static code analyzer complain:
target/mips/helper.c:453:5: warning: Function call argument is an uninitialized value
qemu_log_mask(CPU_LOG_MMU,
^~~~~~~~~~~~~~~~~~~~~~~~~~
'physical' and 'prot' are uninitialized if 'ret' is not TLBRET_MATCH.
Backports commit def74c0cf05722b2e502d4b4f1219966c5b0cbd3 from qemu
Our implementation of writes to the APSR for M-profile via the MSR
instruction was badly broken.
First and worst, we had the sense wrong on the test of bit 2 of the
SYSm field -- this is supposed to request an APSR write if bit 2 is 0
but we were doing it if bit 2 was 1. This bug was introduced in
commit 58117c9bb429cd, so hasn't been in a QEMU release.
Secondly, the choice of exactly which parts of APSR should be written
is defined by bits in the 'mask' field. We were not passing these
through from instruction decode, making it impossible to check them
in the helper.
Pass the mask bits through from the instruction decode to the helper
function and process them appropriately; fix the wrong sense of the
SYSm bit 2 check.
Invalid mask values and invalid combinations of mask and register
number are UNPREDICTABLE; we choose to treat them as if the mask
values were valid.
Backports commit b28b3377d7e9ba35611d454d5a63ef50cab1f8c5 from qemu
For M profile (unlike A profile) the reset value of R14 is specified
as 0xffffffff. (The rationale is that this is an illegal exception
return value, so if guest code tries to return to it it will result
in a helpful exception.)
Registers r0 to r12 and the flags are architecturally UNKNOWN on
reset, so we leave those at zero.
Backports commit 056f43df9168413f304500b69c33158d66efb7cf from qemu
For M profile CPUs, FAULTMASK should be 0 on reset, like PRIMASK.
QEMU stores FAULTMASK in the PSTATE F bit, so (as with PRIMASK in the
I bit) we have to clear these to undo the A profile default of 1.
Update the comment accordingly and move it so that it's closer to the
code it's referring to.
Backports commit dc7abe4d65ad39390b2db120f5ad18f8f6576f8b from qemu
For v7M attempts to access a nonexistent coprocessor are reported
differently from plain undefined instructions (as UsageFaults of type
NOCP rather than type UNDEFINSTR). Split them out into a new
EXCP_NOCP so we can report the FSR value correctly.
Backports commit 7517748e3f71a3099e57915fba95c4c308e6d842 from qemu
For v7M attempts to access a nonexistent coprocessor are reported
differently from plain undefined instructions (as UsageFaults of type
NOCP rather than type UNDEFINSTR). Split them out into a new
EXCP_NOCP so we can report the FSR value correctly.
Backports commit 7517748e3f71a3099e57915fba95c4c308e6d842 from qemu
When we take an exception for an undefined instruction, set the
appropriate CFSR bit.
Backports commit 81dd9648c69bb89afdd6f4bb3ed6f3efdac96524 from qemu
The CCR.STACKALIGN bit controls whether the CPU is supposed to force
8-alignment of the stack pointer on entry to the exception handler.
Backports commit dc858c6633a9af8b80c1509cf6f825e4390d3ad1 from qemu
Add the structure fields, VMState fields, reset code and macros for
the v7M system control registers CCR, CFSR, HFSR, DFSR, MMFAR and
BFAR.
Backports commit 2c4da50d9477fb830d778bb5d6a11215aa359b44 from qemu
Give an explicit error and abort when a load
from the vector table fails. Architecturally this
should HardFault (which will then immediately
fail to load the HardFault vector and go into Lockup).
Since we don't model Lockup, just report this guest
error via cpu_abort(). This is more helpful than the
previous behaviour of reading a zero, which is the
address of the reset stack pointer and not a sensible
location to jump to.
Backports commit 1b9ea408fca1ce8caae67b792355b023c69c5ac5 from qemu
For v7m we need to catch attempts to execute from special
addresses at 0xfffffff0 and above. Previously we did this
with the aid of a hacky special purpose lump of memory
in the address space and a check in translate.c for whether
we were translating code at those addresses.
We can implement this more cleanly using a CPU
unassigned access handler which throws the exception
if the unassigned access is for one of the special addresses.
