In v8.1M the PXN architecture extension adds a new PXN bit to the
MPU_RLAR registers, which forbids execution of code in the region
from a privileged mode.
This is another feature which is just in the generic "in v8.1M" set
and has no ID register field indicating its presence.
Backports cad8e2e3160dd10371552fce6cd8c6e171503e13
Using a target unsigned long would limit the Input Address to a LPAE
page-walk to 32 bits on AArch32 and 64 bits on AArch64. This is okay
for stage 1 or on AArch64, but it is insufficient for stage 2 on
AArch32. In that later case, the Input Address can have up to 40 bits.
Backports commit 98e8779770c40901ed585745aacc9a8e2b934a28
Last use of qemu_bswap_len() has been removed in commit
e5fd1eb05ec ("apb: add busA qdev property to PBM PCI bridge").
Backport 949eaaad5341db318fc8bae79489a1f7624f3b9e
There is no "version 2" of the "Lesser" General Public License.
It is either "GPL version 2.0" or "Lesser GPL version 2.1".
This patch replaces all occurrences of "Lesser GPL version 2" with
"Lesser GPL version 2.1" in comment section.
Backport d9ff33ada7f32ca59f99b270a2d0eb223b3c9c8f
There is no "version 2" of the "Lesser" General Public License.
It is either "GPL version 2.0" or "Lesser GPL version 2.1".
This patch replaces all occurrences of "Lesser GPL version 2" with
"Lesser GPL version 2.1" in comment section.
Backports 50f57e09fda4b7ffbc5ba62aad6cebf660824023
Checks for UNDEF cases should go before the "is VFP enabled?" access
check, except in special cases. Move a stray UNDEF check in the VTBL
trans function up above the access check.
Backports b6c56c8a9a4064ea783f352f43c5df6231a110fa
The helper function did not get updated when we reorganized
the vector register file for SVE. Since then, the neon dregs
are non-sequential and cannot be simply indexed.
At the same time, make the helper function operate on 64-bit
quantities so that we do not have to call it twice.
Backports 604cef3e57eaeeef77074d78f6cf2eca1be11c62
Fix code style. Don't use '#' flag of printf format ('%#') in
format strings, use '0x' prefix instead
Backports 6eb55edbabb9eed1e4c7dfb233e7d738e8b5fa89
In arm_v7m_mmu_idx_for_secstate() we get the 'priv' level to pass to
armv7m_mmu_idx_for_secstate_and_priv() by calling arm_current_el().
This is incorrect when the security state being queried is not the
current one, because arm_current_el() uses the current security state
to determine which of the banked CONTROL.nPRIV bits to look at.
The effect was that if (for instance) Secure state was in privileged
mode but Non-Secure was not then we would return the wrong MMU index.
The only places where we are using this function in a way that could
trigger this bug are for the stack loads during a v8M function-return
and for the instruction fetch of a v8M SG insn.
Fix the bug by expanding out the M-profile version of the
arm_current_el() logic inline so it can use the passed in secstate
rather than env->v7m.secure.
Backports 7142eb9e24b4aa5118cd67038057f15694d782aa
Secure mode is not exempted from checking SCR_EL3.TLOR, and in the
future HCR_EL2.TLOR when S-EL2 is enabled.
Backports 9bd268bae5c4760870522292fb1d46e7da7e372a
The helper functions for performing the udot/sdot operations against
a scalar were not using an address-swizzling macro when converting
the index of the scalar element into a pointer into the vm array.
This had no effect on little-endian hosts but meant we generated
incorrect results on big-endian hosts.
For these insns, the index is indexing over group of 4 8-bit values,
so 32 bits per indexed entity, and H4() is therefore what we want.
(For Neon the only possible input indexes are 0 and 1.)
Backports d1a9254be5cc93afb15be19f7543da6ff4806256
In the neon_padd/pmax/pmin helpers for float16, a cut-and-paste error
meant we were using the H4() address swizzler macro rather than the
H2() which is required for 2-byte data. This had no effect on
little-endian hosts but meant we put the result data into the
destination Dreg in the wrong order on big-endian hosts.
Backports 552714c0812a10e5cff239bd29928e5fcb8d8b3b
In both cases, we can sink the write-back and perform
the accumulate into the normal destination temps
Backports 9f1a5f93c2dd345dc6c8fe86ed14bf1485056f6e
The only uses of this function are for loading VFP
double-precision values, and nothing to do with NEON.
Backports b38b96ca90827012ab8eb045c1337cea83a54c4b
The only uses of this function are for loading VFP
single-precision values, and nothing to do with NEON.
Backports 21c1c0e50b73c580c6bfc8f2314d1b6a14793561
We can then use this to improve VMOV (scalar to gp) and
VMOV (gp to scalar) so that we simply perform the memory
operation that we wanted, rather than inserting or
extracting from a 32-bit quantity.
These were the last uses of neon_load/store_reg, so remove them.
