MSR IA32_CORE_CAPABILITY is a feature-enumerating MSR, which only
enumerates the feature split lock detection (via bit 5) by now.
The existence of MSR IA32_CORE_CAPABILITY is enumerated by CPUID.7_0:EDX[30].
The latest kernel patches about them can be found here:
https://lkml.org/lkml/2019/4/24/1909
Backports commit 597360c0d8ebda9ca6f239db724a25bddec62b2f from qemu
Nothing in there so far, but all of the plumbing done
within the target ArchCPU state.
Backports commit 5b146dc716cfd247f99556c04e6e46fbd67565a0 from qemu
Now that we have ArchCPU, we can define this generically,
in the one place that needs it.
Backports commit 677c4d69ac21961e76a386f9bfc892a44923acc0 from qemu
Cleanup in the boilerplate that each target must define.
Replace x86_env_get_cpu with env_archcpu. The combination
CPU(x86_env_get_cpu) should have used ENV_GET_CPU to begin;
use env_cpu now.
Backports commit 6aa9e42f27331be34e06d4d66f92f2272868f96a from qemu
Now that we have both ArchCPU and CPUArchState, we can define
this generically instead of via macro in each target's cpu.h.
Backports commit 29a0af618ddd21f55df5753c3e16b0625f534b3c from qemu
For all targets, into this new file move TARGET_LONG_BITS,
TARGET_PAGE_BITS, TARGET_PHYS_ADDR_SPACE_BITS,
TARGET_VIRT_ADDR_SPACE_BITS, and NB_MMU_MODES.
Include this new file from exec/cpu-defs.h.
This now removes the somewhat odd requirement that target/arch/cpu.h
defines TARGET_LONG_BITS before including exec/cpu-defs.h, so push the
bulk of the includes within target/arch/cpu.h to the top.
Backports commit 74433bf083b0766aba81534f92de13194f23ff3e from qemu
The CPUID.01H:ECX[bit 3] ought to mirror the value of the MSR
IA32_MISC_ENABLE MWAIT bit and as userspace has control of them
both, it is userspace's job to configure both bits to match on
the initial setup.
Backports commit 4cfd7bab3f5564f6c1a23b06f73d5aa2f957cd16 from qemu
We now have an interface for guest visible random numbers.
Backports commit 369fd5ca66810b2ddb16e23a497eabe59385eceb from qemu with
the actual RNG portion disabled for the time being.
Microarchitectural Data Sampling is a hardware vulnerability which allows
unprivileged speculative access to data which is available in various CPU
internal buffers.
Some Intel processors use the ARCH_CAP_MDS_NO bit in the
IA32_ARCH_CAPABILITIES
MSR to report that they are not vulnerable, make it available to
guests.
Backports commit 20140a82c67467f53814ca197403d5e1b561a5e5 from qemu
md-clear is a new CPUID bit which is set when microcode provides the
mechanism to invoke a flush of various exploitable CPU buffers by invoking
the VERW instruction.
Backports commit b2ae52101fca7f9547ac2f388085dbc58f8fe1c0 from qemu
We can now use the CPUClass hook instead of a named function.
Create a static tlb_fill function to avoid other changes within
cputlb.c. This also isolates the asserts within. Remove the
named tlb_fill function from all of the targets.
Backports commit c319dc13579a92937bffe02ad2c9f1a550e73973 from qemu
Thereby decoupling the resulting translated code from the current state
of the system.
Backports commit b5e3b4c2aca8eb5a9cfeedfb273af623f17c3731 from qemu
In order to handle TB's that translate to too much code, we
need to place the control of the length of the translation
in the hands of the code gen master loop.
Backports commit 8b86d6d25807e13a63ab6ea879f976b9f18cc45a from qemu
Add a new base CPU model called 'Dhyana' to model processors from Hygon
Dhyana(family 18h), which derived from AMD EPYC(family 17h).
The following features bits have been removed compare to AMD EPYC:
aes, pclmulqdq, sha_ni
The Hygon Dhyana support to KVM in Linux is already accepted upstream[1].
So add Hygon Dhyana support to Qemu is necessary to create Hygon's own
CPU model.
Reference:
[1] https://git.kernel.org/tip/fec98069fb72fb656304a3e52265e0c2fc9adf87
Backports commit 8d031cec366f26669807eb43f61eb335973b7053 from qemu
Use inline functions rather than macros for cpu_ld/st accessors
for the *-user configurations, as we already do for softmmu.
