ARM is a fixed-length ISA and we can compute the page crossing
condition exactly once during init_disas_context.
Backports commit d0264d86b026e9d948de577b05ff86d708658576 from qemu
We need not check for ARM vs Thumb state in order to dispatch
disassembly of every instruction.
Backports commit 722ef0a562a8cd810297b00516e36380e2f33353 from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit 58350fa4b2852fede96cfebad0b26bf79bca419c from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit 4013f7fc811e90b89da3a516dc71b01ca0e7e54e from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit 70d3c035ae36a2c5c0f991ba958526127c92bb67 from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit 13189a9080b35b13af23f2be4806fa0cdbb31af3 from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit a68956ad7f8510bdc0b54793c65c62c6a94570a4 from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit f62bd897e64c6fb1f93e8795e835980516fe53b5 from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit b14768544fd715a3f1742c10fc36ae81c703cbc1 from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit 1d8a5535238fc5976e0542a413f4ad88f5d4b233 from qemu
Incrementally paves the way towards using the generic
instruction translation loop.
Backports commit dcba3a8d443842f7a30a2c52d50a6b50b6982b35 from qemu
There's nothing magic about the exception that we generate in order
to execute the magic kernel page. We can and should allow gdb to
set a breakpoint at this location.
Backports commit 3805c2eba8999049bbbea29fdcdea4d47d943c88 from qemu
Used later. An enum makes expected values explicit and
bounds the value space of switches.
Backports commit 77fc6f5e28667634916f114ae04c6029cd7b9c45 from qemu
Fold DISAS_EXC and DISAS_TB_JUMP into DISAS_NORETURN.
In both cases all following code is dead. In the first
case because we have exited the TB via exception; in the
second case because we have exited the TB via goto_tb
and its associated machinery.
Backports commit a0c231e651b249960906f250b8e5eef5ed9888c4 from qemu
Make the arm_cpu_dump_state() debug logging handle the M-profile XPSR
rather than assuming it's an A-profile CPSR. On M profile the PSR
line of a register dump will now look like this:
XPSR=41000000 -Z-- T priv-thread
Backports commit 5b906f3589443a3c69d8feeaac37263843ecfb8d from qemu
Tighten up the T32 decoder in the places where new v8M instructions
will be:
* TT/TTT/TTA/TTAT are in what was nominally LDREX/STREX r15, ...
which is UNPREDICTABLE:
make the UNPREDICTABLE behaviour be to UNDEF
* BXNS/BLXNS are distinguished from BX/BLX via the low 3 bits,
which in previous architectural versions are SBZ:
enforce the SBZ via UNDEF rather than ignoring it, and move
the "ARCH(5)" UNDEF case up so we don't leak a TCG temporary
* SG is in the encoding which would be LDRD/STRD with rn = r15;
this is UNPREDICTABLE and we currently UNDEF:
move this check further up the code so that we don't leak
TCG temporaries in the UNDEF case and have a better place
to put the SG decode.
This means that if a v8M binary is accidentally run on v7M
or if a test case hits something that we haven't implemented
yet the behaviour will be obvious (UNDEF) rather than obscure
(plough on treating it as a different instruction).
In the process, add some comments about the instruction patterns
at these points in the decode. Our Thumb and ARM decoders are
very difficult to understand currently, but gradually adding
comments like this should help to clarify what exactly has
been decoded when.
Backports commit ebfe27c593e5b222aa2a1fc545b447be3d995faa from qemu
Previously DISAS_JUMP did ensure this but with the optimisation of
8a6b28c7 (optimize indirect branches) we might not leave the loop.
This means if any pending interrupts are cleared by changing IRQ flags
we might never get around to servicing them. You usually notice this
by seeing the lookup_tb_ptr() helper gainfully chaining TBs together
while cpu->interrupt_request remains high and the exit_request has not
been set.
This breaks amongst other things the OPTEE test suite which executes
an eret from the secure world after a non-secure world IRQ has gone
pending which then never gets serviced.
Instead of using the previously implied semantics of DISAS_JUMP we use
DISAS_EXIT which will always exit the run-loop.
Backports commit b29fd33db578decacd14f34933b29aece3e7c25e from qemu
While an ISB will ensure any raised IRQs happen on the next
instruction it doesn't cause any to get raised by itself. We can
therefore use a simple tb exit for ISB instructions and rely on the
exit_request check at the top of each TB to deal with exiting if
needed.
Backports commit 0b609cc128ba5ef16cc841bcade898d1898f1dc3 from qemu
As the gen_goto_tb function can do both static and dynamic jumps it
should also set the is_jmp field. This matches the behaviour of the
a64 code.
