Commit graph

134 commits

Author SHA1 Message Date
Peter Maydell 09a7d6381e target/arm: Move id_pfr0, id_pfr1 into ARMISARegisters
Move the id_pfr0 and id_pfr1 fields into the ARMISARegisters
sub-struct. We're going to want id_pfr1 for an isar_features
check, and moving both at the same time avoids an odd
inconsistency.

Changes other than the ones to cpu.h and kvm64.c made
automatically with:
perl -p -i -e 's/cpu->id_pfr/cpu->isar.id_pfr/' target/arm/*.c hw/intc/armv7m_nvic.c

Backports commit 8a130a7be6e222965641e1fd9469fd3ee752c7d4
2021-03-01 19:15:10 -05:00
Peter Maydell ed92f3c42b target/arm: Replace ARM_FEATURE_PXN with ID_MMFR0.VMSA check
The ARM_FEATURE_PXN bit indicates whether the CPU supports the PXN
bit in short-descriptor translation table format descriptors. This
is indicated by ID_MMFR0.VMSA being at least 0b0100. Replace the
feature bit with an ID register check, in line with our preference
for ID register checks over feature bits.

Backports commit 0ae0326b984e77a55c224b7863071bd3d8951231
2021-03-01 19:06:15 -05:00
Richard Henderson cdf40f7ff6 target/arm: Set instance_align on CPUARM TypeInfo
Fix alignment of CPUARMState.vfp.zregs.

Backports d03087bda4ba17076b430fd2af083020d7c5112a
2021-03-01 18:58:44 -05:00
Peter Maydell ff74ede2fd target/arm: Enable FP16 in '-cpu max'
Set the MVFR1 ID register FPHP and SIMDHP fields to indicate
that our "-cpu max" has v8.2-FP16.

Backports commit 5f07817eb94542e39a419baafa3026b15e8d33f7
2021-03-01 18:00:13 -05:00
Peter Maydell 61377ce01c target/arm: Implement FPST_STD_F16 fpstatus
Architecturally, Neon FP16 operations use the "standard FPSCR" like
all other Neon operations. However, this is defined in the Arm ARM
pseudocode as "a fixed value, except that FZ16 (and AHP) follow the
FPSCR bits". In QEMU, the softfloat float_status doesn't include
separate flush-to-zero for FP16 operations, so we must keep separate
fp_status for "Neon non-FP16" and "Neon fp16" operations, in the
same way we do already for the non-Neon "fp_status" vs "fp_status_f16".

Add the extra float_status field to the CPU state structure,
ensure it is correctly initialized and updated on FPSCR writes,
and make fpstatus_ptr(FPST_STD_F16) return a pointer to it.

Backports commit aaae563bc73de0598bbc09a102e68f27fafe704a
2021-02-26 12:00:25 -05:00
Richard Henderson 9b6c64f8f8 target/arm: Create tagged ram when MTE is enabled
Backports commit 8bce44a2f6beb388a3f157652b46e99929839a96 from qemu
2021-02-25 22:51:23 -05:00
Richard Henderson 33f5bdabb1 target/arm: Complete TBI clearing for user-only for SVE
There are a number of paths by which the TBI is still intact
for user-only in the SVE helpers.

Because we currently always set TBI for user-only, we do not
need to pass down the actual TBI setting from above, and we
can remove the top byte in the inner-most primitives, so that
none are forgotten. Moreover, this keeps the "dirty" pointer
around at the higher levels, where we need it for any MTE checking.

Since the normal case, especially for user-only, goes through
RAM, this clearing merely adds two insns per page lookup, which
will be completely in the noise.

Backports commit c4af8ba19b9d22aac79cab679a20b159af9d6809 from qemu
2021-02-25 22:37:12 -05:00
Richard Henderson 7de60598d5 target/arm: Restrict the values of DCZID.BS under TCG
We can simplify our DC_ZVA if we recognize that the largest BS
that we actually use in system mode is 64. Let us just assert
that it fits within TARGET_PAGE_SIZE.

For DC_GVA and STZGM, we want to be able to write whole bytes
of tag memory, so assert that BS is >= 2 * TAG_GRANULE, or 32.

