Amusingly, we had already ignored the comment to keep this value
at the end of CPUState. This restores the minimum negative offset
from TCG_AREG0 for code generation.
For the couple of uses within qom/cpu.c, without NEED_CPU_H, add
a pointer from the CPUState object to the IcountDecr object within
CPUNegativeOffsetState.
Backports commit 5e1401969b25f676fee6b1c564441759cf967a43 from qemu
Nothing in there so far, but all of the plumbing done
within the target ArchCPU state.
Backports commit 5b146dc716cfd247f99556c04e6e46fbd67565a0 from qemu
Now that we have ArchCPU, we can define this generically,
in the one place that needs it.
Backports commit 677c4d69ac21961e76a386f9bfc892a44923acc0 from qemu
This will replace foo_env_get_cpu with a generic definition.
No changes to the target specific code so far.
Backports commit 083dc73d7a3cf2a75b5625fd8f0669b57a855d16 from qemu
Now that we have both ArchCPU and CPUArchState, we can define
this generically instead of via macro in each target's cpu.h.
Backports commit 29a0af618ddd21f55df5753c3e16b0625f534b3c from qemu
Especially for guests with large numbers of tlbs, like ARM or PPC,
we may well not use all of them in between flush operations.
Remember which tlbs have been used since the last flush, and
avoid any useless flushing.
Backports much of 3d1523ced6060cdfe9e768a814d064067ccabfe5 from qemu
along with a bunch of updating changes.
For all targets, into this new file move TARGET_LONG_BITS,
TARGET_PAGE_BITS, TARGET_PHYS_ADDR_SPACE_BITS,
TARGET_VIRT_ADDR_SPACE_BITS, and NB_MMU_MODES.
Include this new file from exec/cpu-defs.h.
This now removes the somewhat odd requirement that target/arch/cpu.h
defines TARGET_LONG_BITS before including exec/cpu-defs.h, so push the
bulk of the includes within target/arch/cpu.h to the top.
Backports commit 74433bf083b0766aba81534f92de13194f23ff3e from qemu
Most of the existing users would continue around a loop which
would fault the tlb entry in via a normal load/store.
But for AArch64 SVE we have an existing emulation bug wherein we
would mark the first element of a no-fault vector load as faulted
(within the FFR, not via exception) just because we did not have
its address in the TLB. Now we can properly only mark it as faulted
if there really is no valid, readable translation, while still not
raising an exception. (Note that beyond the first element of the
vector, the hardware may report a fault for any reason whatsoever;
with at least one element loaded, forward progress is guaranteed.)
Backports commit 4811e9095c0491bc6f5450e5012c9c4796b9e59d from qemu
sparc32plus has 64bit long type but only 32bit virtual address space.
For instance, "apt-get upgrade" failed because of a mmap()/msync()
sequence.
mmap() returned 0xff252000 but msync() used g2h(0xffffffffff252000)
to find the host address. The "(target_ulong)" in g2h() doesn't fix the
address because it is 64bit long.
This patch introduces an "abi_ptr" that is set to uint32_t
if the virtual address space is addressed using 32bit in the linux-user
case. It stays set to target_ulong with softmmu case.
Backports commit 3e23de15237c81fe7af7c3ffa299a6ae5fec7d43 from qemu
We can now use the CPUClass hook instead of a named function.
Create a static tlb_fill function to avoid other changes within
cputlb.c. This also isolates the asserts within. Remove the
named tlb_fill function from all of the targets.
Backports commit c319dc13579a92937bffe02ad2c9f1a550e73973 from qemu
This hook will replace the (user-only mode specific) handle_mmu_fault
hook, and the (system mode specific) tlb_fill function.
The handle_mmu_fault hook was written as if there was a valid
way to recover from an mmu fault, and had 3 possible return states.
In reality, the only valid action is to raise an exception,
return to the main loop, and deliver the SIGSEGV to the guest.
Note that all of the current implementations of handle_mmu_fault
for guests which support linux-user do in fact only ever return 1,
which is the signal to return to the main loop.
Using the hook for system mode requires that all targets be converted,
so for now the hook is (optionally) used only from user-only mode.
Backports commit da6bbf8513e621a8fc2fd315d77318f36547474d from qemu
I encountered the following compilation error on mingw:
/mnt/d/qemu/include/qemu/osdep.h:97:9: error: '__USE_MINGW_ANSI_STDIO' macro redefined [-Werror,-Wmacro-redefined]
\#define __USE_MINGW_ANSI_STDIO 1
^
/mnt/d/llvm-mingw/aarch64-w64-mingw32/include/_mingw.h:433:9: note: previous definition is here
\#define __USE_MINGW_ANSI_STDIO 0 /* was not defined so it should be 0 */
It turns out that __USE_MINGW_ANSI_STDIO must be set before any
system headers are included, not just before stdio.h.
