Remove a function of the same name from target/arm/.
Use a branchless implementation of abs gleaned from gcc.
Backports commit ff1f11f7f8710a768f9313f24bd7f509d3db27e5 from qemu
Replace the single opcode in .opc with a null-terminated
array in .opt_opc. We still require that all opcodes be
used with the same .vece.
Validate the contents of this list with CONFIG_DEBUG_TCG.
All tcg_gen_*_vec functions will check any list active
during .fniv expansion. Swap the active list in and out
as we expand other opcodes, or take control away from the
front-end function.
Convert all existing vector aware front ends.
Backports commit 53229a7703eeb2bbe101a19a33ef22aaf960c65b from qemu
Thereby decoupling the resulting translated code from the current state
of the system.
Backports commit 2399d4e7cec22ecf1c51062d2ebfd45220dbaace from qemu
The M-profile architecture floating point system supports
lazy FP state preservation, where FP registers are not
pushed to the stack when an exception occurs but are instead
only saved if and when the first FP instruction in the exception
handler is executed. Implement this in QEMU, corresponding
to the check of LSPACT in the pseudocode ExecuteFPCheck().
Backports commit e33cf0f8d8c9998a7616684f9d6aa0d181b88803 from qemu
The M-profile FPCCR.ASPEN bit indicates that automatic floating-point
context preservation is enabled. Before executing any floating-point
instruction, if FPCCR.ASPEN is set and the CONTROL FPCA/SFPA bits
indicate that there is no active floating point context then we
must create a new context (by initializing FPSCR and setting
FPCA/SFPA to indicate that the context is now active). In the
pseudocode this is handled by ExecuteFPCheck().
Implement this with a new TB flag which tracks whether we
need to create a new FP context.
Backports commit 6000531e19964756673a5f4b694a649ef883605a from qemu
The M-profile FPCCR.S bit indicates the security status of
the floating point context. In the pseudocode ExecuteFPCheck()
function it is unconditionally set to match the current
security state whenever a floating point instruction is
executed.
Implement this by adding a new TB flag which tracks whether
FPCCR.S is different from the current security state, so
that we only need to emit the code to update it in the
less-common case when it is not already set correctly.
Note that we will add the handling for the other work done
by ExecuteFPCheck() in later commits.
Backports commit 6d60c67a1a03be32c3342aff6604cdc5095088d1 from qemu
We are close to running out of TB flags for AArch32; we could
start using the cs_base word, but before we do that we can
economise on our usage by sharing the same bits for the VFP
VECSTRIDE field and the XScale XSCALE_CPAR field. This
works because no XScale CPU ever had VFP.
Backports commit ea7ac69d124c94c6e5579145e727adec9ccbefef from qemu
Correct the decode of the M-profile "coprocessor and
floating-point instructions" space:
* op0 == 0b11 is always unallocated
* if the CPU has an FPU then all insns with op1 == 0b101
are floating point and go to disas_vfp_insn()
For the moment we leave VLLDM and VLSTM as NOPs; in
a later commit we will fill in the proper implementation
for the case where an FPU is present.
Backports commit 8859ba3c9625e7ceb5599f457a344bcd7c5e112b from qemu
Like AArch64, M-profile floating point has no FPEXC enable
bit to gate floating point; so always set the VFPEN TB flag.
M-profile also has CPACR and NSACR similar to A-profile;
they behave slightly differently:
* the CPACR is banked between Secure and Non-Secure
* if the NSACR forces a trap then this is taken to
the Secure state, not the Non-Secure state
Honour the CPACR and NSACR settings. The NSACR handling
requires us to borrow the exception.target_el field
(usually meaningless for M profile) to distinguish the
NOCP UsageFault taken to Secure state from the more
usual fault taken to the current security state.
Backports commit d87513c0abcbcd856f8e1dee2f2d18903b2c3ea2 from qemu
The only "system register" that M-profile floating point exposes
via the VMRS/VMRS instructions is FPSCR, and it does not have
the odd special case for rd==15. Add a check to ensure we only
expose FPSCR.
Backports commit ef9aae2522c22c05df17dd898099dd5c3f20d688 from qemu
In order to handle TB's that translate to too much code, we
need to place the control of the length of the translation
in the hands of the code gen master loop.
Backports commit 8b86d6d25807e13a63ab6ea879f976b9f18cc45a from qemu
This wasn't subtracting the size of the instruction off the PC like how
the ARM mode tracing was performing the tracing. This simplifies it and
makes the behavior identical.
