unicorn/qemu/target/mips/translate_init.c

1284 lines
37 KiB
C
Raw Normal View History

2015-08-21 07:04:50 +00:00
/*
* MIPS emulation for qemu: CPU initialisation routines.
*
* Copyright (c) 2004-2005 Jocelyn Mayer
* Copyright (c) 2007 Herve Poussineau
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
/* CPU / CPU family specific config register values. */
/* Have config1, uncached coherency */
#define MIPS_CONFIG0 \
((1U << CP0C0_M) | (0x2 << CP0C0_K0))
/* Have config2, no coprocessor2 attached, no MDMX support attached,
no performance counters, watch registers present,
no code compression, EJTAG present, no FPU */
#define MIPS_CONFIG1 \
((1U << CP0C1_M) | \
(0 << CP0C1_C2) | (0 << CP0C1_MD) | (0 << CP0C1_PC) | \
(1 << CP0C1_WR) | (0 << CP0C1_CA) | (1 << CP0C1_EP) | \
(0 << CP0C1_FP))
/* Have config3, no tertiary/secondary caches implemented */
#define MIPS_CONFIG2 \
((1U << CP0C2_M))
/* No config4, no DSP ASE, no large physaddr (PABITS),
no external interrupt controller, no vectored interrupts,
no 1kb pages, no SmartMIPS ASE, no trace logic */
#define MIPS_CONFIG3 \
((0 << CP0C3_M) | (0 << CP0C3_DSPP) | (0 << CP0C3_LPA) | \
(0 << CP0C3_VEIC) | (0 << CP0C3_VInt) | (0 << CP0C3_SP) | \
(0 << CP0C3_SM) | (0 << CP0C3_TL))
#define MIPS_CONFIG4 \
((0 << CP0C4_M))
#define MIPS_CONFIG5 \
((0 << CP0C5_M))
/*****************************************************************************/
/* MIPS CPU definitions */
const mips_def_t mips_defs[] =
2015-08-21 07:04:50 +00:00
{
{
"4Kc",
0x00018000,
MIPS_CONFIG0 | (MMU_TYPE_R4000 << CP0C0_MT),
MIPS_CONFIG1 | (15 << CP0C1_MMU) |
2015-08-21 07:04:50 +00:00
(0 << CP0C1_IS) | (3 << CP0C1_IL) | (1 << CP0C1_IA) |
(0 << CP0C1_DS) | (3 << CP0C1_DL) | (1 << CP0C1_DA) |
(0 << CP0C1_CA),
MIPS_CONFIG2,
MIPS_CONFIG3,
0,0,
2017-01-23 04:39:34 +00:00
0,0,
0,
0,
0,
4,
32,
2,
0x1278FF17,
0,
2017-01-23 04:39:34 +00:00
0,
0, // CP1_fcr0
0,
0, // CP1_fcr31
2017-01-23 04:39:34 +00:00
0,
32,
32,
0,0, 0,0, 0,0, 0,0, 0,0, 0,0,
0,
2017-01-23 04:39:34 +00:00
CPU_MIPS32,
MMU_TYPE_R4000,
2015-08-21 07:04:50 +00:00
},
{
"4Km",
0x00018300,
2015-08-21 07:04:50 +00:00
/* Config1 implemented, fixed mapping MMU,
no virtual icache, uncached coherency. */
MIPS_CONFIG0 | (MMU_TYPE_FMT << CP0C0_MT),
MIPS_CONFIG1 |
2015-08-21 07:04:50 +00:00
(0 << CP0C1_IS) | (3 << CP0C1_IL) | (1 << CP0C1_IA) |
(0 << CP0C1_DS) | (3 << CP0C1_DL) | (1 << CP0C1_DA) |
(1 << CP0C1_CA),
MIPS_CONFIG2,
MIPS_CONFIG3,
0,0,
2017-01-23 04:39:34 +00:00
0,0,
0,
0,
2017-01-23 04:39:34 +00:00
0,
4,
32,
2,
0x1258FF17,
0,
2017-01-23 04:39:34 +00:00
0,
0, // CP1_fcr0
0,
0, // CP1_fcr31
2017-01-23 04:39:34 +00:00
0,
32,
32,
0,0, 0,0, 0,0, 0,0, 0,0, 0,0,
0,
2017-01-23 04:39:34 +00:00
CPU_MIPS32 | ASE_MIPS16,
MMU_TYPE_FMT,
2015-08-21 07:04:50 +00:00
},
{
"4KEcR1",
0x00018400,
MIPS_CONFIG0 | (MMU_TYPE_R4000 << CP0C0_MT),
MIPS_CONFIG1 | (15 << CP0C1_MMU) |
2015-08-21 07:04:50 +00:00
(0 << CP0C1_IS) | (3 << CP0C1_IL) | (1 << CP0C1_IA) |
(0 << CP0C1_DS) | (3 << CP0C1_DL) | (1 << CP0C1_DA) |
(0 << CP0C1_CA),
MIPS_CONFIG2,
MIPS_CONFIG3,
0,0,
2017-01-23 04:39:34 +00:00
0,0,