Backports commit 4cae8f56fbab2798586576a56cc669f0127d04fb from qemu
DISAS_UPDATE should be used when the wider CPU state other than just
the PC has been updated and we should therefore exit the TCG runtime
and return to the main execution loop rather assuming DISAS_JUMP would
do that.
Backports commit e8d5230221851e8933811f1579fd13371f576955 from qemu
Instead of unconditionally exiting to the exec loop, use the
lookup_and_goto_ptr helper to jump to the target if it is valid.
Perf impact: see next commit's log.
Backports commit 7ad55b4ffd982c80f26f7f3658138d94cdc678e8 from qemu
M profile doesn't implement ARM, and the architecturally required
behaviour for attempts to execute with the Thumb bit clear is to
generate a UsageFault with the CFSR INVSTATE bit set. We were
incorrectly implementing this as generating an UNDEFINSTR UsageFault;
fix this.
Backports commit e13886e3a790b52f0b2e93cb5e84fdc2ada5471a from qemu
Implement HFNMIENA support for the M profile MPU. This bit controls
whether the MPU is treated as enabled when executing at execution
priorities of less than zero (in NMI, HardFault or with the FAULTMASK
bit set).
Doing this requires us to use a different MMU index for "running
at execution priority < 0", because we will have different
access permissions for that case versus the normal case.
Backports commit 3bef7012560a7f0ea27b265105de5090ba117514 from qemu
Make M profile use completely separate ARMMMUIdx values from
those that A profile CPUs use. This is a prelude to adding
support for the MPU and for v8M, which together will require
6 MMU indexes which don't map cleanly onto the A profile
uses:
non secure User
non secure Privileged
non secure Privileged, execution priority < 0
secure User
secure Privileged
secure Privileged, execution priority < 0
Backports commit e7b921c2d9efc249f99b9feb0e7dca82c96aa5c4 from qemu
The M profile CPU's MPU has an awkward corner case which we
would like to implement with a different MMU index.
We can avoid having to bump the number of MMU modes ARM
uses, because some of our existing MMU indexes are only
used by non-M-profile CPUs, so we can borrow one.
To avoid that getting too confusing, clean up the code
to try to keep the two meanings of the index separate.
Instead of ARMMMUIdx enum values being identical to core QEMU
MMU index values, they are now the core index values with some
high bits set. Any particular CPU always uses the same high
bits (so eventually A profile cores and M profile cores will
use different bits). New functions arm_to_core_mmu_idx()
and core_to_arm_mmu_idx() convert between the two.
In general core index values are stored in 'int' types, and
ARM values are stored in ARMMMUIdx types.
Backports commit 8bd5c82030b2cb09d3eef6b444f1620911cc9fc5 from qemu
Now that we've rewritten M-profile exception return so that the magic
PC values are not visible to other parts of QEMU, we can delete the
special casing of them elsewhere.
Backports commit f4e8e4edda875cab9df91dc4ae9767f7cb1f50aa from qemu
On M profile, return from exceptions happen when code in Handler mode
executes one of the following function call return instructions:
* POP or LDM which loads the PC
* LDR to PC
* BX register
and the new PC value is 0xFFxxxxxx.
QEMU tries to implement this by not treating the instruction
specially but then catching the attempt to execute from the magic
address value. This is not ideal, because:
* there are guest visible differences from the architecturally
specified behaviour (for instance jumping to 0xFFxxxxxx via a
different instruction should not cause an exception return but it
will in the QEMU implementation)
* we have to account for it in various places (like refusing to take
an interrupt if the PC is at a magic value, and making sure that
the MPU doesn't deny execution at the magic value addresses)
Drop these hacks, and instead implement exception return the way the
architecture specifies -- by having the relevant instructions check
for the magic value and raise the 'do an exception return' QEMU
internal exception immediately.
