There is no need to re-set these 3 features already
implied by the call to aarch64_a15_initfn.
Backports commit 0b33968e7f4cf998f678b2d1a5be3d6f3f3513d8 from qemu
There is no need to re-set these 9 features already
implied by the call to aarch64_a57_initfn.
Backports commit 156a7065365578deb3d63c2b5b69a4b5999a8fcc from qemu
Leave ARM_CP_SVE, removing ARM_CP_FPU; the sve_access_check
produced by the flag already includes fp_access_check. If
we also check ARM_CP_FPU the double fp_access_check asserts.
Backports commit 11d7870b1b4d038d7beb827f3afa72e284701351 from qemu
We already check for the same condition within the normal integer
sdiv and sdiv64 helpers. Use a slightly different formation that
does not require deducing the expression type.
Backports commit 7e8fafbfd0537937ba8fb366a90ea6548cc31576 from qemu
Since kernel commit a86bd139f2 (arm64: arch_timer: Enable CNTVCT_EL0
trap..), released in kernel version v4.12, user-space has been able
to read these system registers. As we can't use QEMUTimer's in
linux-user mode we just directly call cpu_get_clock().
Backports commit 26c4a83bd4707797868174332a540f7d61288d15 from qemu
We've already added the helpers with an SVE patch, all that remains
is to wire up the aa64 and aa32 translators. Enable the feature
within -cpu max for CONFIG_USER_ONLY.
Backports commit 26c470a7bb4233454137de1062341ad48947f252 from qemu
Enhance the existing helpers to support SVE, which takes the
index from each 128-bit segment. The change has no effect
for AdvSIMD, since there is only one such segment.
Backports commit 18fc24057815bf3d956cfab892a2bc2344bd1dcb from qemu
For aa64 advsimd, we had been passing the pre-indexed vector.
However, sve applies the index to each 128-bit segment, so we
need to pass in the index separately.
For aa32 advsimd, the fp32 operation always has index 0, but
we failed to interpret the fp16 index correctly.
Backports commit 2cc99919a81a62589a4a6b0f365eabfead1db1a7 from qemu
Allow ARMv8M to handle small MPU and SAU region sizes, by making
get_phys_add_pmsav8() set the page size to the 1 if the MPU or
SAU region covers less than a TARGET_PAGE_SIZE.
We choose to use a size of 1 because it makes no difference to
the core code, and avoids having to track both the base and
limit for SAU and MPU and then convert into an artificially
restricted "page size" that the core code will then ignore.
Since the core TCG code can't handle execution from small
MPU regions, we strip the exec permission from them so that
any execution attempts will cause an MPU exception, rather
than allowing it to end up with a cpu_abort() in
get_page_addr_code().
(The previous code's intention was to make any small page be
treated as having no permissions, but unfortunately errors
in the implementation meant that it didn't behave that way.
It's possible that some binaries using small regions were
accidentally working with our old behaviour and won't now.)
We also retain an existing bug, where we ignored the possibility
that the SAU region might not cover the entire page, in the
case of executable regions. This is necessary because some
currently-working guest code images rely on being able to
execute from addresses which are covered by a page-sized
MPU region but a smaller SAU region. We can remove this
workaround if we ever support execution from small regions.
Backports commit 720424359917887c926a33d248131fbff84c9c28 from qemu
We want to handle small MPU region sizes for ARMv7M. To do this,
make get_phys_addr_pmsav7() set the page size to the region
size if it is less that TARGET_PAGE_SIZE, rather than working
only in TARGET_PAGE_SIZE chunks.
Since the core TCG code con't handle execution from small
MPU regions, we strip the exec permission from them so that
any execution attempts will cause an MPU exception, rather
than allowing it to end up with a cpu_abort() in
get_page_addr_code().
(The previous code's intention was to make any small page be
treated as having no permissions, but unfortunately errors
in the implementation meant that it didn't behave that way.
It's possible that some binaries using small regions were
accidentally working with our old behaviour and won't now.)
Backports commit e5e40999b5e03567ef654546e3d448431643f8f3 from qemu
Unlike ARMv7-M, ARMv6-M and ARMv8-M Baseline only supports naturally
aligned memory accesses for load/store instructions.
Backports commit 2aeba0d007d33efa12a6339bb140aa634e0d52eb from qemu
This feature is intended to distinguish ARMv8-M variants: Baseline and
Mainline. ARMv7-M compatibility requires the Main Extension. ARMv6-M
compatibility is provided by all ARMv8-M implementations.
Backports commit cc2ae7c9de14efd72c6205825eb7cd980ac09c11 from qemu
The arrays were made static, "if" was simplified because V7M and V8M
define V6 feature.
Backports commit 8297cb13e407db8a96cc7ed6b6a6c318a150759a from qemu