Implement the fp16 versions of the VFP VCVT instruction forms which
convert between floating point and fixed-point.
Backports a149e2de0b63e3906729ed1d3df7d9ecdb6de5e6
Now the VFP_CONV_FIX macros can handle fp16's distinction between the
width of the operation and the width of the type used to pass operands,
use the macros rather than the open-coded functions.
This creates an extra six helper functions, all of which we are going
to need for the AArch32 VFP fp16 instructions.
Backports commit 414ba270c4fb758d987adf37ae9bfe531715c604
Currently the VFP_CONV_FIX macros take a single fsz argument for the
size of the float type, which is used both to select the name of
the functions to call (eg float32_is_any_nan()) and also for the
type to use for the float inputs and outputs (eg float32).
Separate these into fsz and ftype arguments, so that we can use them
for fp16, which uses 'float16' in the function names but is still
passing inputs and outputs in a 32-bit sized type.
Backports 5366f6ad7da4f6def2733ec7ee24495430256839
Implement VFP fp16 for VABS, VNEG and VSQRT. This is all
the fp16 insns that use the DO_VFP_2OP macro, because there
is no fp16 version of VMOV_reg.
Notes:
* the gen_helper_vfp_negh already exists as we needed to create
it for the fp16 multiply-add insns
* as usual we need to use the f16 version of the fp_status;
this is only relevant for VSQRT
Backports ce2d65a5d191380756cdac7a1fd1ba76bd1621cf
Macroify the uses of do_vfp_2op_sp() and do_vfp_2op_dp(); this will
make it easier to add the halfprec support.
Backports 009a07335b8ff492d940e1eb229a1b0d302c2512
Macroify creation of the trans functions for single and double
precision VFMA, VFMS, VFNMA, VFNMS. The repetition was OK for
two sizes, but we're about to add halfprec and it will get a bit
more than seems reasonable.
Backports 2aa8dcfa14558fe2a63ed0496d60b02565c9a225
Implement fp16 versions of the VFP VMLA, VMLS, VNMLS, VNMLA, VNMUL
instructions. (These are all the remaining ones which we implement
via do_vfp_3op_[hsd]p().)
Backports commit e7cb0ded52c6d7b86585b09935fe7caeb9e38b69
Implmeent VFP fp16 support for simple binary-operator VFP insns VADD,
VSUB, VMUL, VDIV, VMINNM and VMAXNM:
* make the VFP_BINOP() macro generate float16 helpers as well as
float32 and float64
* implement a do_vfp_3op_hp() function similar to the existing
do_vfp_3op_sp()
* add decode for the half-precision insn patterns
Note that the VFP_BINOP macro use creates a couple of unused helper
functions vfp_maxh and vfp_minh, but they're small so it's not worth
splitting the BINOP operations into "needs halfprec" and "no
halfprec" groups.
Backports commit 120a0eb3ea23a5b06fae2f3daebd46a4035864cf
The aa32_fp16_arith feature check function currently looks at the
AArch64 ID_AA64PFR0 register. This is (as the comment notes) not
correct. The bogus check was put in mostly to allow testing of the
fp16 variants of the VCMLA instructions and it was something of
a mistake that we allowed them to exist in master.
Switch the feature check function to testing VMFR1.FPHP, which is
what it ought to be.
This will remove emulation of the VCMLA and VCADD insns from
AArch32 code running on an AArch64 '-cpu max' using system emulation.
(They were never enabled for aarch32 linux-user and system-emulation.)
Since we weren't advertising their existence via the AArch32 ID
register, well-behaved guests wouldn't have been using them anyway.
Once we have implemented all the AArch32 support for the FP16 extension
we will advertise it in the MVFR1 ID register field, which will reenable
these insns along with all the others.
Backports 02bc236d0131a666d4ac2bb7197bbad2897c336a
In several places the target/arm code defines local float constants
for 2, 3 and 1.5, which are also provided by include/fpu/softfloat.h.
Remove the unnecessary local duplicate versions.
Backports b684e49a17da39539b0ac6e4c4c98b28b38feb76
Clang static code analyzer show warning:
target/arm/translate-a64.c:13007:5: warning: Value stored to 'rd' is never read
rd = extract32(insn, 0, 5);
^ ~~~~~~~~~~~~~~~~~~~~~
target/arm/translate-a64.c:13008:5: warning: Value stored to 'rn' is never read
rn = extract32(insn, 5, 5);
^ ~~~~~~~~~~~~~~~~~~~~~
Backports fa71dd531c12ad9a05cdd78392e9fc2a30ea921d
Clang static code analyzer show warning:
target/arm/translate-a64.c:8635:14: warning: Value stored to 'tcg_rn' during its
initialization is never read
TCGv_i64 tcg_rn = new_tmp_a64(s);
^~~~~~ ~~~~~~~~~~~~~~
target/arm/translate-a64.c:8636:14: warning: Value stored to 'tcg_rd' during its
initialization is never read
TCGv_i64 tcg_rd = new_tmp_a64(s);
^~~~~~ ~~~~~~~~~~~~~~
Backports 07174c86b41e91d98ed2ee0ee12e516694853c6b
Unify add/sub helpers and add a parameter for rounding.
