The target-dependant type TCGv must be defined in "tcg/tcg.h" before
including the tracing helper wrappers in "tcg/tcg-op.h".
It also makes more sense to define it here, where other TCG types are
defined too.
Backports commit 5d4e1a1081d3f1ec2908ff0eaebe312389971ab4 from qemu
Adds the 'TCGv_env' type for pointers to 'CPUArchState' objects. The
tracing infrastructure later needs to differentiate between regular
pointers and pointers to vCPUs.
Also changes all targets to use the new 'TCGv_env' type instead of the
generic 'TCGv_ptr'. As of now, the change is merely cosmetic ('TCGv_env'
translates into 'TCGv_ptr'), but that could change in the future to
enforce the difference.
Note that a 'TCGv_env' type (for 'CPUState') is not added, since all
helpers currently receive the architecture-specific
pointer ('CPUArchState').
Backports commit 1bcea73e13b2b059d0cb3301aeaca43e5656ef57 from qemu
The v8 ARM ARM defines that unused spaces in the ID_AA64* system
register ranges are Reserved and must RAZ, rather than being UNDEF.
Implement this.
In particular, ARM v8.2 adds a new feature register ID_AA64MMFR2,
and newer versions of the Linux kernel will attempt to read this,
which causes them not to boot up on versions of QEMU missing this fix.
Since the encoding .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6
is actually defined in ARMv8 (as ID_MMFR4), we give it an entry in
the ARMCPU struct so CPUs can override it, though since none do
this too will just RAZ.
Backports commit e20d84c1407d43d5a2e2ac95dbb46db3b0af8f9f from qemu
Mark CNTHP_TVAL_EL2 as ARM_CP_NO_RAW due to the register not
having any underlying state. This fixes an issue with booting
KVM enabled kernels when EL2 is on.
Backports commit d44ec156300a149b386a14d3ab349d3b83b66b8c from qemu
Implement the performance monitor register traps controlled
by MDCR_EL3.TPM and MDCR_EL2.TPM. Most of the performance
registers already have an access function to deal with the
user-enable bit, and the TPM checks can be added there. We
also need a new access function which only implements the
TPM checks for use by the few not-EL0-accessible registers
and by PMUSERENR_EL0 (which is always EL0-readable).
Backports commit 1fce1ba985d9c5c96e5b9709e1356d1814b8fa9e from qemu
Fix two issues with our implementation of the SDCR:
* it is only present from ARMv8 onwards
* it does not contain several of the trap bits present in its 64-bit
counterpart the MDCR_EL3
Put the register description in the right place so that it does not
get enabled for ARMv7 and earlier, and give it a write function so that
we can mask out the bits which should not be allowed to have an effect
if EL3 is 32-bit.
Backports commit a8d64e735182cbbb5dcc98f41656b118c45e57cc from qemu
If HCR.TGE is 1 then mode changes via CPS and MSR from Monitor to
NonSecure PL1 modes are illegal mode changes. Implement this check
in bad_mode_switch().
(We don't currently implement HCR.TGE, but this is the only missing
check from the v8 ARM ARM G1.9.3 and so it's worth adding now; the
rest of the HCR.TGE checks can be added later as necessary.)
Backports commit 10eacda787ac9990dc22d4437b289200c819712c from qemu
Mode switches from Hyp to any other mode via the CPS and MRS
instructions are illegal mode switches (though obviously switching
via exception return is valid). Add this check to bad_mode_switch().
Backports commit af393ffc6da116b9dd4c70901bad1f4cafb1773d from qemu
In v8, the illegal mode changes which are UNPREDICTABLE in v7 are
given architected behaviour:
* the mode field is unchanged
* PSTATE.IL is set (so any subsequent instructions will UNDEF)
* any other CPSR fields are written to as normal
This is pretty much the same behaviour we picked for our
UNPREDICTABLE handling, with the exception that for v8 we
need to set the IL bit.
Backports commit 81907a582901671c15be36a63b5063f88f3487e2 from qemu
In v8 trying to switch mode to Mon from Secure EL1 is an
illegal mode switch. (In v7 this is impossible as all secure
modes except User are at EL3.) We can handle this case by
making a switch to Mon valid only if the current EL is 3,
which then gives the correct answer whether EL3 is AArch32
or AArch64.
Backports commit 58ae2d1f037fae1d90eed4522053a85d79edfbec from qemu
We don't actually support Hyp mode yet, but add the correct
checks for it to the bad_mode_switch() function for completeness.
Backports commit e6c8fc07b4fce0729bb747770756835f4b0ca7f4 from qemu
QEMU doesn't implement the NSACR.RFR bit, which is a permitted
IMPDEF in choice in ARMv7 and the only permitted choice in ARMv8.
Add a comment to bad_mode_switch() to note that this is why
FIQ is always a valid mode regardless of the CPU's Secure state.
