clang's C11 atomic_fetch_*() functions only take a C11 atomic type
pointer argument. QEMU uses direct types (int, etc) and this causes a
compiler error when a QEMU code calls these functions in a source file
that also included <stdatomic.h> via a system header file:
$ CC=clang CXX=clang++ ./configure ... && make
../util/async.c:79:17: error: address argument to atomic operation must be a pointer to _Atomic type ('unsigned int *' invalid)
Avoid using atomic_*() names in QEMU's atomic.h since that namespace is
used by <stdatomic.h>. Prefix QEMU's APIs with 'q' so that atomic.h
and <stdatomic.h> can co-exist. I checked /usr/include on my machine and
searched GitHub for existing "qatomic_" users but there seem to be none.
This patch was generated using:
$ git grep -h -o '\<atomic\(64\)\?_[a-z0-9_]\+' include/qemu/atomic.h | \
sort -u >/tmp/changed_identifiers
$ for identifier in $(</tmp/changed_identifiers); do
sed -i "s%\<$identifier\>%q$identifier%g" \
$(git grep -I -l "\<$identifier\>")
done
I manually fixed line-wrap issues and misaligned rST tables.
Backports d73415a315471ac0b127ed3fad45c8ec5d711de1
The float-access functions stfl_*, stfq*, ldfl* and ldfq* are now
unused; remove them. (Accesses to float64 and float32 types can be
made with the ldl/stl/ldq/stq functions, as float64 and float32 are
guaranteed to be typedefs for normal integer types.)
Backports f930224fffead81e23e699517d1351e33890b6f7
In f47db80cc07, we handled odd-sized tail clearing for
the case of hosts that have vector operations, but did
not handle the case of hosts that do not have vector ops.
This was ok until e2e7168a214b, which changed the encoding
of simd_desc such that the odd sizes are impossible.
Add memset as a tcg helper, and use that for all out-of-line
byte stores to vectors. This includes, but is not limited to,
the tail clearing operation in question.
Backports 6d3ef04893bdea3e7aa08be3cce5141902836a31
For contiguous predicated memory operations, we want to
minimize the number of tlb lookups performed. We have
open-coded this for sve_ld1_r, but for correctness with
MTE we will need this for all of the memory operations.
Create a structure that holds the bounds of active elements,
and metadata for two pages. Add routines to find those
active elements, lookup the pages, and run watchpoints
for those pages.
Temporarily mark the functions unused to avoid Werror.
Backports commit b4cd95d2f4c7197b844f51b29871d888063ea3e7 from qemu
Use the "normal" memory access functions, rather than the
softmmu internal helper functions directly.
Since fb901c9, cpu_mem_index is now a simple extract
from env->hflags and not a large computation. Which means
that it's now more work to pass around this value than it
is to recompute it.
This only adjusts the primitives, and does not clean up
all of the uses within sve_helper.c.
Now that we know that the operation is on a single page,
we need not loop over pages while probing.
Backports commit e26d0d226892f67435cadcce86df0ddfb9943174 from qemu
According to the documentation in memory.h a ROM memory region will be
backed by RAM for reads, but is supposed to go through a callback for
writes. Currently we were not checking for the existence of the rom_device
flag when determining if we could perform a direct write or not.
To correct that add a check to memory_region_is_direct so that if the
memory region has the rom_device flag set we will return false for all
checks where is_write is set.
Backports commit d489ae4ac57ebe14bde8384556cbac237ead988d from qemu
Currently, helpers can only take up to 6 arguments. This patch adds the
capability for up to 7 arguments. I have tested it with the Hexagon port
that I am preparing for submission.
Backports commit e6cadf49c3d191f6984e56ec3bbeb0b103ca5bc2 from qemu
Add an option to trigger memory writeback to sync given memory region
with the corresponding backing store, case one is available.
This extends the support for persistent memory, allowing syncing on-demand.
Backports commit 61c490e25e081af39ff40556f6c1229b8b011585 from qemu
Background: s390x implements Low-Address Protection (LAP). If LAP is
enabled, writing to effective addresses (before any translation)
0-511 and 4096-4607 triggers a protection exception.
So we have subpage protection on the first two pages of every address
space (where the lowcore - the CPU private data resides).
By immediately invalidating the write entry but allowing the caller to
continue, we force every write access onto these first two pages into
the slow path. we will get a tlb fault with the specific accessed
addresses and can then evaluate if protection applies or not.
We have to make sure to ignore the invalid bit if tlb_fill() succeeds.