Backports 4d5fa5a80ac28f34b8497be1e85371272413a12e
Model these off the aa64 read/write_vec_element functions.
Use it within translate-neon.c.inc. The new functions do
not allocate or free temps, so this rearranges the calling
code a bit.
Backports a712266f5d5a36d04b22fe69fa15592d62bed019
This function makes it clear that we're talking about the whole
register, and not the 32-bit piece at index 0. This fixes a bug
when running on a big-endian host.
Backports 015ee81a4c06b644969f621fd9965cc6372b879e
If the M-profile low-overhead-branch extension is implemented, FPSCR
bits [18:16] are a new field LTPSIZE. If MVE is not implemented
(currently always true for us) then this field always reads as 4 and
ignores writes.
These bits used to be the vector-length field for the old
short-vector extension, so we need to take care that they are not
misinterpreted as setting vec_len. We do this with a rearrangement
of the vfp_set_fpscr() code that deals with vec_len, vec_stride
and also the QC bit; this obviates the need for the M-profile
only masking step that we used to have at the start of the function.
We provide a new field in CPUState for LTPSIZE, even though this
will always be 4, in preparation for MVE, so we don't have to
come back later and split it out of the vfp.xregs[FPSCR] value.
(This state struct field will be saved and restored as part of
the FPSCR value via the vmstate_fpscr in machine.c.)
Backports 8128c8e8cc9489a8387c74075974f86dc0222e7f
M-profile CPUs with half-precision floating point support should
be able to write to FPSCR.FZ16, but an M-profile specific masking
of the value at the top of vfp_set_fpscr() currently prevents that.
This is not yet an active bug because we have no M-profile
FP16 CPUs, but needs to be fixed before we can add any.
The bits that the masking is effectively preventing from being
set are the A-profile only short-vector Len and Stride fields,
plus the Neon QC bit. Rearrange the order of the function so
that those fields are handled earlier and only under a suitable
guard; this allows us to drop the M-profile specific masking,
making FZ16 writeable.
This change also makes the QC bit correctly RAZ/WI for older
no-Neon A-profile cores.
This refactoring also paves the way for the low-overhead-branch
LTPSIZE field, which uses some of the bits that are used for
A-profile Stride and Len.
Backports commit d31e2ce68d56f5bcc83831497e5fe4b8a7e18e85
v8.1M's "low-overhead-loop" extension has three instructions
for looping:
* DLS (start of a do-loop)
* WLS (start of a while-loop)
* LE (end of a loop)
The loop-start instructions are both simple operations to start a
loop whose iteration count (if any) is in LR. The loop-end
instruction handles "decrement iteration count and jump back to loop
start"; it also caches the information about the branch back to the
start of the loop to improve performance of the branch on subsequent
iterations.
As with the branch-future instructions, the architecture permits an
implementation to discard the LO_BRANCH_INFO cache at any time, and
QEMU takes the IMPDEF option to never set it in the first place
(equivalent to discarding it immediately), because for us a "real"
implementation would be unnecessary complexity.
(This implementation only provides the simple looping constructs; the
vector extension MVE (Helium) adds some extra variants to handle
looping across vectors. We'll add those later when we implement
MVE.)
Backports commit b7226369721896ab9ef71544e4fe95b40710e05a
v8.1M implements a new 'branch future' feature, which is a
set of instructions that request the CPU to perform a branch
"in the future", when it reaches a particular execution address.
In hardware, the expected implementation is that the information
about the branch location and destination is cached and then
acted upon when execution reaches the specified address.
However the architecture permits an implementation to discard
this cached information at any point, and so guest code must
always include a normal branch insn at the branch point as
a fallback. In particular, an implementation is specifically
permitted to treat all BF insns as NOPs (which is equivalent
to discarding the cached information immediately).
For QEMU, implementing this caching of branch information
would be complicated and would not improve the speed of
execution at all, so we make the IMPDEF choice to implement
all BF insns as NOPs.
Backports commit 05903f036edba8e3ed940cc215b8e27fb49265b9
The BLX immediate insn in the Thumb encoding always performs
a switch from Thumb to Arm state. This would be totally useless
in M-profile which has no Arm decoder, and so the instruction
does not exist at all there. Make the encoding UNDEF for M-profile.
(This part of the encoding space is used for the branch-future
and low-overhead-loop insns in v8.1M.)
Backports 920f04fa3ea789f8f85a52cee5395b8887b56cf7
The t32 decode has a group which represents a set of insns
which overlap with B_cond_thumb because they have [25:23]=111
(which is an invalid condition code field for the branch insn).
This group is currently defined using the {} overlap-OK syntax,
but it is almost entirely non-overlapping patterns. Switch
it over to use a non-overlapping group.
For this to be valid syntactically, CPS must move into the same
overlapping-group as the hint insns (CPS vs hints was the
only actual use of the overlap facility for the group).
The non-overlapping subgroup for CLREX/DSB/DMB/ISB/SB is no longer
necessary and so we can remove it (promoting those insns to
be members of the parent group).