Backports commit a4157b80242bf1c8aa0ee77aae7458ba79012d5d from qemu
2021-02-25 15:12:20 -05:00
Richard Henderson 448fc3ae4a target/arm: Define arm_cpu_do_unaligned_access for user-only
Use the same code as system mode, so that we generate the same
exception + syndrome for the unaligned access.

For the moment, if MTE is enabled so that this path is reachable,
this would generate a SIGSEGV in the user-only cpu_loop. Decoding
the syndrome to produce the proper SIGBUS will be done later.

Backports commit 0d1762e931f8a694f261c604daba605bcda70928 from qemu
2021-02-25 14:51:19 -05:00
Thomas Huth dfe548117e target/arm: Make set_feature() available for other files
Move the common set_feature() and unset_feature() functions
from cpu.c and cpu64.c to cpu.h.

Backports commit 5fda95041d7237ab35733ceb66e0cb89f6107169 from qemu
2020-05-11 17:02:21 -04:00
Philippe Mathieu-Daudé cfe94f63f3 target/arm/cpu: Use ARRAY_SIZE() to iterate over ARMCPUInfo[]
Since on the aarch64-linux-user build, arm_cpus[] is empty, add
the cpu_count variable and only iterate when it is non-zero.

Backports commit 92b6a659388ab3735e5fbb17ac486923b681f57f from qemu
2020-05-11 16:59:54 -04:00
Peter Maydell b427549ce4 target/arm: Implement ARMv8.2-TTS2UXN
The ARMv8.2-TTS2UXN feature extends the XN field in stage 2
translation table descriptors from just bit [54] to bits [54:53],
allowing stage 2 to control execution permissions separately for EL0
and EL1. Implement the new semantics of the XN field and enable
the feature for our 'max' CPU.

Backports commit ce3125bed935a12e619a8253c19340ecaa899347 from qemu
2020-05-07 08:49:18 -04:00
Philippe Mathieu-Daudé 12cad29510 target/arm/cpu: Update coding style to make checkpatch.pl happy
We will move this code in the next commit. Clean it up
first to avoid checkpatch.pl errors.

Backports commit 51c510aa5876a681cd0059ed3bacaa17590dc2d5 from qemu
2020-04-30 21:40:07 -04:00
Thomas Huth 84f2729a29 target/arm: Make cpu_register() available for other files
Make cpu_register() (renamed to arm_cpu_register()) available
from internals.h so we can register CPUs also from other files
in the future.

Backports commit 37bcf244454f4efb82e2c0c64bbd7eabcc165a0c from qemu
2020-04-30 21:38:42 -04:00
Peter Maydell 32b0e506e6 target/arm: Implement (trivially) ARMv8.2-TTCNP
The ARMv8.2-TTCNP extension allows an implementation to optimize by
sharing TLB entries between multiple cores, provided that software
declares that it's ready to deal with this by setting a CnP bit in
the TTBRn_ELx. It is mandatory from ARMv8.2 onward.

For QEMU's TLB implementation, sharing TLB entries between different
cores would not really benefit us and would be a lot of work to
implement. So we implement this extension in the "trivial" manner:
we allow the guest to set and read back the CnP bit, but don't change
our behaviour (this is an architecturally valid implementation
choice).

The only code path which looks at the TTBRn_ELx values for the
long-descriptor format where the CnP bit is defined is already doing
enough masking to not get confused when the CnP bit at the bottom of
the register is set, so we can simply add a comment noting why we're
relying on that mask.

Backports commit 41a4bf1feab098da4cd5495cd56a99b0339e2275 from qemu
2020-03-22 02:24:48 -04:00
Richard Henderson 3d2a091389 target/arm: Remove ARM_FEATURE_VFP*
We have converted all tests against these features
to ISAR tests.

Backports commit f9506e162c33e87b609549157dd8431fcc732085 from qemu
2020-03-22 00:02:13 -04:00
Richard Henderson 7e99995b7b target/arm: Add isar_feature_aa64_fp_simd, isar_feature_aa32_vfp
We cannot easily create "any" functions for these, because the
ID_AA64PFR0 fields for FP and SIMD signal "enabled" with zero.
Which means that an aarch32-only cpu will return incorrect results
when testing the aarch64 registers.