Backports commit 52ff951b4f63a29593650a15efdf82f63d6d962d from qemu
The only case where we can attempt a cpsr_write() mode switch from
User is from the gdbstub; all other cases are handled in the
calling code (notably translate.c). Architecturally attempts to
alter the mode bits from user mode are simply ignored (and not
treated as a bad mode switch, which in v8 sets CPSR.IL). Make
mode switches from User ignored in cpsr_write() as well, for
consistency.
Backports commit cb01d3912c8b000ed26d5fe95f6c194b3e3ba7a6 from qemu
Raw CPSR writes should skip the architectural checks for whether
we're allowed to set the A or F bits and should also not do
the switching of register banks if the mode changes. Handle
this inside cpsr_write(), which allows us to drop the "manually
set the mode bits to avoid the bank switch" code from all the
callsites which are using CPSRWriteRaw.
This fixes a bug in 32-bit KVM handling where we had forgotten
the "manually set the mode bits" part and could thus potentially
trash the register state if the mode from the last exit to userspace
differed from the mode on this exit.
Backports commit f8c88bbcda76d5674e4bb125471371b41d330df8 from qemu
Add an argument to cpsr_write() to indicate what kind of CPSR
write is being requested, since the exact behaviour should
differ for the different cases.
Backports commit 50866ba5a2cfe922aaf3edb79f6eac5b0653477a from qemu
The rules for setting the CPSR on a 32-bit exception return are
subtly different from those for setting the CPSR via an instruction
like MSR or CPS. (In particular, in Hyp mode changing the mode bits
is not valid via MSR or CPS.) Split the exception-return case into
its own helper for setting CPSR, so we can eventually handle them
differently in the helper function.
Backports commit 235ea1f5c89abf30e452539b973b0dbe43d3fe2b from qemu
MIPS Release 6 provides multi-threading features which replace
pre-R6 MT Module. CP0.Config3.MT is always 0 in R6, instead there is new
CP0.Config5.VP (Virtual Processor) bit which indicates presence of
multi-threading support which includes CP0.GlobalNumber register and
DVP/EVP instructions.
Backports commit 01bc435b44b8802cc4697faa07d908684afbce4e from qemu
The xsave and xrstor helpers are accessing the x86_ext_save_areas array
using a bit mask instead of a bit position. Provide two sets of XSTATE_*
definitions and use XSTATE_*_BIT when a bit position is requested.
Backports commit cfc3b074de4b4ccee2540edbf8cfdb026dc19943 from qemu
these two functions consume too much cpu overhead to
find the RAMBlock by ram address.
After this patch, we can pass the RAMBlock pointer
to them so that they don't need to find the RAMBlock
anymore most of the time. We can get better performance
in address translation processing.
Backports commit 3655cb9c7375a595a8051ec677c515b24d5c1fe6 from qemu
Each RAM memory region has a unique corresponding RAMBlock.
In the current realization, the memory region only stored
the ram_addr which means the offset of RAM address space,
We need to qurey the global ram.list to find the ram block
by ram_addr if we want to get the ram block, which is very
expensive.
Now, we store the RAMBlock pointer into memory region
structure. So, if we know the mr, we can easily get the
RAMBlock.
Backports commit 58eaa2174e99d9a05172d03fd2799ab8fd9e6f60 from qemu
Commit 757e725b58c57d added a number of #include "qemu/osdep.h"
files to the tcg-target.c files (as they were named at the time).
These are unnecessary because these files are not standalone C
files, and the tcg/tcg.c file which includes them will have
already included osdep.h on their behalf. Remove the unneeded
include directives.
Backports commit c3b7f66800fbf9f47fddbcf2e2cd30ea932e0aae from qemu
Rename the per-architecture tcg-target.c files to tcg-target.inc.c.
This makes it clearer that they are not intended to be standalone
C files, but are instead #included into another source file.
Backports commit ce151109813e2770fd3cee2f37bfa2cdd01a12b9 from qemu
Since we've not got liveness analysis for indirect bases,
placing them at the end of the call-saved registers makes
it more likely that it'll stay live.
Backports commit 91478cefaaf2fa678e56df8635b34957f4d5d565 from qemu
That is, global_mem registers whose base is another global_mem
register, rather than a fixed register.
Backports commit b3915dbbdcdb2e04753f3d34a1b0865eea005069 from qemu
A previous patch patch changed the type of REG from int
to enum TCGReg, which provokes the following bug in clang:
https://llvm.org/bugs/show_bug.cgi?id=16154
Backports commit 869938ae2a284fe730cb6f807ea0f9e324e0f87c from qemu
NEED_CPU_H is the define we use to distinguish per-target object
compilation from common object compilation. For the former, we must
also include config-target.h so that the .c files see the necessary
CONFIG_ constants.
Backports commit b1e34d1c3a9059e87719634bfc4db53174d63e14 from qemu
For C++ before C++11, <stdint.h> requires definition of the macros
__STDC_CONSTANT_MACROS, __STDC_LIMIT_MACROS and __STDC_FORMAT_MACROS
in order to enable definition of various macros by the header file.
