b2e7fb89fa from qemu