To use these, we must either have context or additionally test
vs ARM_FEATURE_AARCH64.

Backports commit 7d63183ff1a61b3f7934dc9b40b10e4fd5e100cd from qemu
2020-03-21 23:19:14 -04:00
Richard Henderson 06b52d6660 target/arm: Add isar_feature_aa32_vfp_simd
Use this in the places that were checking ARM_FEATURE_VFP, and
are obviously testing for the existance of the register set
as opposed to testing for some particular instruction extension.

Backports commit 7fbc6a403a0aab834e764fa61d81ed8586cfe352 from qemu
2020-03-21 23:11:36 -04:00
Richard Henderson 7c799d29db target/arm: Set MVFR0.FPSP for ARMv5 cpus
We are going to convert FEATURE tests to ISAR tests,
so FPSP needs to be set for these cpus, like we have
already for FPDP.

Backports commit 9eb4f58918a851fb46895fd9b7ce579afeac9d02 from qemu
2020-03-21 19:41:18 -04:00
Peter Maydell 61cf5abc9e target/arm: Correctly implement ACTLR2, HACTLR2
The ACTLR2 and HACTLR2 AArch32 system registers didn't exist in ARMv7
or the original ARMv8. They were later added as optional registers,
whose presence is signaled by the ID_MMFR4.AC2 field. From ARMv8.2
they are mandatory (ie ID_MMFR4.AC2 must be non-zero).

We implemented HACTLR2 in commit 0e0456ab8895a5e85, but we
incorrectly made it exist for all v8 CPUs, and we didn't implement
ACTLR2 at all.

Sort this out by implementing both registers only when they are
supposed to exist, and setting the ID_MMFR4 bit for -cpu max.

Note that this removes HACTLR2 from our Cortex-A53, -A47 and -A72
CPU models; this is correct, because those CPUs do not implement
this register.

Fixes: 0e0456ab8895a5e85

Backports commit f6287c24c66d6b9187c1c2887e1c7cfa4d304b0c from qemu
2020-03-21 18:52:30 -04:00
Peter Maydell 4693b2c011 target/arm: Test correct register in aa32_pan and aa32_ats1e1 checks
The isar_feature_aa32_pan and isar_feature_aa32_ats1e1 functions
are supposed to be testing fields in ID_MMFR3; but a cut-and-paste
error meant we were looking at MVFR0 instead.

Fix the functions to look at the right register; this requires
us to move at least id_mmfr3 to the ARMISARegisters struct; we
choose to move all the ID_MMFRn registers for consistency.

Backports commit 10054016eda1b13bdd8340d100fd029cc8b58f36 from qemu
2020-03-21 18:47:12 -04:00
Peter Maydell cef6f3e72c target/arm: Move DBGDIDR into ARMISARegisters
We're going to want to read the DBGDIDR register from KVM in
a subsequent commit, which means it needs to be in the
ARMISARegisters sub-struct. Move it.

Backports commit 4426d3617d64922d97b74ed22e67e33b6fb7de0a from qemu
2020-03-21 18:29:01 -04:00
Peter Maydell afc28d9b2c target/arm: Add _aa64_ and _any_ versions of pmu_8_1 isar checks
Add the 64-bit version of the "is this a v8.1 PMUv3?"
ID register check function, and the _any_ version that
checks for either AArch32 or AArch64 support. We'll use
this in a later commit.

We don't (yet) do any isar_feature checks on ID_AA64DFR1_EL1,
but we move id_aa64dfr1 into the ARMISARegisters struct with
id_aa64dfr0, for consistency.

Backports commit 2a609df87d9b886fd38a190a754dbc241ff707e8 from qemu
2020-03-21 18:24:00 -04:00
Peter Maydell e64143966a target/arm: Define an aa32_pmu_8_1 isar feature test function
Instead of open-coding a check on the ID_DFR0 PerfMon ID register
field, create a standardly-named isar_feature for "does AArch32 have
a v8.1 PMUv3" and use it.

This entails moving the id_dfr0 field into the ARMISARegisters struct.

Backports commit a617953855b65a602d36364b9643f7e5bc31288e from qemu
2020-03-21 18:21:26 -04:00
Peter Maydell fd537585d7 target/arm: Use FIELD macros for clearing ID_DFR0 PERFMON field
We already define FIELD macros for ID_DFR0, so use them in the
one place where we're doing direct bit value manipulation.