Backports commit 542b3478a00cb7ef51c259255b3ab1e2a7daada2 from qemu
The MRS and MSR instruction handling has a number of flaws:
* unprivileged accesses should only be able to read
CONTROL and the xPSR subfields, and only write APSR
(others RAZ/WI)
* privileged access should not be able to write xPSR
subfields other than APSR
* accesses to unimplemented registers should log as
guest errors, not abort QEMU
Backports commit 58117c9bb429cd9552d998687aa99088eb1d8528 from qemu
The v7m CONTROL register bit 1 is SPSEL, which indicates
the stack being used. We were storing this information
not in v7m.control but in the separate v7m.other_sp
structure field. Unfortunately, the code handling reads
of the CONTROL register didn't take account of this, and
so if SPSEL was updated by an exception entry or exit then
a subsequent guest read of CONTROL would get the wrong value.
Using a separate structure field doesn't really gain us
anything in efficiency, so drop this unnecessary complexity
in favour of simply storing all the bits in v7m.control.
This is a migration compatibility break for M profile
CPUs only.
Backports commit abc24d86cc0364f402e438fae3acb14289b40734 from qemu
The MRS instruction requires that bits [19..16] are all 1s, and for
A/R profile also that bits [7..0] are all 0s. At this point in the
decode tree we have checked all of the rest of the instruction but
were allowing these to be any value. If these bits are not set then
the result is architecturally UNPREDICTABLE, but choosing to UNDEF is
more helpful to the user and avoids unexpected odd behaviour if the
encodings are used for some purpose in future architecture versions.
Backports commit 3d54026fb06d1aea7ebb4e9825970b06bebcacac from qemu
M profile doesn't have the MSR(banked) and MRS(banked) instructions
and uses the encodings for different kinds of M-profile MRS/MSR.
Guard the relevant bits of the decode logic to make sure we don't
accidentally fall into them by accident on M-profile.
(The bit being checked for this (bit 5) is part of the SYSm field on
M-profile, but since no currently allocated system registers have
encodings with bit 5 of SYSm set, this hasn't been a problem in
practice.)
Backports commit 43ac65742319ef5ac4461daf43316b189cd21e89 from qemu
M profile doesn't have the HVC or SMC encodings, so make them always
UNDEF rather than generating calls to helper functions that assume
A/R profile.
Backports commit 001b3cab51ebfcb13e8dd03ea25bfa3bd0c517a3 from qemu
The 'name' parameter to memory_region_init_* had been marked as debug
only, however vmstate_region_ram uses it as a parameter to
qemu_ram_set_idstr to set RAMBlock names and these form part of the
migration stream.
Backports commit e8f5fe2de125a0bfbefbaa6a69af81f4817cb7a0 from qemu
The power state spec section 5.1.5 AFFINITY_INFO defines the
affinity info return values as
0 ON
1 OFF
2 ON_PENDING
I grepped QEMU for power_state to ensure that no assumptions
of OFF=0 were being made.
Backports commit d5affb0d8677e1a8a8fe03fa25005b669e7cdc02 from qemu
In armv8, this register implements more than a single bit, with
fine-grained enables for read access to event counters, cycles
counters, and write access to the software increment. This change
implements those checks using custom access functions for the relevant
registers.
Backports commit 6ecd0b6ba0591ef280ed984103924d4bdca5ac32 from qemu
glibc blacklists TSX on Haswell CPUs with model==60 and
stepping < 4. To make the Haswell CPU model more useful, make
those guests actually use TSX by changing CPU stepping to 4.
References:
* glibc commit 2702856bf45c82cf8e69f2064f5aa15c0ceb6359
https://sourceware.org/git/?p=glibc.git;a=commit;h=2702856bf45c82cf8e69f2064f5aa15c0ceb6359
Backports commit ec56a4a7b07e2943f49da273a31e3195083b1f2e from qemu
Helper function for code that needs to check the host CPU
vendor/family/model/stepping values.
Backports commit 20271d484069f154fb262507e63adc3a37e885d2 from qemu
..just like the rest of the displayed ESR register. Otherwise people
might scratch their heads if a not obviously hex number is displayed
for the EC field.
Backports commit 6568da459b611845ef55526cd23afc9fa9f4647f from qemu
Paths through the softmmu code during code generation now need to be audited
to check for double locking of tb_lock. In particular, VMEXIT can take tb_lock
through cpu_vmexit -> cpu_x86_update_cr4 -> tlb_flush.
To avoid this, split VMEXIT delivery in two parts, similar to what is done with
exceptions. cpu_vmexit only records the VMEXIT exit code and information, and
cc->do_interrupt can then deliver it when it is safe to take the lock.