The effect on the generated code is minor:
bx lr, old code (and new code for Thread mode):
TCG:
mov_i32 tmp5,r14
movi_i32 tmp6,$0xfffffffffffffffe
and_i32 pc,tmp5,tmp6
movi_i32 tmp6,$0x1
and_i32 tmp5,tmp5,tmp6
st_i32 tmp5,env,$0x218
exit_tb $0x0
set_label $L0
exit_tb $0x7f2aabd61993
x86_64 generated code:
0x7f2aabe87019: mov %ebx,%ebp
0x7f2aabe8701b: and $0xfffffffffffffffe,%ebp
0x7f2aabe8701e: mov %ebp,0x3c(%r14)
0x7f2aabe87022: and $0x1,%ebx
0x7f2aabe87025: mov %ebx,0x218(%r14)
0x7f2aabe8702c: xor %eax,%eax
0x7f2aabe8702e: jmpq 0x7f2aabe7c016
bx lr, new code when in Handler mode:
TCG:
mov_i32 tmp5,r14
movi_i32 tmp6,$0xfffffffffffffffe
and_i32 pc,tmp5,tmp6
movi_i32 tmp6,$0x1
and_i32 tmp5,tmp5,tmp6
st_i32 tmp5,env,$0x218
movi_i32 tmp5,$0xffffffffff000000
brcond_i32 pc,tmp5,geu,$L1
exit_tb $0x0
set_label $L1
movi_i32 tmp5,$0x8
call exception_internal,$0x0,$0,env,tmp5
x86_64 generated code:
0x7fe8fa1264e3: mov %ebp,%ebx
0x7fe8fa1264e5: and $0xfffffffffffffffe,%ebx
0x7fe8fa1264e8: mov %ebx,0x3c(%r14)
0x7fe8fa1264ec: and $0x1,%ebp
0x7fe8fa1264ef: mov %ebp,0x218(%r14)
0x7fe8fa1264f6: cmp $0xff000000,%ebx
0x7fe8fa1264fc: jae 0x7fe8fa126509
0x7fe8fa126502: xor %eax,%eax
0x7fe8fa126504: jmpq 0x7fe8fa122016
0x7fe8fa126509: mov %r14,%rdi
0x7fe8fa12650c: mov $0x8,%esi
0x7fe8fa126511: mov $0x56095dbeccf5,%r10
0x7fe8fa12651b: callq *%r10
which is a difference of one cmp/branch-not-taken. This will
be lost in the noise of having to exit generated code and
look up the next TB anyway.
Backports commit 3bb8a96f5348913ee130169504f3642f501b113e from qemu
For M profile exception-return handling we'd like to generate different
code for some instructions depending on whether we are in Handler
mode or Thread mode. This isn't the same as "are we privileged
or user", so we need an extra bit in the TB flags to distinguish.
Backports commit 064c379c99b835bdcc478d21a3849507ea07d53a from qemu
Move the code to generate the "condition failed" instruction
codepath out of the if (singlestepping) {} else {}. This
will allow adding support for handling a new is_jmp type
which can't be neatly split into "singlestepping case"
versus "not singlestepping case".
Backports commit f021b2c4627890d82fbcc300db3bd782b37b7f8a from qemu
arm: Abstract out "are we singlestepping" test to utility function
We now test for "are we singlestepping" in several places and
it's not a trivial check because we need to care about both
architectural singlestep and QEMU gdbstub singlestep. We're
also about to add another place that needs to make this check,
so pull the condition out into a function.
Backports commit b636649f5a2e108413dd171edaf320f781f57942 from qemu
Move the utility routines gen_set_condexec() and gen_set_pc_im()
up in the file, as we will want to use them from a function
placed earlier in the file than their current location.
Backports commit 4d5e8c969a74c86124fc2284ea603cc6dd3c5dfa from qemu
We currently have two places that do:
if (dc->ss_active) {
gen_step_complete_exception(dc);
} else {
gen_exception_internal(EXCP_DEBUG);
}
Factor this out into its own function, as we're about to add
a third place that needs the same logic.
Backports commit 5425415ebba5fa20558e1ef25e1997a6f5ea4c7c from qemu
In Thumb mode, the only instructions which can cause an interworking
branch by writing the PC are BLX, BX, BXJ, LDR, POP and LDM. Unlike
ARM mode, data processing instructions which target the PC do not
cause interworking branches.
When we added support for doing interworking branches on writes to
PC from data processing instructions in commit 21aeb3430ce7ba, we
accidentally changed a Thumb instruction to have interworking
branch behaviour for writes to PC. (MOV, MOVS register-shifted
register, encoding T2; this is the standard encoding for
LSL/LSR/ASR/ROR (register).)
For this encoding, behaviour with Rd == R15 is specified as
UNPREDICTABLE, so allowing an interworking branch is within
spec, but it's confusing and differs from our handling of this
class of UNPREDICTABLE for other Thumb ALU operations. Make
it perform a simple (non-interworking) branch like the others.
Backports commit bedb8a6b09c1754c3b9f155750c62dc087706698 from qemu
For M-profile CPUs, the BXJ instruction does not exist at all, and
the encoding should always UNDEF. We were accidentally implementing
it to behave like A-profile BXJ; correct the error.