Backports 45f11876ae86128bdee27e0b089045de43cc88e4
From v8.1M, disabled-coprocessor handling changes slightly:
* coprocessors 8, 9, 14 and 15 are also governed by the
cp10 enable bit, like cp11
* an extra range of instruction patterns is considered
to be inside the coprocessor space
We previously marked these up with TODO comments; implement the
correct behaviour.
Unfortunately there is no ID register field which indicates this
behaviour. We could in theory test an unrelated ID register which
indicates guaranteed-to-be-in-v8.1M behaviour like ID_ISAR0.CmpBranch
>= 3 (low-overhead-loops), but it seems better to simply define a new
ARM_FEATURE_V8_1M feature flag and use it for this and other
new-in-v8.1M behaviour that isn't identifiable from the ID registers.
Backports commit 5d2555a1fe7370feeb1efbbf276a653040910017
For nested groups like:
{
[
pattern 1
pattern 2
]
pattern 3
}
the intended behaviour is that patterns 1 and 2 must not
overlap with each other; if the insn matches neither then
we fall through to pattern 3 as the next thing in the
outer overlapping group.
Currently we generate incorrect code for this situation,
because in the code path for a failed match inside the
inner non-overlapping group we generate a "return" statement,
which causes decode to stop entirely rather than continuing
to the next thing in the outer group.
Generate a "break" instead, so that decode flow behaves
as required for this nested group case.
Backports 514101c0b931f0a11a40d29d26af1cc40482f951
Unlike many other bits in HCR_EL2, the description for this
bit does not contain the phrase "if ... this field behaves
as 0 for all purposes other than", so do not squash the bit
in arm_hcr_el2_eff.
Instead, replicate the E2H+TGE test in the two places that
require it.
Backports 4301acd7d7d455792ea873ced75c0b5d653618b1
The reporting in AArch64.TagCheckFail only depends on PSTATE.EL,
and not the AccType of the operation. There are two guest
visible problems that affect LDTR and STTR because of this:
(1) Selecting TCF0 vs TCF1 to decide on reporting,
(2) Report "data abort same el" not "data abort lower el".
Backports 50244cc76abcac3296cff3d84826f5ff71808c80
We already have the full ARMMMUIdx as computed from the
function parameter.
For the purpose of regime_has_2_ranges, we can ignore any
difference between AccType_Normal and AccType_Unpriv, which
would be the only difference between the passed mmu_idx
and arm_mmu_idx_el.
Backports 4aedfc0f633fd06dd2a5dc8ffa93f4c56117e37f
For AArch32, unlike the VCVT of integer to float, which honours the
rounding mode specified by the FPSCR, VCVT of fixed-point to float is
always round-to-nearest. (AArch64 fixed-point-to-float conversions
always honour the FPCR rounding mode.)
Implement this by providing _round_to_nearest versions of the
relevant helpers which set the rounding mode temporarily when making
the call to the underlying softfloat function.
We only need to change the VFP VCVT instructions, because the
standard- FPSCR value used by the Neon VCVT is always set to
round-to-nearest, so we don't need to do the extra work of saving
and restoring the rounding mode.
Backports commit 61db12d9f9eb36761edba4d9a414cd8dd34c512b
The SMLAD instruction is supposed to:
* signed multiply Rn[15:0] * Rm[15:0]
* signed multiply Rn[31:16] * Rm[31:16]
* perform a signed addition of the products and Ra
* set Rd to the low 32 bits of the theoretical
infinite-precision result
* set the Q flag if the sign-extension of Rd
would differ from the infinite-precision result
(ie on overflow)
Our current implementation doesn't quite do this, though: it performs
an addition of the products setting Q on overflow, and then it adds
Ra, again possibly setting Q. This sometimes incorrectly sets Q when
the architecturally mandated only-check-for-overflow-once algorithm
does not. For instance:
r1 = 0x80008000; r2 = 0x80008000; r3 = 0xffffffff
smlad r0, r1, r2, r3
This is (-32768 * -32768) + (-32768 * -32768) - 1
The products are both 0x4000_0000, so when added together as 32-bit
signed numbers they overflow (and QEMU sets Q), but because the
addition of Ra == -1 brings the total back down to 0x7fff_ffff
there is no overflow for the complete operation and setting Q is
incorrect.
Fix this edge case by resorting to 64-bit arithmetic for the
case where we need to add three values together.
Backports commit 5288145d716338ace0f83e3ff05c4d07715bb4f4
QEMU supports a 48-bit physical address range, but we don't currently
expose it in the '-cpu max' ID registers (you get the same range as
Cortex-A57, which is 44 bits).
Set the ID_AA64MMFR0.PARange field to indicate 48 bits.
Backports d1b6b7017572e8d82f26eb827a1dba0e8cf3cae6
When the two arguments are identical, this can be reduced to
dup_vec or to mov_vec from a tcg_constant_vec.
Backports commit 1dc4fe70128db05237a00eda6eb15e2b44deb31f