Unlike many other bits in HCR_EL2, the description for this
bit does not contain the phrase "if ... this field behaves
as 0 for all purposes other than", so do not squash the bit
in arm_hcr_el2_eff.
Instead, replicate the E2H+TGE test in the two places that
require it.
Backports 4301acd7d7d455792ea873ced75c0b5d653618b1
The reporting in AArch64.TagCheckFail only depends on PSTATE.EL,
and not the AccType of the operation. There are two guest
visible problems that affect LDTR and STTR because of this:
(1) Selecting TCF0 vs TCF1 to decide on reporting,
(2) Report "data abort same el" not "data abort lower el".
Backports 50244cc76abcac3296cff3d84826f5ff71808c80
We already have the full ARMMMUIdx as computed from the
function parameter.
For the purpose of regime_has_2_ranges, we can ignore any
difference between AccType_Normal and AccType_Unpriv, which
would be the only difference between the passed mmu_idx
and arm_mmu_idx_el.
Backports 4aedfc0f633fd06dd2a5dc8ffa93f4c56117e37f
For AArch32, unlike the VCVT of integer to float, which honours the
rounding mode specified by the FPSCR, VCVT of fixed-point to float is
always round-to-nearest. (AArch64 fixed-point-to-float conversions
always honour the FPCR rounding mode.)
Implement this by providing _round_to_nearest versions of the
relevant helpers which set the rounding mode temporarily when making
the call to the underlying softfloat function.
We only need to change the VFP VCVT instructions, because the
standard- FPSCR value used by the Neon VCVT is always set to
round-to-nearest, so we don't need to do the extra work of saving
and restoring the rounding mode.
Backports commit 61db12d9f9eb36761edba4d9a414cd8dd34c512b
The SMLAD instruction is supposed to:
* signed multiply Rn[15:0] * Rm[15:0]
* signed multiply Rn[31:16] * Rm[31:16]
* perform a signed addition of the products and Ra
* set Rd to the low 32 bits of the theoretical
infinite-precision result
* set the Q flag if the sign-extension of Rd
would differ from the infinite-precision result
(ie on overflow)
Our current implementation doesn't quite do this, though: it performs
an addition of the products setting Q on overflow, and then it adds
Ra, again possibly setting Q. This sometimes incorrectly sets Q when
the architecturally mandated only-check-for-overflow-once algorithm
does not. For instance:
r1 = 0x80008000; r2 = 0x80008000; r3 = 0xffffffff
smlad r0, r1, r2, r3
This is (-32768 * -32768) + (-32768 * -32768) - 1
The products are both 0x4000_0000, so when added together as 32-bit
signed numbers they overflow (and QEMU sets Q), but because the
addition of Ra == -1 brings the total back down to 0x7fff_ffff
there is no overflow for the complete operation and setting Q is
incorrect.
Fix this edge case by resorting to 64-bit arithmetic for the
case where we need to add three values together.
Backports commit 5288145d716338ace0f83e3ff05c4d07715bb4f4
QEMU supports a 48-bit physical address range, but we don't currently
expose it in the '-cpu max' ID registers (you get the same range as
Cortex-A57, which is 44 bits).
Set the ID_AA64MMFR0.PARange field to indicate 48 bits.
Backports d1b6b7017572e8d82f26eb827a1dba0e8cf3cae6
When the two arguments are identical, this can be reduced to
dup_vec or to mov_vec from a tcg_constant_vec.
Backports commit 1dc4fe70128db05237a00eda6eb15e2b44deb31f
The definition of INDEX_op_dupi_vec is that it operates on
units of tcg_target_ulong -- in this case 32 bits. It does
not work to use this for a uint64_t value that happens to be
small enough to fit in tcg_target_ulong.
Backports a5b30d950c42b14bc9da24d1e68add6538d23336
The previous change wrongly stated that 32-bit avx2 should have
used VPBROADCASTW. But that's a 16-bit broadcast and we want a
32-bit broadcast.
Backports f80d09b599a5e0fd7f44653f23b04104cb703f7a
These are easier to set and test when they have their own fields.
Reduce the size of alias_index and sort_index to 4 bits, which is
sufficient for TCG_MAX_OP_ARGS. This leaves only the bits indicating
constants within the ct field.
Move all initialization to allocation time, rather than init
individual fields in process_op_defs.
