It's not even clear what the interface REG and VAL32 were supposed to mean.
All uses had REG = 0 and VAL32 was the bitset assigned to the destination.
Backports commit f46934df662182097dce07d57ec00f37e4d2abf1 from qemu
Dispense with TCGBackendData, as it has never been used for more than
holding a single pointer. Use a define in the cpu/tcg-target.h to
signal requirement for TCGLabelQemuLdst, so that we can drop the no-op
tcg-be-null.h stubs. Rename tcg-be-ldst.h to tcg-ldst.inc.c.
Backports commit 659ef5cbb893872d25e9d95191cc23b16546c8a1 from qemu
Replace the USE_DIRECT_JUMP ifdef with a TCG_TARGET_HAS_direct_jump
boolean test. Replace the tb_set_jmp_target1 ifdef with an unconditional
function tb_target_set_jmp_target.
While we're touching all backends, add a parameter for tb->tc_ptr;
we're going to need it shortly for some backends.
Move tb_set_jmp_target and tb_add_jump from exec-all.h to cpu-exec.c.
Backports commit a85833933628384d74ec412024d55cf012640287 from qemu
Reserve a register for the guest_base using ppc code for reference.
By doing so, we do not have to recompute it for every memory load.
Backports commit 4df9cac57f5220c17d856292e90fce455f708421 from qemu
When running a helloworld program with qemu-i386 in linux-user
mode on Loongson 3A3000, it will crash. This patch fix the bug.
Backports commit 8b8d768f19037a825a0bc81654492caa7c8fab8b from qemu
Instead of exporting goto_ptr directly to TCG frontends, export
tcg_gen_lookup_and_goto_ptr(), which calls goto_ptr with the pointer
returned by the lookup_tb_ptr() helper. This is the only use case
we have for goto_ptr and lookup_tb_ptr, so having this function is
very convenient. Furthermore, it trivially allows us to avoid calling
the lookup helper if goto_ptr is not implemented by the backend.
Backports commit cedbcb01529cb6cf9a2289cdbebbc63f6149fc18 from qemu
The number of actual invocations of ctpop itself does not warrent
an opcode, but it is very helpful for POWER7 to use in generating
an expansion for ctz.
Backports commit a768e4e99247911f00c5c0267c12d4e207d5f6cc from qemu
This will let us choose how to interpret a given constraint
depending on whether the opcode is 32- or 64-bit. Which will
let us share more constraint combinations between opcodes.
At the same time, change the interface to return the advanced
pointer instead of passing it in/out by reference.
Backports commit 069ea736b50b75fdec99c9b8cc603b97bd98419e from qemu
This will allow the target to tailor the constraints to the
auto-detected ISA extensions.
Backports commit f69d277ece43c42c7ab0144c2ff05ba740f6706b from qemu
Adds tcg_gen_extract_* and tcg_gen_sextract_* for extraction of
fixed position bitfields, much like we already have for deposit.
Backports commit 7ec8bab3deae643b1ce579c2d65a244f30708330 from qemu
tcg_out_ldst: using a generic ALIAS_PADD to avoid ifdefs
tcg_out_ld: generates LD or LW
tcg_out_st: generates SD or SW
Backports commit 32b69707df3365aadaad1d058044a7704397ec62 from qemu
tcg_out_mov: using OPC_OR as most mips assemblers do;
tcg_out_movi: extended to 64-bit immediate.
Backports commit 2294d05dab503d11664e73712c7f250fd0bf9e3b from qemu
Without the mips32r2 instructions to perform swapping, bswap is quite large,
dominating the size of each reverse-endian qemu_ld/qemu_st operation.
Create two subroutines in the prologue block. The subroutines require extra
reserved registers (TCG_TMP[2, 3]). Using these within qemu_ld means that
we need not place additional restrictions on the qemu_ld outputs.
Backports commit 7f54eaa3b78d71cb57e45a719980f9b5ff06d21c from qemu
Bulk patch adding 64-bit opcodes into tcg_out_op. Note that
mips64 is as yet neither complete nor enabled.
Backports commit 0119b1927d531f3fac22b9b4da01dafc23644973 from qemu
Since the mips manual tables are in octal, reorg all of the opcodes
into that format for clarity. Note that the 64-bit opcodes are as
yet unused.
Backports commit 57a701fc2b34902310d4dbd1411088055616938a from qemu
Without the mips32r2 instructions to perform swapping, bswap is quite large,
dominating the size of each reverse-endian qemu_ld/qemu_st operation.
Create a subroutine in the prologue block. The subroutine requires extra
reserved registers (TCG_TMP[2, 3]). Using these within qemu_ld means that
we need not place additional restrictions on the qemu_ld outputs.
Backports commit bb08afe9f0aee1a3f5c23508e2511b882ca31e1b from qemu
Previously we allowed fully unaligned operations, but not operations
that are aligned but with less alignment than the operation size.
In addition, arm32, ia64, mips, and sparc had been omitted from the
previous overalignment patch, which would have led to that alignment
being enforced.
