It's a familiar pattern: some code uses ARRAY_SIZE, then refactoring
changes the argument from an array to a pointer to a dynamically
allocated buffer. Code keeps compiling but any ARRAY_SIZE calls now
return the size of the pointer divided by element size.
Let's add build time checks to ARRAY_SIZE before we allow more
of these in the code-base.
Backports commit ed63ec0d22ccdce3b2222d9a514423b7fbba3a0d from qemu
QEMU_BUILD_BUG_ON uses a typedef in order to be safe
to use outside functions, but sometimes it's useful
to have a version that can be used within an expression.
Following what Linux does, introduce QEMU_BUILD_BUG_ON_ZERO
that return zero after checking condition at build time.
Backports commit d757573e69f2ef58a4a7b41f6c55d65fa1e1c5c2 from qemu
There are theoretical concerns that some compilers might not trigger
build failures on attempts to define an array of size (x ? -1 : 1) where
x is a variable and make it a variable sized array instead. Let rewrite
using a struct with a negative bit field size instead as there are no
dynamic bit field sizes. This is similar to what Linux does.
Backports commit f291887e8eef5d37d31484638f6e62401b4b99a2 from qemu
Some headers use QEMU_BUILD_BUG_ON. This causes a problem
if the C file including that header happens to have
QEMU_BUILD_BUG_ON at the same line number.
Fix using a widely available extension: __COUNTER__.
If unavailable, provide a stub.
Backports commit 60abf0a5e05134187e274ce5f32524ccf0cae1a6 from qemu
ldl_p has a signed return type so assigning it to uint64_t implicitly
sign-extends the value. This results in devices with min_access_size = 8
seeing unexpected values passed to their write handlers.
Example: guest performs a 32-bit write of 0x80000000 to an mmio region
and the handler receives 0xFFFFFFFF80000000 in its value argument.
Backports commit 6da67de6803e93cbb7e93ac3497865832f8c00ea from qemu
We only use the IS_M() macro in two places, and it's a bit of a
namespace grab to put in cpu.h. Drop it in favour of just explicitly
calling arm_feature() in the places where it was used.
Backports commit 531c60a97ab51618b4b9ccef1c5fe00607079706 from qemu
1st mmap returns *ptr* which aligns to host page size,
| size + align |
------------------------------------------
ptr
input param *align* could be 1M, or 2M, or host page size. After
QEMU_ALIGN_UP, offset will >= 0
2nd mmap use flag MAP_FIXED, then it return ptr+offset, or else fail.
If it success, then we will have something like:
| offset | size |
--------------------------------------
ptr ptr1
*ptr1* is what we really want to return, it equals ptr+offset.
Backports commit 6e4c890e15b23f078650499fbde11760b8eccf10 from qemu
When CPU vendor is set to AMD, the AMD feature alias bits on
CPUID[0x80000001].EDX are already automatically copied from CPUID[1].EDX
on x86_cpu_realizefn(). When CPU vendor is Intel, those bits are
reserved and should be zero. On either case, those bits shouldn't be set
in the CPU model table.
Commit 726a8ff68677d8d5fba17eb0ffb85076bfb598dc removed those
bits from most CPU models, but the Opteron_* entries still have
them. Remove the alias bits from Opteron_* too.
Add an assert() to x86_register_cpudef_type() to ensure we don't
make the same mistake again.
Backports commit 2a923a293df95334fa22634016efdd138f49da7f from qemu
AVX512_VPOPCNTDQ: Vector POPCNT instructions for word and qwords.
variable precision.
Backports commit f77543772dcd38fa438470d9b80bafbd3a3ebbd7 from qemu
Like the original MIPS, HPPA has the MSB of an SNaN set.
However, it has different rules for silencing an SNaN:
(1) msb is cleared and (2) msb-1 must be set if the fraction
is now zero, and (implementation defined) may be set always.
I haven't checked real hardware but chose the set always
alternative because it's easy and within spec.
Backports commit 005fa38d86257d471ac461c066a5409a9f5ebb02 from qemu
C11 allows errno to be clobbered by pretty much any library function
call, so in general callers need to take care to save errno before
calling other functions.
However, for error reporting functions this is rather awkward and can
make the code on the caller side more complicated than
necessary. error_setg_errno() already takes care of preserving errno
and some functions rely on that, so just promise that we continue to
do so in the future.
Backports commit 98cb89af4df7e1776ce418ed6167b6e214a64435 from qemu
Enable the ARM_FEATURE_EL2 bit on Cortex-A52 and
Cortex-A57, since this is all now sufficiently implemented
to work with the GICv3. We provide the usual CPU property
to disable it for backwards compatibility with the older
virt boards.
In this commit, we disable the EL2 feature on the
virt and ZynpMP boards, so there is no overall effect.
Another commit will expose a board-level property to
allow the user to enable EL2.