This will allow saturating non-rounding to reuse this code.
Backports d21798856b227a20a0a41640236af445f4f4aeb0
The gvec operation was added after the initial implementation
of the SEL instruction and was missed in the conversion.
Backports d4bc623254b55e2f9613c9450216fa7e50c03929
Move the check for !S into do_pppp_flags, which allows to merge in
do_vecop4_p. Split out gen_gvec_fn_ppp without sve_access_check,
to mirror gen_gvec_fn_zzz.
Backport dd81a8d7cf5c90963603806e58a217bbe759f75e
We want to ensure that access is checked by the time we ask
for a specific fp/vector register. We want to ensure that
we do not emit two lots of code to raise an exception.
But sometimes it's difficult to cleanly organize the code
such that we never pass through sve_check_access exactly once.
Allow multiple calls so long as the result is true, that is,
no exception to be raised.
Backports 8a40fe5f1bf3837ae3f9961efe1d51e7214f2664
Model gen_gvec_fn_zzz on gen_gvec_fn3 in translate-a64.c, but
indicating which kind of register and in which order.
Model do_zzz_fn on the other do_foo functions that take an
argument set and verify sve enabled.
Backports 28c4da31be6a5e501b60b77bac17652dd3211378
Model the new function on gen_gvec_fn2 in translate-a64.c, but
indicating which kind of register and in which order. Since there
is only one user of do_vector2_z, fold it into do_mov_z
Backports f7d79c41fa4bd0f0d27dcd14babab8575fbed39f
According to AArch64.TagCheckFault, none of the other ISS values are
provided, so we do not need to go so far as merge_syn_data_abort.
But we were missing the WnR bit.
Backports commit 9a4670be7f0734d27bf4058db3becf83cd0cc9d5 from qemu
We need more information than just the mmu_idx in order
to create the proper exception syndrome. Only change the
function signature so far.
Backports dbf8c32178291169e111a6a9fd7ae17af4a3039d
In commit ce4afed839 ("target/arm: Implement AArch32 HCR and HCR2")
the HCR_EL2 register has been changed from type NO_RAW (no underlying
state and does not support raw access for state saving/loading) to
type CONST (TCG can assume the value to be constant), removing the
read/write accessors.
We forgot to remove the previous type ARM_CP_NO_RAW. This is not
really a problem since the field is overwritten. However it makes
code review confuse, so remove it.
Backports 0e5aac18bc31dbdfab51f9784240d0c31a4c5579
pickNaNMulAdd logic on Xtensa is to apply pickNaN to the inputs of the
expression (a * b) + c. However if default NaN is produces as a result
of (a * b) calculation it is not considered when c is NaN.
So with two pickNaN variants there must be two pickNaNMulAdd variants.
In addition the invalid flag is always set when (a * b) produces NaN.
Backports commit fbcc38e4cb1b539b8615ec9b0adc285351d77628 from qemu
Pass float_status structure pointer to the pickNaN so that
machine-specific settings are available to NaN selection code.
Add use_first_nan property to float_status and use it in Xtensa-specific
pickNaN.
Backports commit 913602e3ffe6bf50b869a14028a55cb267645ba3
target/xtensa, the only user of NO_SIGNALING_NANS macro has FPU
implementations with and without the corresponding property. With
NO_SIGNALING_NANS being a macro they cannot be a part of the same QEMU
executable.
Replace macro with new property in float_status to allow cores with
different FPU implementations coexist.
Backports cc43c6925113c5bc8f1a0205375931d2e4807c99
When we implemented the VCMLA and VCADD insns we put in the
code to handle fp16, but left it using the standard fp status
flags. Correct them to use FPST_STD_F16 for fp16 operations.
Bacports commit b34aa5129e9c3aff890b4f4bcc84962e94185629
Architecturally, Neon FP16 operations use the "standard FPSCR" like
all other Neon operations. However, this is defined in the Arm ARM
pseudocode as "a fixed value, except that FZ16 (and AHP) follow the
FPSCR bits". In QEMU, the softfloat float_status doesn't include
separate flush-to-zero for FP16 operations, so we must keep separate
fp_status for "Neon non-FP16" and "Neon fp16" operations, in the
same way we do already for the non-Neon "fp_status" vs "fp_status_f16".
Add the extra float_status field to the CPU state structure,
ensure it is correctly initialized and updated on FPSCR writes,
and make fpstatus_ptr(FPST_STD_F16) return a pointer to it.
Backports commit aaae563bc73de0598bbc09a102e68f27fafe704a
Make A32/T32 code use the new fpstatus_ptr() API:
get_fpstatus_ptr(0) -> fpstatus_ptr(FPST_FPCR)
get_fpstatus_ptr(1) -> fpstatus_ptr(FPST_STD)
Backports a84d1d1316726704edd2617b2c30c921d98a8137