0,
0,
0,
4,
32,
2,
0x1278FF17,
2017-01-23 04:39:34 +00:00
0,
0,
0, // CP1_fcr0
0,
0, // CP1_fcr31
2017-01-23 04:39:34 +00:00
0,
32,
32,
0,0, 0,0, 0,0, 0,0, 0,0, 0,0,
0,
2017-01-23 04:39:34 +00:00
CPU_MIPS32,
MMU_TYPE_R4000,
2015-08-21 07:04:50 +00:00
},
{
"4KEmR1",
0x00018500,
MIPS_CONFIG0 | (MMU_TYPE_FMT << CP0C0_MT),
MIPS_CONFIG1 |
2015-08-21 07:04:50 +00:00
(0 << CP0C1_IS) | (3 << CP0C1_IL) | (1 << CP0C1_IA) |
(0 << CP0C1_DS) | (3 << CP0C1_DL) | (1 << CP0C1_DA) |
(1 << CP0C1_CA),
MIPS_CONFIG2,
MIPS_CONFIG3,
0,0,
2017-01-23 04:39:34 +00:00
0,0,
0,
0,
0,
4,
32,
2,
0x1258FF17,
2017-01-23 04:39:34 +00:00
0,
0,
0, // CP1_fcr0
0,
0, // CP1_fcr31
2017-01-23 04:39:34 +00:00
0,
32,
32,
0,0, 0,0, 0,0, 0,0, 0,0, 0,0,
0,
2017-01-23 04:39:34 +00:00
CPU_MIPS32 | ASE_MIPS16,
MMU_TYPE_FMT,
2015-08-21 07:04:50 +00:00
},
{
"4KEc",
0x00019000,
MIPS_CONFIG0 | (0x1 << CP0C0_AR) |
2015-08-21 07:04:50 +00:00
(MMU_TYPE_R4000 << CP0C0_MT),
MIPS_CONFIG1 | (15 << CP0C1_MMU) |
2015-08-21 07:04:50 +00:00
(0 << CP0C1_IS) | (3 << CP0C1_IL) | (1 << CP0C1_IA) |
(0 << CP0C1_DS) | (3 << CP0C1_DL) | (1 << CP0C1_DA) |
(0 << CP0C1_CA),
MIPS_CONFIG2,
MIPS_CONFIG3 | (0 << CP0C3_VInt),
0,0,
2017-01-23 04:39:34 +00:00
0,0,
0,
0,
0,
4,
32,
2,
0x1278FF17,
0,
2017-01-23 04:39:34 +00:00
0,
0, // CP1_fcr0
0,
0, // CP1_fcr31
2017-01-23 04:39:34 +00:00
0,
32,
32,
0,0, 0,0, 0,0, 0,0, 0,0, 0,0,
0,
2017-01-23 04:39:34 +00:00
CPU_MIPS32R2,
MMU_TYPE_R4000,
2015-08-21 07:04:50 +00:00
},
{
"4KEm",
0x00019100,
MIPS_CONFIG0 | (0x1 << CP0C0_AR) |
2015-08-21 07:04:50 +00:00
(MMU_TYPE_FMT << CP0C0_MT),
MIPS_CONFIG1 |
2015-08-21 07:04:50 +00:00
(0 << CP0C1_IS) | (3 << CP0C1_IL) | (1 << CP0C1_IA) |
(0 << CP0C1_DS) | (3 << CP0C1_DL) | (1 << CP0C1_DA) |
(1 << CP0C1_CA),
MIPS_CONFIG2,
MIPS_CONFIG3,
0,0,
2017-01-23 04:39:34 +00:00
0,0,
0,
0,
0,
4,
32,
2,
0x1258FF17,
0,
2017-01-23 04:39:34 +00:00
0,
0, // CP1_fcr0
0,
0, // CP1_fcr31
2017-01-23 04:39:34 +00:00
0,
32,
32,
0,0, 0,0, 0,0, 0,0, 0,0, 0,0,
0,
2017-01-23 04:39:34 +00:00
CPU_MIPS32R2 | ASE_MIPS16,
MMU_TYPE_FMT,
2015-08-21 07:04:50 +00:00
},
{
"24Kc",
0x00019300,
MIPS_CONFIG0 | (0x1 << CP0C0_AR) |
2015-08-21 07:04:50 +00:00
(MMU_TYPE_R4000 << CP0C0_MT),
MIPS_CONFIG1 | (15 << CP0C1_MMU) |
2015-08-21 07:04:50 +00:00
(0 << CP0C1_IS) | (3 << CP0C1_IL) | (1 << CP0C1_IA) |
(0 << CP0C1_DS) | (3 << CP0C1_DL) | (1 << CP0C1_DA) |
(1 << CP0C1_CA),
MIPS_CONFIG2,
MIPS_CONFIG3 | (0 << CP0C3_VInt),
0,0,
2017-01-23 04:39:34 +00:00
0,0,
0,
0,
0,
4,
32,
2,
2015-08-21 07:04:50 +00:00
/* No DSP implemented. */
0x1278FF1F,
0,
2017-01-23 04:39:34 +00:00
0,
0, // CP1_fcr0
0,
0, // CP1_fcr31
2017-01-23 04:39:34 +00:00
0,
32,
32,
0,0, 0,0, 0,0, 0,0, 0,0, 0,0,
0,
2017-01-23 04:39:34 +00:00
CPU_MIPS32R2 | ASE_MIPS16,
MMU_TYPE_R4000,
2015-08-21 07:04:50 +00:00
},
{
"24KEc",
0x00019600,
MIPS_CONFIG0 | (0x1 << CP0C0_AR) |
(MMU_TYPE_R4000 << CP0C0_MT),
MIPS_CONFIG1 | (15 << CP0C1_MMU) |
(0 << CP0C1_IS) | (3 << CP0C1_IL) | (1 << CP0C1_IA) |
(0 << CP0C1_DS) | (3 << CP0C1_DL) | (1 << CP0C1_DA) |
(1 << CP0C1_CA),
MIPS_CONFIG2,
MIPS_CONFIG3 | (1 << CP0C3_DSPP) | (0 << CP0C3_VInt),