Allows non-AArch64 environments to always access coprocessors initially.
Removes the need to do avoidable register management when testing
floating-point code.
We do not need an out-of-line helper for manipulating bits in pstate.
While changing things, share the implementation of gen_ss_advance.
Backports commit 22ac3c49641f6eed93dca5b852030b4d3eacf6c4 from qemu
Found by inspection: Rn is the base register against which the
load began; I is the register within the mask being processed.
The exception return should of course be processed from the loaded PC.
Backports commit 9d090d17234058f55c3c439d285db78c94d7d4de from qemu
Previously we'd be checking prior to the actual decoding if we were at
the ending address. This worked fine using the old model of the
translation process in qemu. However, this causes the wrong behavior to
occur in both ARM and Thumb/Thumb-2 modes using the newer translator
model.
Given the translator itself checks for the end address already, this
needs to be placed within arm_post_translate_insn().
This prevents the emulation process being off-by-one as well when it
comes to actually executing the instructions.
There is a set of VFP instructions which we implement in
disas_vfp_v8_insn() and gate on the ARM_FEATURE_V8 bit.
These were all first introduced in v8 for A-profile, but in
M-profile they appeared in v7M. Gate them on the MVFR2
FPMisc field instead, and rename the function appropriately.
Backports commit c0c760afe800b60b48c80ddf3509fec413594778 from qemu
Instead of gating the A32/T32 FP16 conversion instructions on
the ARM_FEATURE_VFP_FP16 flag, switch to our new approach of
looking at ID register bits. In this case MVFR1 fields FPHP
and SIMDHP indicate the presence of these insns.
This change doesn't alter behaviour for any of our CPUs.
Backports commit 602f6e42cfbfe9278be34e9b91d2ceb695837e02 from qemu
There are lots of special cases within these insns. Split the
major argument decode/loading/saving into no_output (compares),
rd_is_dp, and rm_is_dp.
We still need to special case argument load for compare (rd as
input, rm as zero) and vcvt fixed (rd as input+output), but lots
of special cases do disappear.
Now that we have a full switch at the beginning, hoist the ISA
checks from the code generation.
Backports commit e80941bd64cc388554770fd72334e9e7d459a1ef from qemu
For same-sign saturation, we have tcg vector operations. We can
compute the QC bit by comparing the saturated value against the
unsaturated value.
Backports commit 89e68b575e138d0af1435f11a8ffcd8779c237bd from qemu
The 32-bit PMIN/PMAX has been decomposed to scalars,
and so can be trivially expanded inline.
Backports commit 9ecd3c5c1651fa7f9adbedff4806a2da0b50490c from qemu
Since we're now handling a == b generically, we no longer need
to do it by hand within target/arm/.
Backports commit 2900847ff4c862887af750935a875059615f509a from qemu
Now that MTTCG is here, the comment in the 32-bit Arm decoder that
"Since the emulation does not have barriers, the acquire/release
semantics need no special handling" is no longer true. Emit the
correct barriers for the load-acquire/store-release insns, as
we already do in the A64 decoder.
Backports commit 96c552958dbb63453b5f02bea6e704006d50e39a from qemu
Use "register" TBFLAG_ANY to indicate shared state between
A32 and A64, and "registers" TBFLAG_A32 & TBFLAG_A64 for
fields that are specific to the given cpu state.
Move ARM_TBFLAG_BE_DATA to shared state, instead of its current
placement within "Bit usage when in AArch32 state".
Backports commit aad821ac4faad369fad8941d25e59edf2514246b from qemu
Instead of shifts and masks, use direct loads and stores from
the neon register file.
Backports commit 2d6ac920837f558be214ad2ddd28cad7f3b15e5c from qemu
For a sequence of loads or stores from a single register,
little-endian operations can be promoted to an 8-byte op.
This can reduce the number of operations by a factor of 8.
Backports commit e23f12b3a252352b575908ca7b94587acd004641 from qemu
Instead of shifts and masks, use direct loads and stores from the neon
register file. Mirror the iteration structure of the ARM pseudocode
more closely. Correct the parameters of the VLD2 A2 insn.
Note that this includes a bugfix for handling of the insn
"VLD2 (multiple 2-element structures)" -- we were using an
incorrect stride value.
Backports commit ac55d00709e78cd39dfa298dcaac7aecb58762e8 from qemu