Backports commit 946376c21be1cd9dcc3c7936b204b113781603f7 from qemu
Now that we have curr_cflags, we can include CF_USE_ICOUNT
early and then remove it as necessary.
Backports commit 416986d3f97329655e30da7271a2d11c6d707b06 from qemu
We were generating code during tb_invalidate_phys_page_range,
check_watchpoint, cpu_io_recompile, and (seemingly) discarding
the TB, assuming that it would magically be picked up during
the next iteration through the cpu_exec loop.
Instead, record the desired cflags in CPUState so that we request
the proper TB so that there is no more magic.
Backports commit 9b990ee5a3cc6aa38f81266fb0c6ef37a36c45b9 from qemu
This will enable us to decouple code translation from the value
of parallel_cpus at any given time. It will also help us minimize
TB flushes when generating code via EXCP_ATOMIC.
Note that the declaration of parallel_cpus is brought to exec-all.h
to be able to define there the "curr_cflags" inline.
Backports commit 4e2ca83e71b51577b06b1468e836556912bd5b6e from qemu
In order to handle TB's that translate to too much code, we
need to place the control of the length of the translation
in the hands of the code gen master loop.
Backports commit 8b86d6d25807e13a63ab6ea879f976b9f18cc45a from qemu
Not all targets define a full set of suffix strings for the
NB_MMU_MODES that they have. In this situation, don't define any
helper functions for that mode, rather than defining helper functions
with no suffix at all. The MMU mode is still functional; it is merely
not directly accessible via cpu_ld*_MODE from target helper functions.
Also add an "NB_MMU_MODES >= 2" check to the definition of the mode 1
helpers -- some targets only define one MMU mode.
Backports commit de5ee4a888667ca0a198f0743d70075d70564117 from qemu
Add documentation of what the cpu_*_* accessors look like.
Correct some minor errors in the existing documentation of the
direct _p accessor family. Remove the near-duplicate comment
on the _p accessors from cpu-all.h and replace it with a reference
to the comment in bswap.h.
Backports commit db5fd8d709fd57f4d4f11edfca9f421f657f4508 from qemu
The cpu_ldfq/stfq/ldfl/stfl accessors for loading and storing
float32 and float64 are completely unused, so delete them.
(The union they use for converting from the float32/float64
type to uint32_t or uint64_t is the wrong way to do it anyway:
they should be using make_float* and float*_val.)
Backports commit 82f11917c99e3c7fa3d6aa98572ecc98c7324c2f from qemu
The _raw macros and their helpers saddr() and laddr() are now
totally unused -- delete them.
Backports commit 800e2ecc896beb6b79e7333c762da163b6a9135a from qemu
The ld*_raw and st*_raw macros are now only used within the code
produced by cpu_ldst_template.h, and only in three places.
Expand these out to just call the ld_p and st_p functions directly.
Note that in all the callsites the address argument is a uintptr_t,
so we can drop that part of the double-cast used in the saddr() and
laddr() macros.
Backports commit 355392329e4a843580e53cb027ed85e0cbebb640 from qemu
Use inline functions rather than macros for cpu_ld/st accessors
for the *-user configurations, as we already do for softmmu.
This has a two advantages:
* we can actually typecheck our arguments
* we don't need to leak the _raw macros everywhere
Since the _kernel functions were only used by target-i386/seg_helper.c,
put the definitions for them in that file too. (It already has the
similar template include code to define them for the softmmu case,
so it makes sense to have it deal with defining them for user-only.)
Backports commit 9220fe54c679d145232a28df6255e166ebf91bab from qemu
In the accessor functions ld*_he_p() and st*_he_p() we use memcpy()
to perform a load or store to a pointer which might not be aligned
for the size of the type. We rely on the compiler to optimize this
memcpy() into an efficient load or store instruction where possible.
This is required for good performance, but at the moment it is also
required for correct operation, because some users of these functions
require that the access is atomic if the pointer is aligned, which
will only be the case if the compiler has optimized out the memcpy().
(The particular example where we discovered this is the virtio
vring_avail_idx() which calls virtio_lduw_phys_cached() which
eventually ends up calling lduw_he_p().)