Backports commit 85aa80813dd9f5c1f581c743e45678a3bee220f8 from qemu
These use guard symbols like TCG_TARGET_$target.
scripts/clean-header-guards.pl doesn't like them because they don't
match their file name (they should, to make guard collisions less
likely).
Clean them up: use guard symbol $target_TCG_TARGET_H for
tcg/$target/tcg-target.h.
Backports commit 14e54f8ecfe9c5e17348f456781344737ed10b3b from qemu
While we can store constants via constrants on INDEX_op_st_i32 et al,
we weren't able to spill constants to backing store.
Add a new backend interface, tcg_out_sti, which may store the constant
(and is allowed to fail). Rearrange the temp_* helpers so that we only
attempt to directly store a constant when the temp is becoming dead/free.
Backports commit 59d7c14eeff8d2ad7f61aed86ce5a176113bc153 from qemu
Briefly describe in a comment how direct block chaining is done. It
should help in understanding of the following data fields.
Rename some fields in TranslationBlock and TCGContext structures to
better reflect their purpose (dropping excessive 'tb_' prefix in
TranslationBlock but keeping it in TCGContext):
tb_next_offset => jmp_reset_offset
tb_jmp_offset => jmp_insn_offset
tb_next => jmp_target_addr
jmp_next => jmp_list_next
jmp_first => jmp_list_first
Avoid using a magic constant as an invalid offset which is used to
indicate that there's no n-th jump generated.
Backports commit f309101c26b59641fc1aa8fb2a98a5441cdaea03 from qemu
Ensure direct jump patching in MIPS is atomic by using
atomic_read()/atomic_set() for code patching.
Backports commit c82460a560176ef69c2f0662bd280612e274db96 from qemu
The TCG code is quite performance sensitive, but at the same time can
also be quite tricky. That is why asserts that can be enabled with the
--enable-debug-tcg configure option.
This used to work the following way:
| #include "config.h"
|
| ...
|
| #if !defined(CONFIG_DEBUG_TCG) && !defined(NDEBUG)
| /* define it to suppress various consistency checks (faster) */
| #define NDEBUG
| #endif
|
| ...
|
| #include <assert.h>
Since commit 757e725b (tcg: Clean up includes) "config.h" as been
replaced by "qemu/osdep.h" which itself includes <assert.h>. As a
consequence the assertions are always enabled, even when using
--disable-debug-tcg, causing a performance regression, especially on
targets with many registers. For instance on qemu-system-ppc the
speed difference is about 15%.
tcg_debug_assert is controlled directly by CONFIG_DEBUG_TCG and already
uses in some places. This patch replaces all the calls to assert into
calss to tcg_debug_assert.
Backports commit eabb7b91b36b202b4dac2df2d59d698e3aff197a from qemu
The MIPS TCG backend is the only one to have
tcg_target_reg_alloc_order[] elements of type TCGReg rather than int.
This resulted in commit 91478cefaaf2 ("tcg: Allocate indirect_base
temporaries in a different order") breaking the build on MIPS since the
type differed from indirect_reg_alloc_order[]:
tcg/tcg.c:1725:44: error: pointer type mismatch in conditional expression [-Werror]
order = rev ? indirect_reg_alloc_order : tcg_target_reg_alloc_order;
^
Make it an array of ints to fix the build and match other architectures.
Backports commit 2dc7553d0c0a3915c649e1a91b0f0be70b4674b3 from qemu
Commit 757e725b58c57d added a number of #include "qemu/osdep.h"
files to the tcg-target.c files (as they were named at the time).
These are unnecessary because these files are not standalone C
files, and the tcg/tcg.c file which includes them will have
already included osdep.h on their behalf. Remove the unneeded
include directives.
Backports commit c3b7f66800fbf9f47fddbcf2e2cd30ea932e0aae from qemu
Rename the per-architecture tcg-target.c files to tcg-target.inc.c.
This makes it clearer that they are not intended to be standalone
C files, but are instead #included into another source file.
Backports commit ce151109813e2770fd3cee2f37bfa2cdd01a12b9 from qemu
Clean up includes so that osdep.h is included first and headers
which it implies are not included manually.
This commit was created with scripts/clean-includes.
Backports commit 757e725b58c57d3ebb66a31fd2210df977a12154 from qemu
Extend MIPS movcond implementation to support the SELNEZ/SELEQZ
instructions introduced in MIPS r6 (where MOVN/MOVZ have been removed).
Whereas the "MOVN/MOVZ rd, rs, rt" instructions have the following
semantics:
rd = [!]rt ? rs : rd
The "SELNEZ/SELEQZ rd, rs, rt" instructions are slightly different:
rd = [!]rt ? rs : 0
First we ensure that if one of the movcond input values is zero that it
comes last (we can swap the input arguments if we invert the condition).
This is so that it can exactly match one of the SELNEZ/SELEQZ
instructions and avoid the need to emit the other one.
