Instead of open-coding "ARM_FEATURE_AARCH64 ? aa64_predinv: aa32_predinv",
define and use an any_predinv isar_feature test function.
Backports commit 22e570730d15374453baa73ff2a699e01ef4e950 from qemu
In take_aarch32_exception(), we know we are dealing with a CPU that
has AArch32, so the right isar_feature test is aa32_pan, not aa64_pan.
Backports commit f8af1143ef93954e77cf59e09b5e004dafbd64fd from qemu
Enforce a convention that an isar_feature function that tests a
32-bit ID register always has _aa32_ in its name, and one that
tests a 64-bit ID register always has _aa64_ in its name.
We already follow this except for three cases: thumb_div,
arm_div and jazelle, which all need _aa32_ adding.
(As noted in the comment, isar_feature_aa32_fp16_arith()
is an exception in that it currently tests ID_AA64PFR0_EL1,
but will switch to MVFR1 once we've properly implemented
FP16 for AArch32.)
Backports commit 873b73c0c891ec20adacc7bd1ae789294334d675 from qemu
For the purpose of rebuild_hflags_a64, we do not need to compute
all of the va parameters, only tbi. Moreover, we can compute them
in a form that is more useful to storing in hflags.
This eliminates the need for aa64_va_parameter_both, so fold that
in to aa64_va_parameter. The remaining calls to aa64_va_parameter
are in get_phys_addr_lpae and in pauth_helper.c.
This reduces the total cpu consumption of aa64_va_parameter in a
kernel boot plus a kvm guest kernel boot from 3% to 0.5%.
Backports commit b830a5ee82e66f54697dcc6450fe9239b7412d13 from qemu
Now that aa64_va_parameters_both sets select based on the number
of ranges in the regime, the ttbr1_valid check is redundant.
Backports commit 03f27724dff15633911e68a3906c30f57938ea45 from qemu
Add definitions for all of the fields, up to ARMv8.5.
Convert the existing RESERVED register to a full register.
Query KVM for the value of the register for the host.
Backports commit 64761e10af2742a916c08271828890274137b9e8 from qemu
This is a minor enhancement over ARMv8.1-PAN.
The *_PAN mmu_idx are used with the existing do_ats_write.
Backports commit 04b07d29722192926f467ea5fedf2c3b0996a2a5 from qemu
The PAN bit is preserved, or set as per SCTLR_ELx.SPAN,
plus several other conditions listed in the ARM ARM.
Backports commit 4a2696c0d4d80e14a192b28148c6167bc5056f94 from qemu
For aarch64, there's a dedicated msr (imm, reg) insn.
For aarch32, this is done via msr to cpsr. Writes from el0
are ignored, which is already handled by the CPSR_USER mask.
Backports commit 220f508f49c5f49fb771d5105f991c19ffede3f7 from qemu
To implement PAN, we will want to swap, for short periods
of time, to a different privileged mmu_idx. In addition,
we cannot do this with flushing alone, because the AT*
instructions have both PAN and PAN-less versions.
Add the ARMMMUIdx*_PAN constants where necessary next to
the corresponding ARMMMUIdx* constant.
Backports commit 452ef8cb8c7b06f44a30a3c3a54d3be82c4aef59 from qemu
When VHE is enabled, the exception level below EL2 is not EL1,
but EL0, and so to identify the entry vector offset for exceptions
targeting EL2 we need to look at the width of EL0, not of EL1.
Backports commit cb092fbbaeb7b4e91b3f9c53150c8160f91577c7 from qemu
The EL2&0 translation regime is affected by Load Register (unpriv).
The code structure used here will facilitate later changes in this
area for implementing UAO and NV.
Backports commit cc28fc30e333dc2f20ebfde54444697e26cd8f6d from qemu
Since we only support a single ASID, flush the tlb when it changes.
Note that TCR_EL2, like TCR_EL1, has the A1 bit that chooses between
the two TTBR* registers for the location of the ASID.
Backports commit d06dc93340825030b6297c61199a17c0067b0377 from qemu
Apart from the wholesale redirection that HCR_EL2.E2H performs
for EL2, there's a separate redirection specific to the timers
that happens for EL0 when running in the EL2&0 regime.
Backports commit bb5972e439dc0ac4d21329a9d97bad6760ec702d from qemu
Several of the EL1/0 registers are redirected to the EL2 version when in
EL2 and HCR_EL2.E2H is set. Many of these registers have side effects.
Link together the two ARMCPRegInfo structures after they have been
properly instantiated. Install common dispatch routines to all of the
relevant registers.