Backports commit 9d7c59c84d4530d05e8702b1c3a31e6da00a397e from qemu
Our implementation of writes to the APSR for M-profile via the MSR
instruction was badly broken.
First and worst, we had the sense wrong on the test of bit 2 of the
SYSm field -- this is supposed to request an APSR write if bit 2 is 0
but we were doing it if bit 2 was 1. This bug was introduced in
commit 58117c9bb429cd, so hasn't been in a QEMU release.
Secondly, the choice of exactly which parts of APSR should be written
is defined by bits in the 'mask' field. We were not passing these
through from instruction decode, making it impossible to check them
in the helper.
Pass the mask bits through from the instruction decode to the helper
function and process them appropriately; fix the wrong sense of the
SYSm bit 2 check.
Invalid mask values and invalid combinations of mask and register
number are UNPREDICTABLE; we choose to treat them as if the mask
values were valid.
Backports commit b28b3377d7e9ba35611d454d5a63ef50cab1f8c5 from qemu
For v7M attempts to access a nonexistent coprocessor are reported
differently from plain undefined instructions (as UsageFaults of type
NOCP rather than type UNDEFINSTR). Split them out into a new
EXCP_NOCP so we can report the FSR value correctly.
Backports commit 7517748e3f71a3099e57915fba95c4c308e6d842 from qemu
For v7m we need to catch attempts to execute from special
addresses at 0xfffffff0 and above. Previously we did this
with the aid of a hacky special purpose lump of memory
in the address space and a check in translate.c for whether
we were translating code at those addresses.
We can implement this more cleanly using a CPU
unassigned access handler which throws the exception
if the unassigned access is for one of the special addresses.
Backports commit 542b3478a00cb7ef51c259255b3ab1e2a7daada2 from qemu
The MRS instruction requires that bits [19..16] are all 1s, and for
A/R profile also that bits [7..0] are all 0s. At this point in the
decode tree we have checked all of the rest of the instruction but
were allowing these to be any value. If these bits are not set then
the result is architecturally UNPREDICTABLE, but choosing to UNDEF is
more helpful to the user and avoids unexpected odd behaviour if the
encodings are used for some purpose in future architecture versions.
Backports commit 3d54026fb06d1aea7ebb4e9825970b06bebcacac from qemu
M profile doesn't have the MSR(banked) and MRS(banked) instructions
and uses the encodings for different kinds of M-profile MRS/MSR.
Guard the relevant bits of the decode logic to make sure we don't
accidentally fall into them by accident on M-profile.
(The bit being checked for this (bit 5) is part of the SYSm field on
M-profile, but since no currently allocated system registers have
encodings with bit 5 of SYSm set, this hasn't been a problem in
practice.)
Backports commit 43ac65742319ef5ac4461daf43316b189cd21e89 from qemu
M profile doesn't have the HVC or SMC encodings, so make them always
UNDEF rather than generating calls to helper functions that assume
A/R profile.
Backports commit 001b3cab51ebfcb13e8dd03ea25bfa3bd0c517a3 from qemu
The WFE and YIELD instructions are really only hints and in TCG's case
they were useful to move the scheduling on from one vCPU to the next. In
the parallel context (MTTCG) this just causes an unnecessary cpu_exit
and contention of the BQL.
Backports commit c22edfebff29f63d793032e4fbd42a035bb73e27 from qemu
Add support for generating the ISS (Instruction Specific Syndrome)
for Data Abort exceptions taken from AArch32. These syndromes are
used by hypervisors for example to trap and emulate memory accesses.
This is the equivalent for AArch32 guests of the work done for AArch64
guests in commit aaa1f954d4cab243.
Backports commit 9bb6558a218bf7e466e5ac1100639517d8a30d33 from qemu
In the ARM ldr/str decode path, rather than directly testing
"insn & (1 << 21)" and "insn & (1 << 24)", abstract these
bits out into wbit and pbit local flags. (We will want to
do more tests against them to determine whether we need to
provide syndrome information.)
Backports commit 63f26fcfda8e19f94ce23336726d14805250a5b6 from qemu
We've currently got 18 architectures in QEMU, and thus 18 target-xxx
folders in the root folder of the QEMU source tree. More architectures
(e.g. RISC-V, AVR) are likely to be included soon, too, so the main
folder of the QEMU sources slowly gets quite overcrowded with the
target-xxx folders.
To disburden the main folder a little bit, let's move the target-xxx
folders into a dedicated target/ folder, so that target-xxx/ simply
becomes target/xxx/ instead.
Backports commit fcf5ef2ab52c621a4617ebbef36bf43b4003f4c0 from qemu