0,0,
0,0,
0,
0,
0,
4,
32,
2,
/* we have a DSP, but no FPU */
0x1378FF1F,
0,
0,
0,
0,
0,
0,
32,
32,
0,0,
0,0,
0,0,
0,0,
0,0,
0,0,
0,
CPU_MIPS32R2 | ASE_MIPS16 | ASE_DSP,
MMU_TYPE_R4000,
},
2015-08-21 07:04:50 +00:00
{
"24Kf",
0x00019300,
MIPS_CONFIG0 | (0x1 << CP0C0_AR) |
2015-08-21 07:04:50 +00:00
(MMU_TYPE_R4000 << CP0C0_MT),
MIPS_CONFIG1 | (1 << CP0C1_FP) | (15 << CP0C1_MMU) |
2015-08-21 07:04:50 +00:00
(0 << CP0C1_IS) | (3 << CP0C1_IL) | (1 << CP0C1_IA) |
(0 << CP0C1_DS) | (3 << CP0C1_DL) | (1 << CP0C1_DA) |
(1 << CP0C1_CA),
MIPS_CONFIG2,
MIPS_CONFIG3 | (0 << CP0C3_VInt),
0,0,
2017-01-23 04:39:34 +00:00
0,0,
0,
0,
0,
4,
32,
2,
2015-08-21 07:04:50 +00:00
/* No DSP implemented. */
0x3678FF1F,
0,
2017-01-23 04:39:34 +00:00
0,
(1 << FCR0_F64) | (1 << FCR0_L) | (1 << FCR0_W) |
2015-08-21 07:04:50 +00:00
(1 << FCR0_D) | (1 << FCR0_S) | (0x93 << FCR0_PRID),
0xFF83FFFF,
0,
0,
2017-01-23 04:39:34 +00:00
32,
32,
0,0, 0,0, 0,0, 0,0, 0,0, 0,0,
0,
2017-01-23 04:39:34 +00:00
CPU_MIPS32R2 | ASE_MIPS16,
MMU_TYPE_R4000,
2015-08-21 07:04:50 +00:00
},
{
"34Kf",
0x00019500,
MIPS_CONFIG0 | (0x1 << CP0C0_AR) |
2015-08-21 07:04:50 +00:00
(MMU_TYPE_R4000 << CP0C0_MT),
MIPS_CONFIG1 | (1 << CP0C1_FP) | (15 << CP0C1_MMU) |
2015-08-21 07:04:50 +00:00
(0 << CP0C1_IS) | (3 << CP0C1_IL) | (1 << CP0C1_IA) |
(0 << CP0C1_DS) | (3 << CP0C1_DL) | (1 << CP0C1_DA) |
(1 << CP0C1_CA),
MIPS_CONFIG2,
MIPS_CONFIG3 | (1 << CP0C3_VInt) | (1 << CP0C3_MT) |
2015-08-21 07:04:50 +00:00
(1 << CP0C3_DSPP),
0,
0,
32,
2,
0x3778FF1F,
(0 << CP0TCSt_TCU3) | (0 << CP0TCSt_TCU2) |
2015-08-21 07:04:50 +00:00
(1 << CP0TCSt_TCU1) | (1 << CP0TCSt_TCU0) |
(0 << CP0TCSt_TMX) | (1 << CP0TCSt_DT) |
(1 << CP0TCSt_DA) | (1 << CP0TCSt_A) |
(0x3 << CP0TCSt_TKSU) | (1 << CP0TCSt_IXMT) |
(0xff << CP0TCSt_TASID),
(0xf << CP0SRSCtl_HSS),
2017-01-23 04:39:34 +00:00
(1 << FCR0_F64) | (1 << FCR0_L) | (1 << FCR0_W) |
2015-08-21 07:04:50 +00:00
(1 << FCR0_D) | (1 << FCR0_S) | (0x95 << FCR0_PRID),
0xFF83FFFF,
0,
0,
32,
32,
0x3fffffff,
(1U << CP0SRSC0_M) | (0x3fe << CP0SRSC0_SRS3) |
2015-08-21 07:04:50 +00:00
(0x3fe << CP0SRSC0_SRS2) | (0x3fe << CP0SRSC0_SRS1),
0x3fffffff,
(1U << CP0SRSC1_M) | (0x3fe << CP0SRSC1_SRS6) |
2015-08-21 07:04:50 +00:00
(0x3fe << CP0SRSC1_SRS5) | (0x3fe << CP0SRSC1_SRS4),
0x3fffffff,
(1U << CP0SRSC2_M) | (0x3fe << CP0SRSC2_SRS9) |
2015-08-21 07:04:50 +00:00
(0x3fe << CP0SRSC2_SRS8) | (0x3fe << CP0SRSC2_SRS7),
0x3fffffff,
(1U << CP0SRSC3_M) | (0x3fe << CP0SRSC3_SRS12) |
2015-08-21 07:04:50 +00:00
(0x3fe << CP0SRSC3_SRS11) | (0x3fe << CP0SRSC3_SRS10),
0x3fffffff,
(0x3fe << CP0SRSC4_SRS15) |
2015-08-21 07:04:50 +00:00
(0x3fe << CP0SRSC4_SRS14) | (0x3fe << CP0SRSC4_SRS13),
0,0,
0,
.insn_flags = CPU_MIPS32R2 | ASE_MIPS16 | ASE_DSP | ASE_MT,
MMU_TYPE_R4000,
2015-08-21 07:04:50 +00:00
},
{
"74Kf",
0x00019700,
MIPS_CONFIG0 | (0x1 << CP0C0_AR) |
2015-08-21 07:04:50 +00:00
(MMU_TYPE_R4000 << CP0C0_MT),
MIPS_CONFIG1 | (1 << CP0C1_FP) | (15 << CP0C1_MMU) |
2015-08-21 07:04:50 +00:00
(0 << CP0C1_IS) | (3 << CP0C1_IL) | (1 << CP0C1_IA) |
(0 << CP0C1_DS) | (3 << CP0C1_DL) | (1 << CP0C1_DA) |