Backports commit d52c061e541982a3663ad5c65bd3b518dbe85b87 from qemu
2020-03-21 18:17:55 -04:00
Peter Maydell fd6c635e03 target/arm: Add and use FIELD definitions for ID_AA64DFR0_EL1
Add FIELD() definitions for the ID_AA64DFR0_EL1 and use them
where we currently have hard-coded bit values.

Backports commit ceb2744b47a1ef4184dca56a158eb3156b6eba36 from qemu
2020-03-21 18:16:55 -04:00
Peter Maydell e63f70f980 target/arm: Add _aa32_ to isar_feature functions testing 32-bit ID registers
Enforce a convention that an isar_feature function that tests a
32-bit ID register always has _aa32_ in its name, and one that
tests a 64-bit ID register always has _aa64_ in its name.
We already follow this except for three cases: thumb_div,
arm_div and jazelle, which all need _aa32_ adding.

(As noted in the comment, isar_feature_aa32_fp16_arith()
is an exception in that it currently tests ID_AA64PFR0_EL1,
but will switch to MVFR1 once we've properly implemented
FP16 for AArch32.)

Backports commit 873b73c0c891ec20adacc7bd1ae789294334d675 from qemu
2020-03-21 18:08:23 -04:00
Richard Henderson 7287bf16b8 target/arm: Enable ARMv8.2-ATS1E1 in -cpu max
This includes enablement of ARMv8.1-PAN.

Backports commit e0fe7309a7c21ef2386de50d37c86aea0d671c08 from qemu
2020-03-21 17:43:54 -04:00
Richard Henderson eb0586f9cd target/arm: Raise only one interrupt in arm_cpu_exec_interrupt
The fall through organization of this function meant that we
would raise an interrupt, then might overwrite that with another.
Since interrupt prioritization is IMPLEMENTATION DEFINED, we
can recognize these in any order we choose.

Unify the code to raise the interrupt in a block at the end.

Backports commit d63d0ec59d87a698de5ed843288f90a23470cf2e from qemu
2020-03-21 16:42:52 -04:00
Richard Henderson d00e5ec47d target/arm: Use bool for unmasked in arm_excp_unmasked
The value computed is fully boolean; using int8_t is odd.

Backports commit 16e07f78df002067bc4bfb115ba1ee0ce278e9e5 from qemu
2020-03-21 16:40:36 -04:00
Richard Henderson 975f0a9bc5 target/arm: Pass more cpu state to arm_excp_unmasked
Avoid redundant computation of cpu state by passing it in
from the caller, which has already computed it for itself.

Backports commit be87955687446be152f366af543c9234eab78a7c from qemu
2020-03-21 16:39:16 -04:00
Richard Henderson 6023db20bc target/arm: Move arm_excp_unmasked to cpu.c
This inline function has one user in cpu.c, and need not be exposed
otherwise. Code movement only, with fixups for checkpatch.

Backports commit 310cedf39dea240a89f90729fd99481ff6158e90 from qemu
2020-03-21 16:37:12 -04:00
Clement Deschamps 1d97d223c3 target/arm: add PMU feature to cortex-r5 and cortex-r5f
The PMU is not optional on cortex-r5 and cortex-r5f (see
the "Features" chapter of the Technical Reference Manual).

Backports commit 90f671581ac601fcc1b840d9e9abe7e3c3e672db from qemu
2020-03-21 12:16:11 -04:00
Christophe Lyon 1df67780cd target/arm: Add support for cortex-m7 CPU
This is derived from cortex-m4 description, adding DP support and FPv5
instructions with the corresponding flags in isar and mvfr2.

Checked that it could successfully execute
vrinta.f32 s15, s15
while cortex-m4 emulation rejects it with "illegal instruction".

