While we have some of the scalar paths for FCVT for fp16,
we failed to decode the fp16 version of these instructions.
Backports commit d0ba8e74acd299b092786ffc30b306638d395a9e from qemu
While we have some of the scalar paths for *CVF for fp16,
we failed to decode the fp16 version of these instructions.
Backports commit a6117fae4576edfe7a5a5b802a742c33112c0993 from qemu
This implements all of the v8.1-Atomics instructions except
for compare-and-swap, which is decoded elsewhere.
Backports commit 74608ea45434c9b07055b21885e093528c5ed98c from qemu
The insns in the ARMv8.1-Atomics are added to the existing
load/store exclusive and load/store reg opcode spaces.
Rearrange the top-level decoders for these to accomodate.
The Atomics insns themselves still generate Unallocated.
Backports commit 68412d2ecedbab5a43b0d346cddb27e00d724aff from qemu
While at it, use int for both num_insns and max_insns to make
sure we have same-type comparisons.
Backports commit b542683d77b4f56cef0221b267c341616d87bce9 from qemu
Path analysis shows that size == 3 && !is_q has been eliminated.
Fixes: Coverity CID1385853
Backports commit a8766e3172c1671cab297c1ef4566a3c5d094822 from qemu
The (size > 3 && !is_q) condition is identical to the preceeding test
of bit 3 in immh; eliminate it. For the benefit of Coverity, assert
that size is within the bounds we expect.
Fixes: Coverity CID1385846
Fixes: Coverity CID1385849
Fixes: Coverity CID1385852
Fixes: Coverity CID1385857
Backports commit 8dae46970532afcf93470b00e83ca9921980efc3 from qemu
The MDCR_EL2.TDE bit allows the exception level targeted by debug
exceptions to be set to EL2 for code executing at EL0. We handle
this in the arm_debug_target_el() function, but this is only used for
hardware breakpoint and watchpoint exceptions, not for the exception
generated when the guest executes an AArch32 BKPT or AArch64 BRK
instruction. We don't have enough information for a translate-time
equivalent of arm_debug_target_el(), so instead make BKPT and BRK
call a special purpose helper which can do the routing, rather than
the generic exception_with_syndrome helper.
Backports commit c900a2e62dd6dde11c8f5249b638caad05bb15be from qemu
In OE project 4.15 linux kernel boot hang was observed under
single cpu aarch64 qemu. Kernel code was in a loop waiting for
vtimer arrival, spinning in TC generated blocks, while interrupt
was pending unprocessed. This happened because when qemu tried to
handle vtimer interrupt target had interrupts disabled, as
result flag indicating TCG exit, cpu->icount_decr.u16.high,
was cleared but arm_cpu_exec_interrupt function did not call
arm_cpu_do_interrupt to process interrupt. Later when target
reenabled interrupts, it happened without exit into main loop, so
following code that waited for result of interrupt execution
run in infinite loop.
To solve the problem instructions that operate on CPU sys state
(i.e enable/disable interrupt), and marked as DISAS_UPDATE,
should be considered as DISAS_EXIT variant, and should be
forced to exit back to main loop so qemu will have a chance
processing pending CPU state updates, including pending
interrupts.
This change brings consistency with how DISAS_UPDATE is treated
in aarch32 case.
Backports commit a75a52d62418dafe462be4fe30485501d1010bb9 from qemu
The integer size check was already outside of the opcode switch;
move the floating-point size check outside as well. Unify the
size vs index adjustment between fp and integer paths.
Backports commit 449f264b1749ac0e59c58bbc2eacdb3dc302c2bf from qemu
This includes FMOV, FABS, FNEG, FSQRT and FRINT[NPMZAXI]. We re-use
existing helpers to achieve this.
Backports commit c2c08713a6a5846bbe601d4d1b4f9708ba77efdc from qemu
This covers the encoding group:
Advanced SIMD scalar three same FP16
As all the helpers are already there it is simply a case of calling the
existing helpers in the scalar context.
Backports commit 7c93b7741b29b3ffda81a6e9525771b4409db99f from qemu
I only needed to do a little light re-factoring to support the
half-precision helpers.