(1 << CP0C1_CA),
MIPS_CONFIG2,
MIPS_CONFIG3 | (1 << CP0C3_DSP2P) | (1 << CP0C3_DSPP) |
(1 << CP0C3_VInt),
0,0,
2017-01-23 04:39:34 +00:00
0,0,
0,
0,
0,
4,
32,
2,
0x3778FF1F,
0,
2017-01-23 04:39:34 +00:00
0,
(1 << FCR0_F64) | (1 << FCR0_L) | (1 << FCR0_W) |
2015-08-21 07:04:50 +00:00
(1 << FCR0_D) | (1 << FCR0_S) | (0x93 << FCR0_PRID),
0xFF83FFFF,
0,
0,
2017-01-23 04:39:34 +00:00
32,
32,
0,0, 0,0, 0,0, 0,0, 0,0, 0,0,
0,
CPU_MIPS32R2 | ASE_MIPS16 | ASE_DSP | ASE_DSP_R2,
MMU_TYPE_R4000,
2015-08-21 07:04:50 +00:00
},
{
"M14K",
0x00019b00,
/* Config1 implemented, fixed mapping MMU,
no virtual icache, uncached coherency. */
MIPS_CONFIG0 | (0x2 << CP0C0_KU) | (0x2 << CP0C0_K23) |
(0x1 << CP0C0_AR) | (MMU_TYPE_FMT << CP0C0_MT),
MIPS_CONFIG1,
MIPS_CONFIG2,
MIPS_CONFIG3 | (0x2 << CP0C3_ISA) | (1 << CP0C3_VInt),
0, 0,
0, 0,
0,
0,
0,
4,
32,
2,
0x1258FF17,
0,
0,
0, // CP1_fcr0
0,
0, // CP1_fcr31
0,
32,
32,
0,0, 0,0, 0,0, 0,0, 0,0, 0,0,
0,
CPU_MIPS32R2 | ASE_MICROMIPS,
MMU_TYPE_FMT,
},
{
"M14Kc",
/* This is the TLB-based MMU core. */
0x00019c00,
MIPS_CONFIG0 | (0x1 << CP0C0_AR) |
(MMU_TYPE_R4000 << CP0C0_MT),
MIPS_CONFIG1 | (15 << CP0C1_MMU) |
(0 << CP0C1_IS) | (3 << CP0C1_IL) | (1 << CP0C1_IA) |
(0 << CP0C1_DS) | (3 << CP0C1_DL) | (1 << CP0C1_DA),
MIPS_CONFIG2,
MIPS_CONFIG3 | (0x2 << CP0C3_ISA) | (0 << CP0C3_VInt),
0, 0,
0, 0,
0,
0,
0,
4,
32,
2,
0x1278FF17,
0,
0,
0, // CP1_fcr0
0,
0, // CP1_fcr31
0,
32,
32,
0,0, 0,0, 0,0, 0,0, 0,0, 0,0,
0,
CPU_MIPS32R2 | ASE_MICROMIPS,
MMU_TYPE_R4000,
},
2015-08-21 07:04:50 +00:00
{
/* FIXME:
* Config3: CMGCR, SC, PW, VZ, CTXTC, CDMM, TL
* Config4: MMUExtDef
* Config5: EVA, MRP
* FIR(FCR0): Has2008
* */
"P5600",
0x0001A800,
MIPS_CONFIG0 | (1 << CP0C0_MM) | (1 << CP0C0_AR) |
2015-08-21 07:04:50 +00:00
(MMU_TYPE_R4000 << CP0C0_MT),
MIPS_CONFIG1 | (0x3F << CP0C1_MMU) |
(2 << CP0C1_IS) | (4 << CP0C1_IL) | (3 << CP0C1_IA) |
(2 << CP0C1_DS) | (4 << CP0C1_DL) | (3 << CP0C1_DA) |
(1 << CP0C1_PC) | (1 << CP0C1_FP),
MIPS_CONFIG2,
MIPS_CONFIG3 | (1U << CP0C3_M) | (1 << CP0C3_CMGCR) | (1 << CP0C3_MSAP) |
(1 << CP0C3_BP) | (1 << CP0C3_BI) | (1 << CP0C3_SC) |
(1 << CP0C3_ULRI) | (1 << CP0C3_RXI) | (1 << CP0C3_LPA) |
(1 << CP0C3_VInt),
MIPS_CONFIG4 | (1U << CP0C4_M) | (2 << CP0C4_IE) |
(0x1c << CP0C4_KScrExist),
0,
MIPS_CONFIG5 | (1 << CP0C5_EVA) | (1 << CP0C5_MVH) |
(1 << CP0C5_LLB) | (1 << CP0C5_MRP),
(1 << CP0C5_K) | (1 << CP0C5_CV) |
(1 << CP0C5_MSAEn) | (1 << CP0C5_UFE) |
(1 << CP0C5_FRE) | (1 << CP0C5_UFR),
0,
0,
2017-01-23 04:39:34 +00:00
0,
0,
32,
2,
0x3C68FF1F,
0,
2017-01-23 04:39:34 +00:00
0,
(1 << FCR0_FREP) | (1 << FCR0_UFRP) | (1 << FCR0_HAS2008) |
(1 << FCR0_F64) | (1 << FCR0_L) | (1 << FCR0_W) |
(1 << FCR0_D) | (1 << FCR0_S) | (0x03 << FCR0_PRID),
0xFF83FFFF,
(1 << FCR31_ABS2008) | (1 << FCR31_NAN2008),
0,
2017-01-23 04:39:34 +00:00
32,
40,
0,0, 0,0, 0,0, 0,0, 0,0,
(1U << CP0PG_RIE) | (1 << CP0PG_XIE) | (1 << CP0PG_ELPA) | (1 << CP0PG_IEC),
0,
(1 << CP0EBase_WG),
CPU_MIPS32R5 | ASE_MSA,
MMU_TYPE_R4000,
2015-08-21 07:04:50 +00:00
},