This has a two advantages:
* we can actually typecheck our arguments
* we don't need to leak the _raw macros everywhere
Since the _kernel functions were only used by target-i386/seg_helper.c,
put the definitions for them in that file too. (It already has the
similar template include code to define them for the softmmu case,
so it makes sense to have it deal with defining them for user-only.)
Backports commit 9220fe54c679d145232a28df6255e166ebf91bab from qemu
Fix a TCG crash due to attempting an atomic increment
operation without having set up the address first.
This is a similar case to that dealt with in commit
e84fcd7f662a0d8198703, and we fix it in the same way.
Fixes: https://bugs.launchpad.net/qemu/+bug/1807675
Backports commit 8cb2ca3d7479748587313f0b34034a3f8aa08c92 from qemu
Currently, the Cascadelake-Server, Icelake-Client, and
Icelake-Server are always generating the following warning:
qemu-system-x86_64: warning: \
host doesn't support requested feature: CPUID.07H:ECX [bit 4]
This happens because OSPKE was never returned by
GET_SUPPORTED_CPUID or x86_cpu_get_supported_feature_word().
OSPKE is a runtime flag automatically set by the KVM module or by
TCG code, was always cleared by x86_cpu_filter_features(), and
was not supposed to appear on the CPU model table.
Remove the OSPKE flag from the CPU model table entries, to avoid
the bogus warning and avoid returning invalid feature data on
query-cpu-* QMP commands. As OSPKE was always cleared by
x86_cpu_filter_features(), this won't have any guest-visible
impact.
Include a test case that should detect the problem if we introduce
a similar bug again.
Fixes: c7a88b52f62b ("i386: Add new model of Cascadelake-Server")
Fixes: 8a11c62da914 ("i386: Add new CPU model Icelake-{Server,Client}")
Backports commit bb4928c7cafe50ab2137a0034e350ef1bfa044d9 from qemu
Now that kvm_arch_get_supported_cpuid() will only return
arch_capabilities if QEMU is able to initialize the MSR properly,
we know that the feature is safely migratable.
Backports commit 014018e19b3c54dd1bf5072bc912ceffea40abe8 from qemu
Intel Processor Trace required CPUID[0x14] but the cpuid_level
have no change when create a kvm guest with
e.g. "-cpu qemu64,+intel-pt
Backports relevant bits of commit
f24c3a79a415042f6dc195f029a2ba7247d14cac from qemu
* Added MXCSR register for reading and writing
* Changed writing for fpucw register, now the qemu rounding status is updated as well
Backports commit 256e7782ceafb1f8915da167040d5368c38f9585 from unicorn
This reverts commit 5131dc433df54b37e8e918d8fba7fe10344e7a7b.
For new instruction 'PCONFIG' will not be exposed to guest.
Backports commit 712f807e1965c8f1f1da5bbec2b92a8c540e6631 from qemu
Processor tracing is not yet implemented for KVM and it will be an
opt in feature requiring a special module parameter.
Disable it, because it is wrong to enable it by default and
it is impossible that no one has ever used it.
Backports commit 4c257911dcc7c4189768e9651755c849ce9db4e8 from qemu
PCONFIG is not available to guests; it must be specifically enabled
using the PCONFIG_ENABLE execution control. Disable it, because
no one can ever use it.
Backports commit 76e5a4d58357b9d077afccf7f7c82e17f733b722 from qemu
Modern AMD CPUs support NPT and NRIPSAVE features and KVM exposes these
when present. NRIPSAVE apeared somewhere in Opteron_G3 lifetime (e.g.
QuadCore AMD Opteron 2378 has is but QuadCore AMD Opteron HE 2344 doesn't),
NPT was introduced a bit earlier.
Add the FEAT_SVM leaf to Opteron_G4/G5 and EPYC/EPYC-IBPB cpu models.
Backports commit 9fe8b7be17eaac4cfde4083000cc96747d7cf4f8 from qemu
Update the stepping from 5 to 6, in order that
the Cascadelake-Server CPU model can support AVX512VNNI
and MSR based features exposed by ARCH_CAPABILITIES.
Backports commit b0a1980384fc265d91de7e09aa5fe531a69e6288 from qemu
Hyper-V .feat_names are, unlike hardware features, commented out and it is
not obvious why we do that. Document the current status quo.