Backports commit 5c36d89567cfd049a7c59ff219639f788225068f from qemu
Neither of these operations alter the floating point status registers
so we can do a pure bitwise operation, either squashing any sign
bit (ABS) or inverting it (NEG).
Backports commit 15f8a233c8c023dbc77b6fe6cd7c79eac9bee263 from qemu
I re-use the existing handle_2misc_fcmp_zero handler and tweak it
slightly to deal with the half-precision case.
Backports commit 7d4dd1a73a023f75c893623710e43743501b318e from qemu
This adds the full range of half-precision floating point to integral
instructions.
Backports commit 6109aea2d954891027acba64a13f1f1c7463cfac from qemu
This actually covers two different sections of the encoding table:
Advanced SIMD scalar two-register miscellaneous FP16
Advanced SIMD two-register miscellaneous (FP16)
The difference between the two is covered by a combination of Q (bit
30) and S (bit 28). Notably the FRINTx instructions are only
available in the vector form.
This is just the decode skeleton which will be filled out by later
patches.
Backports commit 5d432be6fd6efe37833ac82623c3abd35117b421 from qemu
A bunch of the vectorised bitwise operations just operate on larger
chunks at a time. We can do the same for the new half-precision
operations by introducing some TWOHALFOP helpers which work on each
half of a pair of half-precision operations at once.
Hopefully all this hoop jumping will get simpler once we have
generically vectorised helpers here.
Backports commit 6089030c7322d8f96b54fb9904e53b0f464bb8fe from qemu
The helpers use the new re-factored muladd support in SoftFloat for
the float16 work.
Backports commit 5d265064cf30daaacce5a4ce9945fc573015fb5f from qemu
As some of the constants here will also be needed
elsewhere (specifically for the upcoming SVE support) we move them out
to softfloat.h.
Backports commit 026e2d6ef74000afb9049f46add4b94f594c8fb3 from qemu
Backports commit 2deb992b767d28035fac3b374c7730494ff0b43d from qemu
Also backports the fp16 changes introduced in commit f566c0474a9b9bbd9ed248607e4007e24d3358c0
These use the generic float16_compare functionality which in turn uses
the common float_compare code from the softfloat re-factor.
Backports commit d32adeae1a71a8e71374fa48d3d6ab0ad4c23e94 from qemu
The fprintf is only there for debugging as the skeleton is added to,
it will be removed once the skeleton is complete.
Backports commit 372087348d561e7f4051d7b32609bda417092ddf from qemu
This is the initial decode skeleton for the Advanced SIMD three same
instruction group.
The fprintf is purely to aid debugging as the additional instructions
are added. It will be removed once the group is complete.
Backports commit 376e8d6cda985df31c8561db4b7ea365b6fe6f87 from qemu
This implements the half-precision variants of the across vector
reduction operations. This involves a re-factor of the reduction code
which more closely matches the ARM ARM order (and handles 8 element
reductions).
Backports commit 807cdd504283c11addcd7ea95ba594bbddc86fe4 from qemu
As the rounding mode is now split between FP16 and the rest of
floating point we need to be explicit when tweaking it. Instead of
passing the CPU env we now pass the appropriate fpst pointer directly.
Backports commit 9b04991686785e18b18a36d193b68f08f7c91648 from qemu
Half-precision flush to zero behaviour is controlled by a separate
FZ16 bit in the FPCR. To handle this we pass a pointer to
fp_status_fp16 when working on half-precision operations. The value of
the presented FPCR is calculated from an amalgam of the two when read.
Backports commit d81ce0ef2c4f1052fcdef891a12499eca3084db7 from qemu
When storing to an AdvSIMD FP register, all of the high
bits of the SVE register are zeroed. Therefore, call it
more often with is_q as a parameter.
Backports commit 4ff55bcb0ee6452b768835f86d94bd727185f812 from qemu
Change vfp.regs as a uint64_t to vfp.zregs as an ARMVectorReg.
The previous patches have made the change in representation
relatively painless.
Backports commit c39c2b9043ec59516c80f2c6f3e8193e99d04d4b from qemu