Backports bc2b17e6ea582ef3ade2bdca750de269c674c915
This wasn't actually used for anything, really. All variable
operands must accept registers, and which are indicated by the
set in TCGArgConstraint.regs.
Backports commit 74a117906b87ff9220e4baae5a7431d6f4eadd45
This uses an existing hole in the TCGArgConstraint structure
and will be convenient for keeping the data in one place.
Backports 66792f90f14fef18b25a168922877a367ecdca05
With larger vector sizes, it turns out oprsz == maxsz, and we only
need to represent mismatch for oprsz <= 32. We do, however, need
to represent larger oprsz and do so without reducing SIMD_DATA_BITS.
Reduce the size of the oprsz field and increase the maxsz field.
Steal the oprsz value of 24 to indicate equality with maxsz.
Backports e2e7168a214b0ed98dc357bba96816486a289762
While converting to gen_gvec_ool_zzzp, we lost passing
a->esz as the data argument to the function.
Backports commit dd701fafe55a78e655d4823d29226d92250a6b56
The M-profile definition of the MVFR1 ID register differs slightly
from the A-profile one, and in particular the check for "does the CPU
support fp16 arithmetic" is not the same.
We don't currently implement any M-profile CPUs with fp16 arithmetic,
so this is not yet a visible bug, but correcting the logic now
disarms this beartrap for when we eventually do.
Backports commit dfc523a84b06b6a4b583ed4c29d24fd980dd37a0
Move the id_pfr0 and id_pfr1 fields into the ARMISARegisters
sub-struct. We're going to want id_pfr1 for an isar_features
check, and moving both at the same time avoids an odd
inconsistency.
Changes other than the ones to cpu.h and kvm64.c made
automatically with:
perl -p -i -e 's/cpu->id_pfr/cpu->isar.id_pfr/' target/arm/*.c hw/intc/armv7m_nvic.c
Backports commit 8a130a7be6e222965641e1fd9469fd3ee752c7d4
The ARM_FEATURE_PXN bit indicates whether the CPU supports the PXN
bit in short-descriptor translation table format descriptors. This
is indicated by ID_MMFR0.VMSA being at least 0b0100. Replace the
feature bit with an ID register check, in line with our preference
for ID register checks over feature bits.
Backports commit 0ae0326b984e77a55c224b7863071bd3d8951231
Per Intel SDM vol 1, 13.2, if CPUID.1:ECX.XSAVE[bit 26] is 0, the
processor provides no further enumeration through CPUID function 0DH.
QEMU does not do this for "-cpu host,-xsave".
Backports 19ca8285fcd61a8f60f2f44f789a561e0958e8e6
It turns out that some hosts have a default malloc alignment less
than that required for vectors.
We assume that, with compiler annotation on CPUArchState, that we
can properly align the vector portion of the guest state. Fix the
alignment of the allocation by using qemu_memalloc when required.
This check was backwards when introduced in commit
033614c47de78409ad3fb39bb7bd1483b71c6789:
target/arm: Filter cycle counter based on PMCCFILTR_EL0
Backports commit db1f3afb17269cf2bd86c222e1bced748487ef71
The VCMLA and VCADD insns have a size field which is 0 for fp16
and 1 for fp32 (note that this is the reverse of the Neon 3-same
encoding!). Convert it to MO_* values in decode for consistency.
Backports d186a4854c04e9832907b0b4240a47731da20993
Convert the insns using the 2reg_vcvt and 2reg_vcvt_f16 formats
to pass the size through to the trans function as a MO_* value
rather than the '0==f32, 1==f16' used in the fp 3-same encodings.
Backports commit 0ae715c658a02af1834b63563c56112a6d8842cb
In the Neon instructions, some instruction formats have a 2-bit size
field which corresponds exactly to QEMU's MO_8/16/32/64. However the
floating-point insns in the 3-same group have a 1-bit size field
which is "0 for 32-bit float and 1 for 16-bit float". Currently we
pass these values directly through to trans_ functions, which means
that when reading a particular trans_ function you need to know if
that insn uses a 2-bit size or a 1-bit size.
Move the handling of the 1-bit size to the decodetree file, so that
all these insns consistently pass a size to the trans_ function which
is an MO_8/16/32/64 value.
In this commit we switch over the insns using the 3same_fp and
3same_fp_q0 formats.