Backports commit cf7beda5072e106ddce875c1996446540c5fe239 from qemu
2020-01-07 17:52:27 -05:00
Peter Maydell c6041bf94b
target/arm: Avoid bogus NSACR traps on M-profile without Security Extension
In Arm v8.0 M-profile CPUs without the Security Extension and also in
v7M CPUs, there is no NSACR register. However, the code we have to handle
the FPU does not always check whether the ARM_FEATURE_M_SECURITY bit
is set before testing whether env->v7m.nsacr permits access to the
FPU. This means that for a CPU with an FPU but without the Security
Extension we would always take a bogus fault when trying to stack
the FPU registers on an exception entry.

We could fix this by adding extra feature bit checks for all uses,
but it is simpler to just make the internal value of nsacr 0xcff
("all non-secure accesses allowed"), since this is not guest
visible when the Security Extension is not present. This allows
us to continue to follow the Arm ARM pseudocode which takes a
similar approach. (In particular, in the v8.1 Arm ARM the register
is documented as reading as 0xcff in this configuration.)

Fixes: https://bugs.launchpad.net/qemu/+bug/1838475

Backports commit 02ac2f7f613b47f6a5b397b20ab0e6b2e7fb89fa from qemu
2019-08-08 19:56:56 -04:00
Lioncash 59d808cf21
target/arm: Supply uc_struct instance to tcg_enabled() 2019-08-08 19:55:12 -04:00
Peter Maydell fbbd582fb9
target/arm: Limit ID register assertions to TCG
In arm_cpu_realizefn() we make several assertions about the values of
guest ID registers:
* if the CPU provides AArch32 v7VE or better it must advertise the
ARM_DIV feature
* if the CPU provides AArch32 A-profile v6 or better it must
advertise the Jazelle feature

These are essentially consistency checks that our ID register
specifications in cpu.c didn't accidentally miss out a feature,
because increasingly the TCG emulation gates features on the values
in ID registers rather than using old-style checks of ARM_FEATURE_FOO
bits.

Unfortunately, these asserts can cause problems if we're running KVM,
because in that case we don't control the values of the ID registers
-- we read them from the host kernel. In particular, if the host
kernel is older than 4.15 then it doesn't expose the ID registers via
the KVM_GET_ONE_REG ioctl, and we set up dummy values for some
registers and leave the rest at zero. (See the comment in
target/arm/kvm64.c kvm_arm_get_host_cpu_features().) This set of
dummy values is not sufficient to pass our assertions, and so on
those kernels running an AArch32 guest on AArch64 will assert.

We could provide a more sophisticated set of dummy ID registers in
this case, but that still leaves the possibility of a host CPU which
reports bogus ID register values that would cause us to assert. It's
more robust to only do these ID register checks if we're using TCG,
as that is the only case where this is truly a QEMU code bug.

Backports commit 8f4821d77e465bc2ef77302d47640d5a43d92b30 from qemu
2019-08-08 19:44:16 -04:00
Peter Maydell 8ec683b874
target/arm: Set VFP-related MVFR0 fields for arm926 and arm1026
The ARMv5 architecture didn't specify detailed per-feature ID
registers. Now that we're using the MVFR0 register fields to
gate the existence of VFP instructions, we need to set up
the correct values in the cpu->isar structure so that we still
provide an FPU to the guest.

This fixes a regression in the arm926 and arm1026 CPUs, which
are the only ones that both have VFP and are ARMv5 or earlier.
This regression was introduced by the VFP refactoring, and more
specifically by commits 1120827fa182f0e76 and 266bd25c485597c,
which accidentally disabled VFP short-vector support and
double-precision support on these CPUs.

Backports commit cb7cef8b32033f6284a47d797edd5c19c5491698 from qemu
2019-08-08 19:29:56 -04:00
Alex Bennée f893ff0b89
target/arm: report ARMv8-A FP support for AArch32 -cpu max
When we converted to using feature bits in 602f6e42cfbf we missed out
the fact (dp && arm_dc_feature(s, ARM_FEATURE_V8)) was supported for
-cpu max configurations. This caused a regression in the GCC test
suite. Fix this by setting the appropriate bits in mvfr1.FPHP to
report ARMv8-A with FP support (but not ARMv8.2-FP16).

Fixes: https://bugs.launchpad.net/qemu/+bug/1836078

Backports commit 45b1a243b81a7c9ae56235937280711dd9914ca7 from qemu
2019-08-08 19:28:39 -04:00
Philippe Mathieu-Daudé 6295fd7156
target/arm: Move debug routines to debug_helper.c
These routines are TCG specific.