Backports commit f52bfb12143e29d7c8bd827bdb751aee47a9694e from qemu
... similar to tlb_vaddr_to_host(); however, allow access to the host
page except when TLB_NOTDIRTY or TLB_MMIO is set.
Backports commit fef39ccd567032d3ad520ed80f3576068e6eb2e3 from qemu
The raising of exceptions from check_watchpoint, buried inside
of the I/O subsystem, is fundamentally broken. We do not have
the helper return address with which we can unwind guest state.
Replace PHYS_SECTION_WATCH and io_mem_watch with TLB_WATCHPOINT.
Move the call to cpu_check_watchpoint into the cputlb helpers
where we do have the helper return address.
This allows watchpoints on RAM to bypass the full i/o access path.
Backports commit 50b107c5d617eaf93301cef20221312e7a986701 from qemu
We had two different mechanisms to force a recheck of the tlb.
Before TLB_RECHECK was introduced, we had a PAGE_WRITE_INV bit
that would immediate set TLB_INVALID_MASK, which automatically
means that a second check of the tlb entry fails.
We can use the same mechanism to handle small pages.
Conserve TLB_* bits by removing TLB_RECHECK.
Backports commit 30d7e098d5c38644359820317fcf72e3e129ec53 from qemu
Factor it out into common code. Similar to the !CONFIG_USER_ONLY variant,
let's not allow to cross page boundaries.
Backports commit 59e96ac6cb13951dd09afc70622858089abf3384 from qemu
Notice new attribute, byte swap, and force the transaction through the
memory slow path.
Required by architectures that can invert endianness of memory
transaction, e.g. SPARC64 has the Invert Endian TTE bit.
Backports commit a26fc6f5152b47f1d7ed928f9c9d462d01ff1624 from qemu
Preparation for collapsing the two byte swaps adjust_endianness and
handle_bswap into the former.
Backports commit be5c4787e9a6eed12fd765d9e890f7cc6cd63220 from qemu
Preparation for collapsing the two byte swaps adjust_endianness and
handle_bswap into the former.
Call memory_region_dispatch_{read|write} with endianness encoded into
the "MemOp op" operand.
This patch does not change any behaviour as
memory_region_dispatch_{read|write} is yet to handle the endianness.
Once it does handle endianness, callers with byte swaps can collapse
them into adjust_endianness.
Backports commit d5d680cacc66ef7e3c02c81dc8f3a34eabce6dfe from qemu
Convert memory_region_dispatch_{read|write} operand "unsigned size"
into a "MemOp op".
Backports commit e67c904668d82ca4416cd91d37d9f5abcceef747 from qemu
Introduce no-op size_memop to aid preparatory conversion of
interfaces.
Once interfaces are converted, size_memop will be implemented to
return a MemOp from size in bytes.
Backports commit 66b9b24375ac215cdcbdf9e14d665395360abff4 from qemu
Preparation for collapsing the two byte swaps, adjust_endianness and
handle_bswap, along the I/O path.
Target dependant attributes are conditionalized upon NEED_CPU_H.
Backports commit 14776ab5a12972ea439c7fb2203a4c15a09094b4 from qemu
MemoryRegionSection includes an Int128 'size' field;
on some platforms the compiler causes an alignment of this to
a 128bit boundary, leaving 8 bytes of dead space.
This deadspace can be filled with junk.
Move the size field to the top avoiding unnecessary alignment.
Backports commit c0aca9352d51c102c55fe29ce5c1bf8e74a5183e from qemu
Amusingly, we had already ignored the comment to keep this value
at the end of CPUState. This restores the minimum negative offset
from TCG_AREG0 for code generation.
For the couple of uses within qom/cpu.c, without NEED_CPU_H, add
a pointer from the CPUState object to the IcountDecr object within
CPUNegativeOffsetState.
Backports commit 5e1401969b25f676fee6b1c564441759cf967a43 from qemu
Nothing in there so far, but all of the plumbing done
within the target ArchCPU state.
Backports commit 5b146dc716cfd247f99556c04e6e46fbd67565a0 from qemu
Now that we have ArchCPU, we can define this generically,
in the one place that needs it.
Backports commit 677c4d69ac21961e76a386f9bfc892a44923acc0 from qemu
This will replace foo_env_get_cpu with a generic definition.
No changes to the target specific code so far.
Backports commit 083dc73d7a3cf2a75b5625fd8f0669b57a855d16 from qemu
Now that we have both ArchCPU and CPUArchState, we can define
this generically instead of via macro in each target's cpu.h.