Backports commit c25bd18a04c8bd0f19556d719864b7b08528222d from qemu
The PSCI spec states that a CPU_ON call should cause the new
CPU to be started in the highest implemented Non-secure
exception level. We were incorrectly starting it at the
exception level of the caller, which happens to be correct
if EL2 is not implemented. Implement the correct logic
as described in the PSCI 1.0 spec section 6.4:
* if EL2 exists and SCR_EL3.HCE is set: start in EL2
* otherwise start in EL1
Backports commit 3f591a20221511c639cc7959755e570801a21cd2 from qemu
Split ARM on/off function from PSCI support code.
This will allow to reuse these functions in other code.
Backports commit 825482adde1f971cbddf27e15fb4453ab3fae994 from qemu
The DBGVCR_EL2 system register is needed to run a 32-bit
EL1 guest under a Linux EL2 64-bit hypervisor. Its only
purpose is to provide AArch64 with access to the state of
the DBGVCR AArch32 register. Since we only have a dummy
DBGVCR, implement a corresponding dummy DBGVCR32_EL2.
Backports commit 4d2ec4da1c2d60c9fd8bad137506870c2f980410 from qemu
To run a VM in 32-bit EL1 our AArch32 interrupt handling code
needs to be able to cope with VIRQ and VFIQ exceptions.
These behave like IRQ and FIQ except that we don't need to try
to route them to Monitor mode.
Backports commit 87a4b270348c69a446ebcddc039bfae31b1675cb from qemu
We've currently got 18 architectures in QEMU, and thus 18 target-xxx
folders in the root folder of the QEMU source tree. More architectures
(e.g. RISC-V, AVR) are likely to be included soon, too, so the main
folder of the QEMU sources slowly gets quite overcrowded with the
target-xxx folders.
To disburden the main folder a little bit, let's move the target-xxx
folders into a dedicated target/ folder, so that target-xxx/ simply
becomes target/xxx/ instead.
Backports commit fcf5ef2ab52c621a4617ebbef36bf43b4003f4c0 from qemu
In OpenSPARC T1+ TWINX ASIs in store instructions are aliased
with Block Initializing Store ASIs.
"UltraSPARC T1 Supplement Draft D2.1, 14 May 2007" describes them
in the chapter "5.9 Block Initializing Store ASIs"
Integer stores of all sizes are allowed with these ASIs.
Backports commit 3390537b5df4014e24a30f9bdcfa05c2bd0cd6d8 from qemu
According to chapter 13.3 of the
UltraSPARC T1 Supplement to the UltraSPARC Architecture 2005,
only the sun4u format is available for data-access loads.
Store UA2005 entries in the sun4u format to simplify processing.
Backports commit 7285fba083de3f14f6e98abb4469173b56da9480 from qemu
Implement the behavior described in the chapter 13.9.11 of
UltraSPARC T1™ Supplement to the UltraSPARC Architecture 2005:
"If a TLB Data-In replacement is attempted with all TLB
entries locked and valid, the last TLB entry (entry 63) is
replaced."
Backports commit 4797a6851975c1239df440c5f01d8566e63717bb from qemu
Please note that QEMU doesn't impelement Real->Physical address
translation. The "Real Address" is always the "Physical Address".
Backports commit 84f8f5876628963e67f66edde8a71208c4274ac8 from qemu
Accordinf to UA2005, 9.3.3 "Address Space Identifiers",
"In hyperprivileged mode, all instruction fetches and loads and stores with implicit
ASIs use a physical address, regardless of the value of TL".
Backports commit 9a10756d1204c3528e47892195349bf882069846 from qemu
As described in Chapter 5.7.6 of the UltraSPARC Architecture 2005,
outstanding disrupting exceptions that are destined for privileged mode can only
cause a trap when the virtual processor is in nonprivileged or privileged mode and
PSTATE.ie = 1. At all other times, they are held pending.
Backports commit 1a2aefae6627170fdee689b394a65f76080c068a from qemu
Use explicit register pointers while accessing D/I-MMU registers.
Call cpu_unassigned_access on access to missing registers.
Backports commit 20395e63375358bf6dd147057aaf998abf7abdb9 from qemu
while IMMU/DMMU is disabled
- ignore MMU-faults in hypervisorv mode or if CPU doesn't have hypervisor
- signal TT_INSN_REAL_TRANSLATION_MISS/TT_DATA_REAL_TRANSLATION_MISS otherwise
Backports commit 1ceca928538a3633b74a7dc718a05ce6767f2f76 from qemu
We have never has the concept of global TLB entries which would avoid
the flush so we never actually use this flag. Drop it and make clear
that tlb_flush is the sledge-hammer it has always been.
Backports commit d10eb08f5d8389c814b554d01aa2882ac58221bf from qemu
Both the cpu->tb_jmp_cache and SoftMMU TLB structures are only used
when running TCG code so we might as well skip them for anything else.
Backports commit ba7d3d1858c257e39b47f7f12fa2016ffd960b11 from qemu