target/mips: Define the R5900 CPU The primary purpose of this change is to support programs compiled by GCC for the R5900 target and thereby run R5900 Linux distributions, for example Gentoo. GCC in version 7.3, by itself, by inspection of the GCC source code and inspection of the generated machine code, for the R5900 target, only emits two instructions that are specific to the R5900: the three- operand MULT and MULTU. GCC and libc also emit certain MIPS III instructions that are not part of the R5900 ISA. They are normally trapped and emulated by the Linux kernel, and therefore need to be treated accordingly by QEMU. A program compiled by GCC is taken to mean source code compiled by GCC under the restrictions above. One can, with the apparent limitations, with a bit of effort obtain a fully functioning operating system such as R5900 Gentoo. Strictly speaking, programs need not be compiled by GCC to make use of this change. Instructions and other facilities of the R5900 not implemented by this change are intended to signal provisional exceptions. One such example is the FPU that is not compliant with IEEE 754-1985 in system mode. It is therefore provisionally disabled. In user space the FPU is trapped and emulated by IEEE 754-1985 compliant software in the kernel, and this is handled accordingly by QEMU. Another example is the 93 multimedia instructions specific to the R5900 that generate provisional reserved instruction exception signals. One of the benefits of running a Linux distribution under QEMU is that programs can be compiled with a native compiler, where the host and target are the same, as opposed to a cross-compiler, where they are not the same. This is especially important in cases where the target hardware does not have the resources to run a native compiler. Problems with cross-compilation are often related to host and target differences in integer sizes, pointer sizes, endianness, machine code, ABI, etc. Sometimes cross-compilation is not even supported by the build script for a given package. One effective way to avoid those problems is to replace the cross-compiler with a native compiler. This change of compilation methods does not resolve the inherent problems with cross-compilation. The native compiler naturally replaces the cross-compiler, because one typically uses one or the other, and preferably the native compiler when the circumstances admit this. The native compiler is also a good test case for the R5900 QEMU user mode. Additionally, Gentoo is well- known for compiling and installing its packages from sources. This change has been tested with Gentoo compiled for R5900, including native compilation of several packages under QEMU. Backports commit ed4f49ba9bb56ebca6987b1083255daf6c89b5de from qemu.
2018-11-10 17:11:08 +00:00
{
/*
* The Toshiba TX System RISC TX79 Core Architecture manual
*
* https://wiki.qemu.org/File:C790.pdf
*
* describes the C790 processor that is a follow-up to the R5900.
* There are a few notable differences in that the R5900 FPU
*
* - is not IEEE 754-1985 compliant,
* - does not implement double format, and
* - its machine code is nonstandard.