Unfortunately some compile environments, such as the fortify-source
setup used in Alpine Linux, define memcpy() to a wrapper function
in a way that inhibits this compiler optimization.
The correct long-term fix here is to add a set of functions for
doing atomic accesses into AddressSpaces (and to other relevant
families of accessor functions like the virtio_*_phys_cached()
ones), and make sure that callsites which want atomic behaviour
use the correct functions.
In the meantime, switch to using __builtin_memcpy() in the
bswap.h accessor functions. This will make us robust against things
like this fortify library in the short term. In the longer term
it will mean that we don't end up with these functions being really
badly-performing even if the semantics of the out-of-line memcpy()
are correct.
This ports over the RISC-V architecture from Qemu. This is currently a
very barebones transition. No code hooking or any fancy stuff.
Currently, you can feed it instructions and query the CPU state itself.
This also allows choosing whether or not RISC-V 32-bit or RISC-V 64-bit
is desirable through Unicorn's interface as well.
Extremely basic examples of executing a single instruction have been
added to the samples directory to help demonstrate how to use the basic
functionality.
Handling it just like float128_to_uint32_round_to_zero, that hopefully
is free of bugs :)
Documentation basically copied from float128_to_uint64
Backports commit e45de9922e43c1ce4f4739b62142314a13029d5c from qemu
Needed on s390x, to test for the data class of a number. So it will
gain soon a user.
A number is considered normal if the exponent is neither 0 nor all 1's.
That can be checked by adding 1 to the exponent, and comparing against
>= 2 after dropping an eventual overflow into the sign bit.
While at it, convert the other floatXX_is_normal functions to use a
similar, less error prone calculation, as suggested by Richard H.
Backports commit 47393181604d507f4fe2a15a65b1eede0f974d6a from qemu
Especially when dealing with out-of-line gvec helpers, it is often
helpful to specify some vector pointers as constant. E.g. when
we have two inputs and one output, marking the two inputs as consts
pointers helps to avoid bugs.
Const pointers can be specified via "cptr", however behave in TCG just
like ordinary pointers. We can specify helpers like:
DEF_HELPER_FLAGS_4(gvec_vbperm, TCG_CALL_NO_RWG, void, ptr, cptr, cptr, i32)
void HELPER(gvec_vbperm)(void *v1, const void *v2, const void *v3,
uint32_t desc)
And make sure that here, only v1 will be written (as long as const is
not casted away, of course).
Backports commit 8c6edfdd90522caa4fc429144d393aba5b99f584 from qemu
There are a whole bunch more registers in the CPUID space which are
currently not used but are exposed as RAZ. To avoid too much
duplication we expand ARMCPRegUserSpaceInfo to understand glob
patterns so we only need one entry to tweak whole ranges of registers.
Backports commit d040242effe47850060d2ef1c461ff637d88a84d from qemu
Without this patch, gcc might up the Input/Output registers and
cause unpredictable error.
Fixes: 1ec182c33379 ("target/arm: Convert to HAVE_CMPXCHG128")
Backports commit 7400d6938c6d455c4eba2b80c06d60c8fa5c5ba3 from qemu
These bits can be used to cache target-specific data in cputlb
read from the page tables.
Backports commit d3765835ed02f91f0c6cbb452874209a6af4a730 from qemu
The commit 7197fb4058bcb68986bae2bb2c04d6370f3e7218 ("util/mmap-alloc:
fix hugetlb support on ppc64") fixed Huge TLB mappings on ppc64.
However, we still need to consider the underlying huge page size
during munmap() because it requires that both address and length be a
multiple of the underlying huge page size for Huge TLB mappings.
Quote from "Huge page (Huge TLB) mappings" paragraph under NOTES
section of the munmap(2) manual:
"For munmap(), addr and length must both be a multiple of the
underlying huge page size."
On ppc64, the munmap() in qemu_ram_munmap() does not work for Huge TLB
mappings because the mapped segment can be aligned with the underlying
huge page size, not aligned with the native system page size, as
returned by getpagesize().
This has the side effect of not releasing huge pages back to the pool
after a hugetlbfs file-backed memory device is hot-unplugged.
This patch fixes the situation in qemu_ram_mmap() and
qemu_ram_munmap() by considering the underlying page size on ppc64.
After this patch, memory hot-unplug releases huge pages back to the
pool.
Fixes: 7197fb4058bcb68986bae2bb2c04d6370f3e7218
Backports commit 53adb9d43e1abba187387a51f238e878e934c647 from qemu