Backports commit 29a0af618ddd21f55df5753c3e16b0625f534b3c from qemu
Especially for guests with large numbers of tlbs, like ARM or PPC,
we may well not use all of them in between flush operations.
Remember which tlbs have been used since the last flush, and
avoid any useless flushing.
Backports much of 3d1523ced6060cdfe9e768a814d064067ccabfe5 from qemu
along with a bunch of updating changes.
For all targets, into this new file move TARGET_LONG_BITS,
TARGET_PAGE_BITS, TARGET_PHYS_ADDR_SPACE_BITS,
TARGET_VIRT_ADDR_SPACE_BITS, and NB_MMU_MODES.
Include this new file from exec/cpu-defs.h.
This now removes the somewhat odd requirement that target/arch/cpu.h
defines TARGET_LONG_BITS before including exec/cpu-defs.h, so push the
bulk of the includes within target/arch/cpu.h to the top.
Backports commit 74433bf083b0766aba81534f92de13194f23ff3e from qemu
Most of the existing users would continue around a loop which
would fault the tlb entry in via a normal load/store.
But for AArch64 SVE we have an existing emulation bug wherein we
would mark the first element of a no-fault vector load as faulted
(within the FFR, not via exception) just because we did not have
its address in the TLB. Now we can properly only mark it as faulted
if there really is no valid, readable translation, while still not
raising an exception. (Note that beyond the first element of the
vector, the hardware may report a fault for any reason whatsoever;
with at least one element loaded, forward progress is guaranteed.)
Backports commit 4811e9095c0491bc6f5450e5012c9c4796b9e59d from qemu
sparc32plus has 64bit long type but only 32bit virtual address space.
For instance, "apt-get upgrade" failed because of a mmap()/msync()
sequence.
mmap() returned 0xff252000 but msync() used g2h(0xffffffffff252000)
to find the host address. The "(target_ulong)" in g2h() doesn't fix the
address because it is 64bit long.
This patch introduces an "abi_ptr" that is set to uint32_t
if the virtual address space is addressed using 32bit in the linux-user
case. It stays set to target_ulong with softmmu case.
Backports commit 3e23de15237c81fe7af7c3ffa299a6ae5fec7d43 from qemu
We can now use the CPUClass hook instead of a named function.
Create a static tlb_fill function to avoid other changes within
cputlb.c. This also isolates the asserts within. Remove the
named tlb_fill function from all of the targets.
Backports commit c319dc13579a92937bffe02ad2c9f1a550e73973 from qemu
Now that we have curr_cflags, we can include CF_USE_ICOUNT
early and then remove it as necessary.
Backports commit 416986d3f97329655e30da7271a2d11c6d707b06 from qemu
This will enable us to decouple code translation from the value
of parallel_cpus at any given time. It will also help us minimize
TB flushes when generating code via EXCP_ATOMIC.
Note that the declaration of parallel_cpus is brought to exec-all.h
to be able to define there the "curr_cflags" inline.
Backports commit 4e2ca83e71b51577b06b1468e836556912bd5b6e from qemu
In order to handle TB's that translate to too much code, we
need to place the control of the length of the translation
in the hands of the code gen master loop.
Backports commit 8b86d6d25807e13a63ab6ea879f976b9f18cc45a from qemu
Not all targets define a full set of suffix strings for the
NB_MMU_MODES that they have. In this situation, don't define any
helper functions for that mode, rather than defining helper functions
with no suffix at all. The MMU mode is still functional; it is merely
not directly accessible via cpu_ld*_MODE from target helper functions.
Also add an "NB_MMU_MODES >= 2" check to the definition of the mode 1
helpers -- some targets only define one MMU mode.
Backports commit de5ee4a888667ca0a198f0743d70075d70564117 from qemu
Add documentation of what the cpu_*_* accessors look like.
Correct some minor errors in the existing documentation of the
direct _p accessor family. Remove the near-duplicate comment
on the _p accessors from cpu-all.h and replace it with a reference
to the comment in bswap.h.
Backports commit db5fd8d709fd57f4d4f11edfca9f421f657f4508 from qemu
The cpu_ldfq/stfq/ldfl/stfl accessors for loading and storing
float32 and float64 are completely unused, so delete them.
(The union they use for converting from the float32/float64
type to uint32_t or uint64_t is the wrong way to do it anyway:
they should be using make_float* and float*_val.)
Backports commit 82f11917c99e3c7fa3d6aa98572ecc98c7324c2f from qemu
The _raw macros and their helpers saddr() and laddr() are now
totally unused -- delete them.
Backports commit 800e2ecc896beb6b79e7333c762da163b6a9135a from qemu