*/
.name = "R5900",
.CP0_PRid = 0x00002E00,
/* No L2 cache, icache size 32k, dcache size 32k, uncached coherency. */
.CP0_Config0 = (0x3 << 9) | (0x3 << 6) | (0x2 << CP0C0_K0),
.CP0_Status_rw_bitmask = 0xF4C79C1F,
#ifdef CONFIG_USER_ONLY
/*
* R5900 hardware traps to the Linux kernel for IEEE 754-1985 and LL/SC
* emulation. For user only, QEMU is the kernel, so we emulate the traps
* by simply emulating the instructions directly.
*
* Note: Config1 is only used internally, the R5900 has only Config0.
*/
.CP0_Config1 = (1 << CP0C1_FP) | (47 << CP0C1_MMU),
.CP0_LLAddr_rw_bitmask = 0xFFFFFFFF,
.CP0_LLAddr_shift = 4,
.CP1_fcr0 = (0x38 << FCR0_PRID) | (0x0 << FCR0_REV),
.CP1_fcr31 = 0,
.CP1_fcr31_rw_bitmask = 0x0183FFFF,
#else
/*
* The R5900 COP1 FPU implements single-precision floating-point
* operations but is not entirely IEEE 754-1985 compatible. In
* particular,
*
* - NaN (not a number) and +/- infinities are not supported;
* - exception mechanisms are not fully supported;
* - denormalized numbers are not supported;
* - rounding towards nearest and +/- infinities are not supported;
* - computed results usually differs in the least significant bit;
* - saturations can differ more than the least significant bit.
*
* Since only rounding towards zero is supported, the two least
* significant bits of FCR31 are hardwired to 01.
*
* FPU emulation is disabled here until it is implemented.
*
* Note: Config1 is only used internally, the R5900 has only Config0.
*/
.CP0_Config1 = (47 << CP0C1_MMU),
#endif /* !CONFIG_USER_ONLY */
.SEGBITS = 32,
.PABITS = 32,
.insn_flags = CPU_R5900 | ASE_MMI,
.mmu_type = MMU_TYPE_R4000,
},
{
/* A generic CPU supporting MIPS32 Release 6 ISA.
FIXME: Support IEEE 754-2008 FP.
Eventually this should be replaced by a real CPU model. */
"mips32r6-generic",
0x00010000,
MIPS_CONFIG0 | (0x2 << CP0C0_AR) | (MMU_TYPE_R4000 << CP0C0_MT),
MIPS_CONFIG1 | (1 << CP0C1_FP) | (31 << CP0C1_MMU) |
(2 << CP0C1_IS) | (4 << CP0C1_IL) | (3 << CP0C1_IA) |
(2 << CP0C1_DS) | (4 << CP0C1_DL) | (3 << CP0C1_DA) |
(0 << CP0C1_PC) | (1 << CP0C1_WR) | (1 << CP0C1_EP),
MIPS_CONFIG2,
MIPS_CONFIG3 | (1 << CP0C3_BP) | (1 << CP0C3_BI) |
(2 << CP0C3_ISA) | (1 << CP0C3_ULRI) |
(1 << CP0C3_RXI) | (1U << CP0C3_M),
MIPS_CONFIG4 | (0xfc << CP0C4_KScrExist) |
(3 << CP0C4_IE) | (1U << CP0C4_M),
0,
MIPS_CONFIG5 | (1 << CP0C5_XNP) | (1 << CP0C5_LLB),
(1 << CP0C5_SBRI) | (1 << CP0C5_FRE) | (1 << CP0C5_UFE),
0,
0,
0,
0,
32,
2,
0x3058FF1F,
0,
0,
(1 << FCR0_FREP) | (1 << FCR0_F64) | (1 << FCR0_HAS2008) | (1 << FCR0_L) |
(1 << FCR0_W) | (1 << FCR0_D) | (1 << FCR0_S) |
(0x00 << FCR0_PRID) | (0x0 << FCR0_REV),
0x0103FFFF,
(1 << FCR31_ABS2008) | (1 << FCR31_NAN2008),
0,
32,
32,
0,0,
0,0,
0,0,
0,0,
0,0,
0,
(1 << CP0PG_IEC) | (1 << CP0PG_XIE) | (1U << CP0PG_RIE),
0,
CPU_MIPS32R6 | ASE_MICROMIPS,
MMU_TYPE_R4000,
},
{
"I7200",
0x00010000,
MIPS_CONFIG0 | (1 << CP0C0_MM) | (0x2 << CP0C0_AR) |
(MMU_TYPE_R4000 << CP0C0_MT),