Backports commit 6cf0f240e0b980a877abed12d2995f740eae6515
We already support duplication of 128-bit blocks. This extends
that support to 256-bit blocks. This will be needed by SVE2.
Backports commit fe4b0b5bfa96c38ad1cad0689a86cca9f307e353
The fallback inline expansion for vectorized absolute value,
when the host doesn't support such an insn was flawed.
E.g. when a vector of bytes has all elements negative, mask
will be 0xffff_ffff_ffff_ffff. Subtracting mask only adds 1
to the low element instead of all elements becase -mask is 1
and not 0x0101_0101_0101_0101.
Backports commit e7e8f33fb603c3bfa0479d7d924f2ad676a84317
There's a typo in the type name of AARCH64_CPU_GET_CLASS. This
was never detected because the macro is not used by any code.
Backports 37e3d65043229bb20bd07af74dc0866e12071415
Set the MVFR1 ID register FPHP and SIMDHP fields to indicate
that our "-cpu max" has v8.2-FP16.
Backports commit 5f07817eb94542e39a419baafa3026b15e8d33f7
Convert the Neon floating-point VMUL, VMLA and VMLS to use gvec,
and use this to implement fp16 support.
Backports fc8ae790311882afa3c7816df004daf978c40e9a
In the gvec helper functions for indexed operations, for AArch32
Neon the oprsz (total size of the vector) can be less than 16 bytes
if the operation is on a D reg. Since the inner loop in these
helpers always goes from 0 to segment, we must clamp it based
on oprsz to avoid processing a full 16 byte segment when asked to
handle an 8 byte wide vector.
Backports commit d7ce81e553e6789bf27657105b32575668d60b1c
Convert the Neon VRINT-with-specified-rounding-mode insns to gvec,
and use this to implement the fp16 versions.
Backports 18725916b1438b54d6d6533980833d2251a20b7c
Convert the Neon VCVT with-specified-rounding-mode instructions
to gvec, and use this to implement fp16 support for them.
Backports ca88a6efdf4ce96b646a896059f9bd324c2cebc4
Convert the Neon VCVT float<->fixed-point insns to a
gvec style, in preparation for adding fp16 support.
Backports 7b959c5890deb9a6d71bc6800006a0eae0a84c60
Convert the Neon float-integer VCVT insns to gvec, and use this
to implement fp16 support for them.
Note that unlike the VFP int<->fp16 VCVT insns we converted
earlier and which convert to/from a 32-bit integer, these
Neon insns convert to/from 16-bit integers. So we can use
the existing vfp conversion helpers for the f32<->u32/i32
case but need to provide our own for f16<->u16/i16.
Backports 7782a9afec81d1efe23572135c1ed777691ccde5
Convert the Neon pairwise fp ops to use a single gvic-style
helper to do the full operation instead of one helper call
for each 32-bit part. This allows us to use the same
framework to implement the fp16.
Backports 1dc587ee9bfe804406eb3e0bacf47a80644d8abc
Convert the Neon VRSQRTS insn to using a gvec helper,
and use this to implement the fp16 case.
As with VRECPS, we adjust the phrasing of the new implementation
slightly so that the fp32 version parallels the fp16 one.
Backports 40fde72dda2da8d55b820fa6c5efd85814be2023
Convert the Neon VRECPS insn to using a gvec helper, and
use this to implement the fp16 case.
The phrasing of the new float32_recps_nf() is slightly different from
the old recps_f32() so that it parallels the f16 version; for f16 we
can't assume that flush-to-zero is always enabled.
Backports ac8c62c4e5a3f24e6d47f52ec1bfb20994caefa5
Convert the neon floating-point vector compare-vs-0 insns VCEQ0,
VCGT0, VCLE0, VCGE0 and VCLT0 to use a gvec helper, and use this to
implement the fp16 case.
Backport 635187aaa92f21ab001e2868e803b3c5460261ca
Convert the neon floating-point vector operations VFMA and VFMS
to use a gvec helper, and use this to implement the fp16 case.
This is the last use of do_3same_fp() so we can now delete
that function.
Backports commit cf722d75b329ef3f86b869e7e68cbfb1607b3bde
Convert the Neon floating-point VMLA and VMLS insns over to using a
gvec helper, and use this to implement the fp16 case.
Backports e5adc70665ecaf4009c2fb8d66775ea718a85abd