Backports commit 9dd5cca42448770a940fa2145f1ff18cdc7b01a9 from qemu
2019-08-08 17:46:56 -04:00
Philippe Mathieu-Daudé 91e264823e
target/arm: Move TLB related routines to tlb_helper.c
These routines are TCG specific.
The arm_deliver_fault() function is only used within the new
helper. Make it static.

Backports commit e21b551cb652663f2f2405a64d63ef6b4a1042b7 from qemu
2019-08-08 15:24:26 -04:00
Peter Maydell 93adaa7de2
target/arm: Explicitly enable VFP short-vectors for aarch32 -cpu max
At the moment our -cpu max for AArch32 supports VFP short-vectors
because we always implement them, even for CPUs which should
not have them. The following commits are going to switch to
using the correct ID-register-check to enable or disable short
vector support, so we need to turn it on explicitly for -cpu max,
because Cortex-A15 doesn't implement it.

We don't enable this for the AArch64 -cpu max, because the v8A
architecture never supports short-vectors.

Backports commit 973751fd798d41402d34f9f705c0c6d1633d0cda from qemu
2019-06-13 16:38:01 -04:00
Peter Maydell 808d929d7c
target/arm: Fix Cortex-R5F MVFR values
The Cortex-R5F initfn was not correctly setting up the MVFR
ID register values. Fill these in, since some subsequent patches
will use ID register checks rather than CPU feature bit checks.

Backports commit 3de79d335c9aa7d726865e3933d9b21781032183 from qemu
2019-06-13 16:36:48 -04:00
Richard Henderson a672b89e3b
cpu: Introduce cpu_set_cpustate_pointers
Consolidate some boilerplate from foo_cpu_initfn.

Backports commit 7506ed902eb97fe4e2a1dd16766c621d32ecc40d from qemu
2019-06-12 12:27:16 -04:00
Richard Henderson 31ecdb5341
target/arm: Convert to CPUClass::tlb_fill
Backports commit 7350d553b5066abdc662045d7db5cdb73d0f9d53 from qemu
2019-05-16 16:55:12 -04:00
Peter Maydell d4549fccfb
target/arm: Enable FPU for Cortex-M4 and Cortex-M33
Enable the FPU by default for the Cortex-M4 and Cortex-M33.

Backports commit 14fd0c31e26b88a2189b3f459b864d5e1faf302a from qemu
2019-04-30 11:29:26 -04:00
Peter Maydell 8d726490ff
target/arm: Overlap VECSTRIDE and XSCALE_CPAR TB flags
We are close to running out of TB flags for AArch32; we could
start using the cs_base word, but before we do that we can
economise on our usage by sharing the same bits for the VFP
VECSTRIDE field and the XScale XSCALE_CPAR field. This
works because no XScale CPU ever had VFP.

Backports commit ea7ac69d124c94c6e5579145e727adec9ccbefef from qemu
2019-04-30 10:45:14 -04:00
Peter Maydell a4f332f3e9
target/arm: Implement dummy versions of M-profile FP-related registers
The M-profile floating point support has three associated config
registers: FPCAR, FPCCR and FPDSCR. It also makes the registers
CPACR and NSACR have behaviour other than reads-as-zero.
Add support for all of these as simple reads-as-written registers.
We will hook up actual functionality later.

The main complexity here is handling the FPCCR register, which
has a mix of banked and unbanked bits.

Note that we don't share storage with the A-profile
cpu->cp15.nsacr and cpu->cp15.cpacr_el1, though the behaviour
is quite similar, for two reasons:
* the M profile CPACR is banked between security states
* it preserves the invariant that M profile uses no state
inside the cp15 substruct

Backports commit d33abe82c7c9847284a23e575e1078cccab540b5 from qemu
2019-04-30 10:13:41 -04:00
Lioncash c3df12e534
target/arm/translate: Synchronize with Qemu 2019-04-27 10:13:01 -04:00
Lioncash 3521e72580
target/arm: Sychronize with qemu
Synchronizes with bits and pieces that were missed due to merging
incorrectly (sorry :<)
2019-04-18 04:49:11 -04:00