(1U << CP0C1_M) | (15 << CP0C1_MMU) | (2 << CP0C1_IS) |
(4 << CP0C1_IL) | (3 << CP0C1_IA) | (2 << CP0C1_DS) |
(4 << CP0C1_DL) | (3 << CP0C1_DA) | (1 << CP0C1_PC) |
(1 << CP0C1_EP),
MIPS_CONFIG2,
MIPS_CONFIG3 | (1U << CP0C3_M) | (1 << CP0C3_CMGCR) |
(1 << CP0C3_BI) | (1 << CP0C3_SC) | (3 << CP0C3_MMAR) |
(1 << CP0C3_ISA_ON_EXC) | (1 << CP0C3_ISA) |
(1 << CP0C3_ULRI) | (1 << CP0C3_RXI) |
(1 << CP0C3_DSP2P) | (1 << CP0C3_DSPP) |
(1 << CP0C3_CTXTC) | (1 << CP0C3_VInt) |
(1 << CP0C3_CDMM) | (1 << CP0C3_MT) | (1 << CP0C3_TL),
MIPS_CONFIG4 | (0xfc << CP0C4_KScrExist) |
(2 << CP0C4_IE) | (1U << CP0C4_M),
0,
MIPS_CONFIG5 | (1 << CP0C5_MVH) | (1 << CP0C5_LLB),
(1 << CP0C5_SBRI) | (1 << CP0C5_FRE) |
(1 << CP0C5_UFE),
0,0,
0,
0,
32,
2,
0x3158FF1F,
0,
0,
(1 << FCR0_FREP) | (1 << FCR0_HAS2008) | (1 << FCR0_F64) |
(1 << FCR0_L) | (1 << FCR0_W) | (1 << FCR0_D) |
(1 << FCR0_S) | (0x02 << FCR0_PRID) | (0x0 << FCR0_REV),
0,
(1 << FCR31_ABS2008) | (1 << FCR31_NAN2008),
0,
32,
32,
0,0,
0,0,
0,0,
0,0,
0,0,
0,
(1 << CP0PG_IEC) | (1 << CP0PG_XIE) | (1U << CP0PG_RIE),
0,
CPU_NANOMIPS32 | ASE_DSP | ASE_DSP_R2 | ASE_DSP_R3 | ASE_MT,
MMU_TYPE_R4000,
},
2015-08-21 07:04:50 +00:00
#if defined(TARGET_MIPS64)
{
"R4000",
0x00000400,
2015-08-21 07:04:50 +00:00
/* No L2 cache, icache size 8k, dcache size 8k, uncached coherency. */
(1 << 17) | (0x1 << 9) | (0x1 << 6) | (0x2 << CP0C0_K0),
2015-08-21 07:04:50 +00:00
/* Note: Config1 is only used internally, the R4000 has only Config0. */
(1 << CP0C1_FP) | (47 << CP0C1_MMU),
0,
2017-01-23 04:39:34 +00:00
0,
0,0,
0,0,
0,
0,
0xFFFFFFFF,
4,
16,
2,
0x3678FFFF,
0,
2017-01-23 04:39:34 +00:00
0,
/* The R4000 has a full 64bit FPU but doesn't use the fcr0 bits. */
(0x5 << FCR0_PRID) | (0x0 << FCR0_REV),
0x0183FFFF,
0,
0,
2017-01-23 04:39:34 +00:00
40,
36,
0,0, 0,0, 0,0, 0,0, 0,0, 0,0,
0,
2017-01-23 04:39:34 +00:00
CPU_MIPS3,
MMU_TYPE_R4000,
2015-08-21 07:04:50 +00:00
},
{
"VR5432",
0x00005400,
2015-08-21 07:04:50 +00:00
/* No L2 cache, icache size 8k, dcache size 8k, uncached coherency. */
(1 << 17) | (0x1 << 9) | (0x1 << 6) | (0x2 << CP0C0_K0),
(1 << CP0C1_FP) | (47 << CP0C1_MMU),
0,
2017-01-23 04:39:34 +00:00
0,
0,0,
0,0,
0,
0,
0xFFFFFFFFL,
4,
16,
2,
0x3678FFFF,
0,
2017-01-23 04:39:34 +00:00
0,
/* The VR5432 has a full 64bit FPU but doesn't use the fcr0 bits. */
(0x54 << FCR0_PRID) | (0x0 << FCR0_REV),
0xFF83FFFF,
0,
0,
2017-01-23 04:39:34 +00:00
40,
32,
0,0, 0,0, 0,0, 0,0, 0,0, 0,0,
0,
2017-01-23 04:39:34 +00:00
CPU_VR54XX,
MMU_TYPE_R4000,
2015-08-21 07:04:50 +00:00
},
{
"5Kc",
0x00018100,
MIPS_CONFIG0 | (0x2 << CP0C0_AT) |
2015-08-21 07:04:50 +00:00
(MMU_TYPE_R4000 << CP0C0_MT),
MIPS_CONFIG1 | (31 << CP0C1_MMU) |
2015-08-21 07:04:50 +00:00
(1 << CP0C1_IS) | (4 << CP0C1_IL) | (1 << CP0C1_IA) |
(1 << CP0C1_DS) | (4 << CP0C1_DL) | (1 << CP0C1_DA) |
(1 << CP0C1_PC) | (1 << CP0C1_WR) | (1 << CP0C1_EP),
MIPS_CONFIG2,
MIPS_CONFIG3,
0,0,
2017-01-23 04:39:34 +00:00
0,0,
0,
0,
0,
4,
32,
2,
0x12F8FFFF,
0,