Backports commit 10cde894b63146139f981857e4eedf756fa53dcb from qemu
The translation code uses cpu_ld*_code which can trigger a tlb_fill
which if it fails will erroneously attempts a fault resolution. This
never works during translation as the TB being generated hasn't been
added yet. The target should have checked retaddr before calling
cpu_restore_state but for those that have yet to be fixed we do it
here to avoid a recursive tb_lock() under MTTCG's new locking regime
Backports commit d8b2239bcd8872a5c5f7534d1658fc2365caab2d from qemu
This suppresses the incorrect warning when forcing MTTCG for x86
guests on x86 hosts. A future patch will still warn when
TARGET_SUPPORT_MTTCG hasn't been defined for the guest (which is still
pending for x86).
Backports commit 72c1701f62e8d44eb24a0583a958edc280105455 from qemu
Fix the design flaw demonstrated in the previous commit: new method
check_list() lets input visitors report that unvisited input remains
for a list, exactly like check_struct() lets them report that
unvisited input remains for a struct or union.
Implement the method for the qobject input visitor (straightforward),
and the string input visitor (less so, due to the magic list syntax
there). The opts visitor's list magic is even more impenetrable, and
all I can do there today is a stub with a FIXME comment. No worse
than before.
Backports commit a4a1c70dc759e5b81627e96564f344ab43ea86eb from qemu
The split between tests/test-qobject-input-visitor.c and
tests/test-qobject-input-strict.c now makes less sense than ever. The
next commit will take care of that.
Backports commit 048abb7b20c9f822ad9d4b730bade73b3311a47a from qemu
Commit 240f64b made all qobject input visitors created outside tests
strict, except for the one in object_property_set_qobject(). That one
was left behind only because Eric couldn't spare the time to figure
out whether making it strict would break anything, with a TODO
comment. Time to resolve it.
Strict makes a difference only for otherwise successful visits of QAPI
structs or unions. Let's examine what the callers of
object_property_set_qobject() visit:
* object_property_set_str(), object_property_set_bool(),
object_property_set_int() visit a QString, QBool, QInt,
respectively. Strictness can't matter.
* qmp_qom_set visits its @value argument. Comes straight from QMP and
can be anything ('any' in the QAPI schema). Strictness matters when
the property's set() method visits a struct or union QAPI type.
No such methods exist, thus switching to strict can't break
anything.
If we acquire such methods in the future, we'll *want* the visitor
to be strict, so that unexpected members get rejected as they should
be.
Switch to strict.
Backports commit 05601ed2de60df0e344d6b783a6bc0c1ff2b5d1f from qemu
The string input visitor tries to cope with null input. Null input
isn't used anywhere, and isn't covered by tests. Unsurprisingly, it
doesn't fully work: start_list() crashes because it passes the input
via parse_str() to strtoll() unchecked.
Make string_input_visitor_new() assert its argument isn't null, and
drop the code trying to deal with null input.
The opts visitor crashes when you try to actually visit something with
null input. Make opts_visitor_new() assert its argument isn't null,
mostly for clarity.
qobject_input_visitor_new() already asserts its argument isn't null.
Backports commit f332e830e38b3ff3953ef02ac04e409ae53769c5 from qemu
visit_optional() is to be called only between visit_start_struct() and
visit_end_struct(). Visitors that don't support struct visits,
i.e. don't implement start_struct(), end_struct(), have no use for it.
Clarify documentation.
The string input visitor doesn't support struct visits. Its
parse_optional() is therefore useless. Drop it.
Backports commit a8aec6de2ac1a5e36989fdfba29067b361009b75 from qemu
Error messages refer to nodes of the QObject being visited by name.
Trouble is the names are sometimes less than helpful:
* The name of the root QObject is whatever @name argument got passed
to the visitor, except NULL gets mapped to "null". We commonly pass
NULL. Not good.
Avoiding errors "at the root" mitigates. For instance,
visit_start_struct() can only fail when the visited object is not a
dictionary, and we commonly ensure it is beforehand.
* The name of a QDict's member is the member key. Good enough only
when this happens to be unique.
* The name of a QList's member is "null". Not good.
Improve error messages by referring to nodes by path instead, as
follows:
* The path of the root QObject is whatever @name argument got passed
to the visitor, except NULL gets mapped to "<anonymous>".
* The path of a root QDict's member is the member key.
* The path of a root QList's member is "[%u]", where %u is the list
index, starting at zero.
* The path of a non-root QDict's member is the path of the QDict
concatenated with "." and the member key.