The same set of registers that are redirected also have additional
EL12/EL02 aliases created to access the original register that was
redirected.
Omit the generic timer registers from redirection here, because we'll
need multiple kinds of redirection from both EL0 and EL2.
Backports commit e2cce18f5c1d0d55328c585c8372cdb096bbf528 from qemu
The comment that we don't support EL2 is somewhat out of date.
Update to include checks against HCR_EL2.TDZ.
Backports commit 4351cb72fb65926136ab618c9e40c1f5a8813251 from qemu
Use the correct sctlr for EL2&0 regime. Due to header ordering,
and where arm_mmu_idx_el is declared, we need to move the function
out of line. Use the function in many more places in order to
select the correct control.
Backports commit aaec143212bb70ac9549cf73203d13100bd5c7c2 from qemu
Return the indexes for the EL2&0 regime when the appropriate bits
are set within HCR_EL2.
Backports commit 6003d9800ee38aa11eefb5cd64ae55abb64bef16 from qemu
Create a predicate to indicate whether the regime has
both positive and negative addresses.
Backports commit 339370b90d067345b69585ddf4b668fa01f41d67 from qemu
Prepare for, but do not yet implement, the EL2&0 regime.
This involves adding the new MMUIdx enumerators and adjusting
some of the MMUIdx related predicates to match.
Backports commit b9f6033c1a5fb7da55ed353794db8ec064f78bb2 from qemu.
We had completely run out of TBFLAG bits.
Split A- and M-profile bits into two overlapping buckets.
This results in 4 free bits.
We used to initialize all of the a32 and m32 fields in DisasContext
by assignment, in arm_tr_init_disas_context. Now we only initialize
either the a32 or m32 by assignment, because the bits overlap in
tbflags. So zero the entire structure in gen_intermediate_code.
Backports commit 79cabf1f473ca6e9fa0727f64ed9c2a84a36f0aa from qemu
This is part of a reorganization to the set of mmu_idx.
The non-secure EL2 regime only has a single stage translation;
there is no point in pointing out that the idx is for stage1.
Backports commit e013b7411339342aac8d986c5d5e329e1baee8e1 from qemu
This is part of a reorganization to the set of mmu_idx.
The EL3 regime only has a single stage translation, and
is always secure.
Backports commit 127b2b086303296289099a6fb10bbc51077f1d53 from qemu
This is part of a reorganization to the set of mmu_idx.
This emphasizes that they apply to the Secure EL1&0 regime.
Backports commit fba37aedecb82506c62a1f9e81d066b4fd04e443 from qemu
This is part of a reorganization to the set of mmu_idx.
The EL1&0 regime is the only one that uses 2-stage translation.
Spelling out Stage avoids confusion with Secure.
Backports commit 2859d7b590760283a7b5aef40b723e9dfd7c98ba from qemu
This is part of a reorganization to the set of mmu_idx.
This emphasizes that they apply to the EL1&0 regime.
The ultimate goal is
-- Non-secure regimes:
ARMMMUIdx_E10_0,
ARMMMUIdx_E20_0,
ARMMMUIdx_E10_1,
ARMMMUIdx_E2,
ARMMMUIdx_E20_2,
-- Secure regimes:
ARMMMUIdx_SE10_0,
ARMMMUIdx_SE10_1,
ARMMMUIdx_SE3,
-- Helper mmu_idx for non-secure EL1&0 stage1 and stage2
ARMMMUIdx_Stage2,
ARMMMUIdx_Stage1_E0,
ARMMMUIdx_Stage1_E1,
The 'S' prefix is reserved for "Secure". Unless otherwise specified,
each mmu_idx represents all stages of translation.
Backports commit 01b98b686460b3a0fb47125882e4f8d4268ac1b6 from qemu
At the same time, add writefn to TTBR0_EL2 and TCR_EL2.
A later patch will update any ASID therein.
Backports commit ed30da8eee6906032b38a84e4807e2142b09d8ec from qemu
Not all of the breakpoint types are supported, but those that
only examine contextidr are extended to support the new register.
Backports commit e2a1a4616c86159eb4c07659a02fff8bb25d3729 from qemu
Before we introduce blocking semihosting calls we need to ensure we
can restart the system on semi hosting exception. To be able to do
this the EXCP_SEMIHOST operation should be idempotent until it finally
completes. Practically this means ensureing we only update the pc
after the semihosting call has completed.
Backports commit 4ff5ef9e911c670ca10cdd36dd27c5395ec2c753 from qemu
All semihosting exceptions are dealt with earlier in the common code
so we should never get here.
Backports commit b906acbb3aceed5b1eca30d9d365d5bd7431400b from qemu