Backports commit abd5fc4c862d033a989552914149f01c9476bb16 from qemu
It was found that QMP users of QEMU (e.g. libvirt) may need
HV_CPUID_ENLIGHTMENT_INFO.EAX/HV_CPUID_NESTED_FEATURES.EAX information. In
particular, 'hv_tlbflush' and 'hv_evmcs' enlightenments are only exposed in
HV_CPUID_ENLIGHTMENT_INFO.EAX.
HV_CPUID_NESTED_FEATURES.EAX is exposed for two reasons: convenience
(we don't need to export it from hyperv_handle_properties() and as
future-proof for Enlightened MSR-Bitmap, PV EPT invalidation and
direct virtual flush features.
Backports commit a2b107dbbd342ff2077aa5af705efaf68c375459 from qemu
MPX support is being phased out by Intel; GCC has dropped it, Linux
is also going to do that. Even though KVM will have special code
to support MPX after the kernel proper stops enabling it in XCR0,
we probably also want to deprecate that in a few years. As a start,
do not enable it by default for any named CPU model starting with
the 4.0 machine types; this include Skylake, Icelake and Cascadelake.
Backports commit ecb85fe48cacb2f8740186e81f2f38a2e02bd963 from qemu
The missing functionality was added ~3 years ago with the Linux commit
46896c73c1a4 ("KVM: svm: add support for RDTSCP")
so reenable RDTSCP support on those CPU models.
Opteron_G2 - being family 15, model 6, doesn't have RDTSCP support
(the real hardware doesn't have it. K8 got RDTSCP support with the NPT
models, i.e., models >= 0x40).
Document the host's minimum required kernel version, while at it.
Backports commit 483c6ad426dbab72d912fe4793d7d558671aa727 from qemu
The STIBP flag may be supported by the host KVM module, so QEMU
can allow it to be configured manually, and it can be exposed to
guests when using "-cpu host".
No additional migration code is required because the whole
contents of spec_ctrl is already migrated in the "cpu/spec_ctrl"
section.
Backports commit 0e8916582991b9fd0b94850a8444b8b80d0a0955 from qemu
MOVDIR64B moves 64-bytes as direct-store with 64-bytes write atomicity.
Direct store is implemented by using write combining (WC) for writing
data directly into memory without caching the data.
The bit definition:
CPUID.(EAX=7,ECX=0):ECX[bit 28] MOVDIR64B
The release document ref below link:
https://software.intel.com/sites/default/files/managed/c5/15/\
architecture-instruction-set-extensions-programming-reference.pdf
Backports commit 1c65775ffc2dbd276a8bffe592feba0e186a151c from qemu
MOVDIRI moves doubleword or quadword from register to memory through
direct store which is implemented by using write combining (WC) for
writing data directly into memory without caching the data.
The bit definition:
CPUID.(EAX=7,ECX=0):ECX[bit 27] MOVDIRI
The release document ref below link:
https://software.intel.com/sites/default/files/managed/c5/15/\
architecture-instruction-set-extensions-programming-reference.pdf
Backports commit 24261de4916596d8ab5f5fee67e9e7a19e8325a5 from qemu
Fixes a TCG crash due to attempting the atomic operation without
having set up the address first. This does not attempt to fix
all of the other missing checks for LOCK.
Fixes: a7cee522f35
Fixes: https://bugs.launchpad.net/qemu/+bug/1803160
Backports commit e84fcd7f662a0d8198703f6f89416d7ac2c32767 from qemu
Fix the SYSCALL instruction in 64-bit (long mode). The RF flag
should be cleared in R11 as well as in the RFLAGS. Intel
and AMD CPUs behave same. AMD has this documented in the
APM vol 3.
Backports commit 1a1435dd61e28c1e3b70971107d72a7d05b28d03 from qemu
As the release document ref below link (page 13):
https://software.intel.com/sites/default/files/managed/c5/15/\
architecture-instruction-set-extensions-programming-reference.pdf
PKU is supported in Skylake Server (Only Server) and later, and
on Intel(R) Xeon(R) Processor Scalable Family. So PKU is supposed
to be in Skylake-Server CPU model. And PKU's CPUID has been
exposed to QEMU. But PKU can't be find in Skylake-Server CPU
model in the code. So this patch will fix this issue in
Skylake-Server CPU model.
Backports commit 09b9ee643f90ef95e30e594df2a3c83ccaf75b1f from qemu