* The path of a non-root QList's member is the path of the QList
concatenated with "[%u]", where %u is the list index.
For example, the incorrect QMP command
{ "execute": "blockdev-add", "arguments": { "node-name": "foo", "driver": "raw", "file": {"driver": "file" } } }
now fails with
{"error": {"class": "GenericError", "desc": "Parameter 'file.filename' is missing"}}
instead of
{"error": {"class": "GenericError", "desc": "Parameter 'filename' is missing"}}
and
{ "execute": "input-send-event", "arguments": { "device": "bar", "events": [ [] ] } }
now fails with
{"error": {"class": "GenericError", "desc": "Invalid parameter type for 'events[0]', expected: object"}}
instead of
{"error": {"class": "GenericError", "desc": "Invalid parameter type for 'null', expected: QDict"}}
Aside: calling the thing "parameter" is suboptimal for QMP, because
the root object is "arguments" there.
The qobject output visitor doesn't have this problem because it should
not fail. Same for dealloc and clone visitors.
The string visitors don't have this problem because they visit just
one value, whose name needs to be passed to the visitor as @name. The
string output visitor shouldn't fail anyway.
The options visitor uses QemuOpts names. Their name space is flat, so
the use of QDict member keys as names is fine. NULL names used with
roots and lists could conceivably result in bad error messages. Left
for another day.
Backports commit a9fc37f6bc3f2ab90585cb16493da9f6dcfbfbcf from qemu
qobject_input_start_struct() sets *list, except when it fails because
qobject_input_get_object() fails, i.e. the input object doesn't exist.
All the other input visitor start_struct(), start_list(),
start_alternate() always set *obj / *list.
Change qobject_input_start_struct() to match.
Backports commit 58561c27669ddf1c6d39ff8ce25837c6f2d9d92c from qemu
The QObject input visitor has three error message formats:
* Parameter '%s' is missing
* "Invalid parameter type for '%s', expected: %s"
* "QMP input object member '%s' is unexpected"
The '%s' are member names (or "null", but I'll fix that later).
The last error message calls the thing "QMP input object member"
instead of "parameter". Misleading when the visitor is used on
QObjects that don't come from QMP. Change it to "Parameter '%s' is
unexpected".
Backports commit 910f738b851a263396fc85b2052e47f884ffead3 from qemu
The QERR_ macros are leftovers from the days of "rich" error objects.
QERR_QMP_BAD_INPUT_OBJECT, QERR_QMP_BAD_INPUT_OBJECT_MEMBER,
QERR_QMP_EXTRA_MEMBER are used in just one place now, except for one
use that has crept into qobject-input-visitor.c.
Drop these macros, to make the (bad) error messages more visible.
Backports commit 99fb0c53c038105bae68b02a3d9f1cbf7951ba10 from qemu
At the moment ram device's memory regions are DEVICE_NATIVE_ENDIAN. It's
incorrect. This memory region is backed by a MMIO area in host, so the
uint64_t data that MemoryRegionOps read from/write to this area should be
host-endian rather than target-endian. Hence, current code does not work
when target and host endianness are different which is the most common case
on PPC64. To fix it, this introduces DEVICE_HOST_ENDIAN for the ram device.
This has been tested on PPC64 BE/LE host/guest in all possible combinations
including TCG.
Backports commit c99a29e702528698c0ce2590f06ca7ff239f7c39 from qemu
The cpu->exit_request check in cpu_loop_exec_tb is unnecessary,
because cpu->tcg_exit_req is always set after cpu->exit_request.
So let the TB exit and we will pick up the exit request later
in cpu_handle_interrupt.
Backports commit 55ac0a9bf4e1b1adfc7d73586a7aa085f58c9851 from qemu
CPU runnability checks and CPU model expansion have slightly
different requirements. Document the steps involved in loading a
CPU model and realizing a CPU, so their requirements and purpose
are clearly defined.
This patch doesn't change any implementation. It just add
comments, rename the x86_cpu_load_features() function for clarity
(so it won't be confused with x86_cpu_load_def()), and move
x86_cpu_filter_features() closer to it.