Otherwise we emit the opposite instruction first into a temporary
register, and OR that into the result:
SELNEZ/SELEQZ TMP1, v2, c1
SELEQZ/SELNEZ ret, v1, c1
OR ret, ret, TMP1
Which does the following:
ret = cond ? v1 : v2
Backports commit 137d63902faf4960081856db9242cbaf234a23af from qemu
MIPSr6 adds several new integer multiply, divide, and modulo
instructions, and removes several pre-r6 encodings, along with the HI/LO
registers which were the implicit operands of some of those
instructions. Update TCG to use the new instructions when built for r6.
The new instructions actually map much more directly to the TCG ops, as
they only provide a single 32-bit half of the result and in a normal
general purpose register instead of HI or LO.
The mulu2_i32 and muls2_i32 operations are no longer appropriate for r6,
so they are removed from the TCG opcode table. This is because they
would need to emit two separate host instructions anyway (for the high
and low half of the result), which TCG can arrange automatically for us
in the absense of mulu2_i32/muls2_i32 by splitting it into mul_i32 and
mul*h_i32 TCG ops.
Backports commit bc6d0c22b09a72897d9db4482076f89e7de97400 from qemu
MIPSr6 encodes JR as JALR with zero as the link register, and the pre-r6
JR encoding is removed. Update TCG to use the new encoding when built
for r6.
We still use the old encoding for pre-r6, so as not to confuse return
prediction stack hardware which may detect only particular encodings of
the return instruction.
Backports commit 6e0d096989be52c2b945fc83a9bd15d887bbdb47 from qemu
Add definition use_mips32r6_instructions to the MIPS TCG backend which
is constant 1 when built for MIPS release 6. This will be used to decide
between pre-R6 and R6 instruction encodings.
Backports commit ce14bd4d469f3a14f6cbfceb6360aee066a60d72 from qemu
Instead of computing mem_index and s_bits in both tcg_out_qemu_ld and
tcg_out_qemu_st function and passing them to tcg_out_tlb_load, directly
pass oi to the tcg_out_tlb_load function and compute mem_index and
s_bits there.
Backports commit 81dfaf1a8f7f95259801da9732472f879023ef77 from qemu
The MIPS TCG backend implements qemu_ld with 64-bit targets using the v0
register (base) as a temporary to load the upper half of the QEMU TLB
comparator (see line 5 below), however this happens before the input
address is used (line 8 to mask off the low bits for the TLB
comparison, and line 12 to add the host-guest offset). If the input
address (addrl) also happens to have been placed in v0 (as in the second
column below), it gets clobbered before it is used.
addrl in t2 addrl in v0
1 srl a0,t2,0x7 srl a0,v0,0x7
2 andi a0,a0,0x1fe0 andi a0,a0,0x1fe0
3 addu a0,a0,s0 addu a0,a0,s0
4 lw at,9136(a0) lw at,9136(a0) set TCG_TMP0 (at)
5 lw v0,9140(a0) lw v0,9140(a0) set base (v0)
6 li t9,-4093 li t9,-4093
7 lw a0,9160(a0) lw a0,9160(a0) set addend (a0)
8 and t9,t9,t2 and t9,t9,v0 use addrl
9 bne at,t9,0x836d8c8 bne at,t9,0x836d838 use TCG_TMP0
10 nop nop
11 bne v0,t8,0x836d8c8 bne v0,a1,0x836d838 use base
12 addu v0,a0,t2 addu v0,a0,v0 use addrl, addend
13 lw t0,0(v0) lw t0,0(v0)
Fix by using TCG_TMP0 (at) as the temporary instead of v0 (base),
pushing the load on line 5 forward into the delay slot of the low
comparison (line 10). The early load of the addend on line 7 also needs
pushing even further for 64-bit targets, or it will clobber a0 before
we're done with it. The output for 32-bit targets is unaffected.
srl a0,v0,0x7
andi a0,a0,0x1fe0
addu a0,a0,s0
lw at,9136(a0)
-lw v0,9140(a0) load high comparator
li t9,-4093
-lw a0,9160(a0) load addend
and t9,t9,v0
bne at,t9,0x836d838
- nop
+ lw at,9140(a0) load high comparator
+lw a0,9160(a0) load addend
-bne v0,a1,0x836d838
+bne at,a1,0x836d838
addu v0,a0,v0
lw t0,0(v0)
Backports commit 33fca8589cf2aa7bf91564e6a8f26b3ba0910541 from qemu
The add2 code in the tcg_out_addsub2 function doesn't take into account
the case where rl == al == bl. In that case we can't compute the carry
after the addition. As it corresponds to a multiplication by 2, the
carry bit is the bit 31.
While this is a corner case, this prevents x86-64 guests to boot on a
MIPS host.
Backports commit c99d69694af4ed15b33e3f7c2e3ef6972c14358d from qemu
Commit 2b7ec66f fixed TCGMemOp masking following the MO_AMASK addition,
but two cases were forgotten in the TCG MIPS backend.
Backports commit 4214a8cb7c15ec43d4b2a43ebf248b273a0f4d45 from qemu