Define these in osdep.h, so that we get the right header file
definitions whether osdep.h is being used by plain C, C++11 or
older C++.
In particular libvixl's header files depend on this and won't
compile if osdep.h is included before them otherwise.
Backports commit 79f56d82f805b170fa2be8c04b682117be56483f from qemu
We now do not use the int_fast*_t types anywhere in QEMU, so we can
remove the compatibility definitions we were providing for the
benefit of ancient Solaris versions.
Backports commit 50fe4df8ee6aba63ae51457bad40ba26e3c9746f from qemu
Use the plain 'int' type rather than 'int_fast16_t' for handling
exponents. Exponents don't need to be exactly 16 bits, so using int16_t
for them would confuse more than it clarified.
This should be a safe change because int_fast16_t semantics
permit use of 'int' (and on 32-bit glibc that is what you get).
Backports commit 0c48262d4772d40677364199372fb6ffcf487558 from qemu
Use the plain 'int' type rather than 'int_fast16_t' for shift counts
in the various shift related functions, since we don't actually care
about the size of the integer at all here, and using int16_t would
be confusing.
This should be a safe change because int_fast16_t semantics
permit use of 'int' (and on 32-bit glibc that is what you get).
Backports commit 07d792d2b08669bf6a97cbf590496078c4621068 from qemu
Make the functions which convert floating point to 16 bit integer
return int16_t rather than int_fast16_t, and correspondingly use
int_fast16_t in their internal implementations where appropriate.
(These functions are used only by the ARM target.)
Backports commit 0bb721d7217ed4a1abb44f521c5c7ec185062d58 from qemu
The r4k_tlb_t structure uses the uint_fast*_t types. Most of these
uses are in bitfields and are thus pointless, because the bitfield
itself specifies the width of the type; just use 'unsigned int'
instead. (On glibc uint_fast16_t is defined as either 32 or 64 bits,
so we know the code is not reliant on it being exactly 16 bits.)
There is also one use of uint_fast8_t, which we replace with uint8_t,
because both are exactly 8 bits on glibc and this is the only
place outside the softfloat code which uses an int_fast*_t type.
Backports commit d783f78933b212537ece77c7ec66866cc2bc0f4d from qemu
There's no reason to do two malloc's for a flat union; let's just
inline the branch struct directly into the C union branch of the
flat union.
Surprisingly, fewer clients were actually using explicit references
to the branch types in comparison to the number of flat unions
thus modified.
This lets us reduce the hack in qapi-types:gen_variants() added in
the previous patch; we no longer need to distinguish between
alternates and flat unions.
The change to unboxed structs means that u.data (added in commit
cee2dedb) is now coincident with random fields of each branch of
the flat union, whereas beforehand it was only coincident with
pointers (since all branches of a flat union have to be objects).
Note that this was already the case for simple unions - but there
we got lucky. Remember, visit_start_union() blindly returns true
for all visitors except for the dealloc visitor, where it returns
the value !!obj->u.data, and that this result then controls
whether to proceed with the visit to the variant. Pre-patch,
this meant that flat unions were testing whether the boxed pointer
was still NULL, and thereby skipping visit_end_implicit_struct()
and avoiding a NULL dereference if the pointer had not been
allocated. The same was true for simple unions where the current
branch had pointer type, except there we bypassed visit_type_FOO().
But for simple unions where the current branch had scalar type, the
contents of that scalar meant that the decision to call
visit_type_FOO() was data-dependent - the reason we got lucky there
is that visit_type_FOO() for all scalar types in the dealloc visitor
is a no-op (only the pointer variants had anything to free), so it
did not matter whether the dealloc visit was skipped. But with this
patch, we would risk leaking memory if we could skip a call to
visit_type_FOO_fields() based solely on a data-dependent decision.
But notice: in the dealloc visitor, visit_type_FOO() already handles
a NULL obj - it was only the visit_type_implicit_FOO() that was
failing to check for NULL. And now that we have refactored things to
have the branch be part of the parent struct, we no longer have a
separate pointer that can be NULL in the first place. So we can just
delete the call to visit_start_union() altogether, and blindly visit
the branch type; there is no change in behavior except to the dealloc
visitor, where we now unconditionally visit the branch, but where that
visit is now always safe (for a flat union, we can no longer
dereference NULL, and for a simple union, visit_type_FOO() was already
safely handling NULL on pointer types).
Unfortunately, simple unions are not as easy to switch to unboxed
layout; because we are special-casing the hidden implicit type with
a single 'data' member, we really DO need to keep calling another
layer of visit_start_struct(), with a second malloc; although there
are some cleanups planned for simple unions in later patches.
visit_start_union() and gen_visit_implicit_struct() are now unused.
Drop them.
Note that after this patch, the only remaining use of
visit_start_implicit_struct() is for alternate types; the next patch
will do further cleanup based on that fact.
Backports commit 544a3731591f5d53e15f22de00ce5ac758d490b3 from qemu