Backports commit b8d834a00fa3ed4dad7d371e1a00938a126a54a0 from qemu
To fix the following warnings:
In file included from /users/pranith/qemu/tcg/tcg.c:255:
/users/pranith/qemu/tcg/aarch64/tcg-target.inc.c:879:24: warning: implicit conversion from enumeration type 'TCGMemOp' (aka 'enum TCGMemOp') to different enumeration type 'TCGType' (aka 'enum TCGType')
[-Wenum-conversion]
tcg_out_cmp(s, ext, a, b, b_const);
~~~~~~~~~~~ ^~~
/users/pranith/qemu/tcg/aarch64/tcg-target.inc.c:893:36: warning: implicit conversion from enumeration type 'TCGMemOp' (aka 'enum TCGMemOp') to different enumeration type 'TCGType' (aka 'enum TCGType')
[-Wenum-conversion]
tcg_out_insn(s, 3201, CBZ, ext, a, offset);
~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~
/users/pranith/qemu/tcg/aarch64/tcg-target.inc.c:389:65: note: expanded from macro 'tcg_out_insn'
glue(tcg_out_insn_,FMT)(S, glue(glue(glue(I,FMT),_),OP), ## __VA_ARGS__)
^
/users/pranith/qemu/tcg/aarch64/tcg-target.inc.c:895:37: warning: implicit conversion from enumeration type 'TCGMemOp' (aka 'enum TCGMemOp') to different enumeration type 'TCGType' (aka 'enum TCGType')
[-Wenum-conversion]
tcg_out_insn(s, 3201, CBNZ, ext, a, offset);
~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~
/users/pranith/qemu/tcg/aarch64/tcg-target.inc.c:389:65: note: expanded from macro 'tcg_out_insn'
glue(tcg_out_insn_,FMT)(S, glue(glue(glue(I,FMT),_),OP), ## __VA_ARGS__)
^
/users/pranith/qemu/tcg/aarch64/tcg-target.inc.c:1610:27: warning: implicit conversion from enumeration type 'TCGType' (aka 'enum TCGType') to different enumeration type 'TCGMemOp' (aka 'enum TCGMemOp')
[-Wenum-conversion]
tcg_out_brcond(s, ext, a2, a0, a1, const_args[1], arg_label(args[3]));
~~~~~~~~~~~~~~ ^~~
backports commit dc1eccd661ada3b746ca4438e444993c36a0f04f from qemu
In float64_to_uint64_round_to_zero() a typo meant that we were
taking the uint64_t return value from float64_to_uint64() and
putting it into an int64_t variable before returning it as
uint64_t again. Use uint64_t instead of pointlessly casting it
back and forth to int64_t.
Backports commit d000b477f2693dbca97cd8ea751c2e0b71890662 from qemu
In get_page_addr_code(), if the guest PC doesn't correspond to RAM
then we currently run the CPU's do_unassigned_access() hook if it has
one, and otherwise we give up and exit QEMU with a more-or-less
useful message. This code assumes that the do_unassigned_access hook
will never return, because if it does then we'll plough on attempting
to use a non-RAM TLB entry to get a RAM address and will abort() in
qemu_ram_addr_from_host_nofail(). Unfortunately some CPU
implementations of this hook do return: Microblaze, SPARC and the ARM
v7M.
Change the code to call report_bad_exec() if the hook returns, as
well as if it didn't have one. This means we can tidy it up to use
the cpu_unassigned_access() function which wraps the "get the CPU
class and call the hook if it has one" work, since we aren't trying
to distinguish "no hook" from "hook existed and returned" any more.
This brings the handling of this hook into line with the handling
used for data accesses, where "hook returned" is treated the
same as "no hook existed" and gets you the default behaviour.
Backports commit 44d7ce0ef39cb45e13d384574d79799eb3d39834 from qemu
The aarch64 crypto instructions for AES and SHA are missing the
check for if the FPU is enabled.
Backports commit a4f5c5b72380deeccd53a6890ea3782f10ca8054 from qemu
This enables the multi-threaded system emulation by default for ARMv7
and ARMv8 guests using the x86_64 TCG backend. This is because on the
guest side:
- The ARM translate.c/translate-64.c have been converted to
- use MTTCG safe atomic primitives
- emit the appropriate barrier ops
- The ARM machine has been updated to
- hold the BQL when modifying shared cross-vCPU state
- defer powerctl changes to async safe work
All the host backends support the barrier and atomic primitives but
need to provide same-or-better support for normal load/store
operations.
Backports commit ca759f9e387db87e1719911f019bc60c74be9ed8 from qemu
The WFE and YIELD instructions are really only hints and in TCG's case
they were useful to move the scheduling on from one vCPU to the next. In
the parallel context (MTTCG) this just causes an unnecessary cpu_exit
and contention of the BQL.
Backports commit c22edfebff29f63d793032e4fbd42a035bb73e27 from qemu