2017-01-23 04:39:34 +00:00
0,
0, // CP1_fcr0
0,
0, // CP1_fcr31
2017-01-23 04:39:34 +00:00
0,
42,
36,
0,0, 0,0, 0,0, 0,0, 0,0, 0,0,
0,
2017-01-23 04:39:34 +00:00
CPU_MIPS64,
MMU_TYPE_R4000,
2015-08-21 07:04:50 +00:00
},
{
"5Kf",
0x00018100,
MIPS_CONFIG0 | (0x2 << CP0C0_AT) |
2015-08-21 07:04:50 +00:00
(MMU_TYPE_R4000 << CP0C0_MT),
MIPS_CONFIG1 | (1 << CP0C1_FP) | (31 << CP0C1_MMU) |
2015-08-21 07:04:50 +00:00
(1 << CP0C1_IS) | (4 << CP0C1_IL) | (1 << CP0C1_IA) |
(1 << CP0C1_DS) | (4 << CP0C1_DL) | (1 << CP0C1_DA) |
(1 << CP0C1_PC) | (1 << CP0C1_WR) | (1 << CP0C1_EP),
MIPS_CONFIG2,
MIPS_CONFIG3,
0,0,
2017-01-23 04:39:34 +00:00
0,0,
0,
0,
2017-01-23 04:39:34 +00:00
0,
4,
32,
2,
0x36F8FFFF,
0,
2017-01-23 04:39:34 +00:00
0,
/* The 5Kf has F64 / L / W but doesn't use the fcr0 bits. */
(1 << FCR0_D) | (1 << FCR0_S) |
2015-08-21 07:04:50 +00:00
(0x81 << FCR0_PRID) | (0x0 << FCR0_REV),
0xFF83FFFF,
0,
0,
2017-01-23 04:39:34 +00:00
42,
36,
0,0, 0,0, 0,0, 0,0, 0,0, 0,0,
0,
2017-01-23 04:39:34 +00:00
CPU_MIPS64,
MMU_TYPE_R4000,
2015-08-21 07:04:50 +00:00
},
{
"20Kc",
2015-08-21 07:04:50 +00:00
/* We emulate a later version of the 20Kc, earlier ones had a broken
WAIT instruction. */
0x000182a0,
MIPS_CONFIG0 | (0x2 << CP0C0_AT) |
2015-08-21 07:04:50 +00:00
(MMU_TYPE_R4000 << CP0C0_MT) | (1 << CP0C0_VI),
MIPS_CONFIG1 | (1 << CP0C1_FP) | (47 << CP0C1_MMU) |
2015-08-21 07:04:50 +00:00
(2 << CP0C1_IS) | (4 << CP0C1_IL) | (3 << CP0C1_IA) |
(2 << CP0C1_DS) | (4 << CP0C1_DL) | (3 << CP0C1_DA) |
(1 << CP0C1_PC) | (1 << CP0C1_WR) | (1 << CP0C1_EP),
MIPS_CONFIG2,
MIPS_CONFIG3,
0,.0,
2017-01-23 04:39:34 +00:00
0,0,
0,
0,
0,
0,
32,
1,
0x36FBFFFF,
0,
2017-01-23 04:39:34 +00:00
0,
/* The 20Kc has F64 / L / W but doesn't use the fcr0 bits. */
(1 << FCR0_3D) | (1 << FCR0_PS) |
2015-08-21 07:04:50 +00:00
(1 << FCR0_D) | (1 << FCR0_S) |
(0x82 << FCR0_PRID) | (0x0 << FCR0_REV),
0xFF83FFFF,
0,
0,
2017-01-23 04:39:34 +00:00
40,
36,
0,0, 0,0, 0,0, 0,0, 0,0, 0,0,
0,
2017-01-23 04:39:34 +00:00
CPU_MIPS64 | ASE_MIPS3D,
MMU_TYPE_R4000,
2015-08-21 07:04:50 +00:00
},
{
/* A generic CPU providing MIPS64 Release 2 features.
FIXME: Eventually this should be replaced by a real CPU model. */
"MIPS64R2-generic",
0x00010000,
MIPS_CONFIG0 | (0x1 << CP0C0_AR) | (0x2 << CP0C0_AT) |
2015-08-21 07:04:50 +00:00
(MMU_TYPE_R4000 << CP0C0_MT),
MIPS_CONFIG1 | (1 << CP0C1_FP) | (63 << CP0C1_MMU) |
2015-08-21 07:04:50 +00:00
(2 << CP0C1_IS) | (4 << CP0C1_IL) | (3 << CP0C1_IA) |
(2 << CP0C1_DS) | (4 << CP0C1_DL) | (3 << CP0C1_DA) |
(1 << CP0C1_PC) | (1 << CP0C1_WR) | (1 << CP0C1_EP),
MIPS_CONFIG2,
MIPS_CONFIG3 | (1 << CP0C3_LPA),
0,0,
2017-01-23 04:39:34 +00:00
0,0,
0,
0,
0,
0,
32,
2,
0x36FBFFFF,
0,
2017-01-23 04:39:34 +00:00
0,
(1 << FCR0_F64) | (1 << FCR0_3D) | (1 << FCR0_PS) |
2015-08-21 07:04:50 +00:00
(1 << FCR0_L) | (1 << FCR0_W) | (1 << FCR0_D) |
(1 << FCR0_S) | (0x00 << FCR0_PRID) | (0x0 << FCR0_REV),
0xFF83FFFF,
0,
0,
2017-01-23 04:39:34 +00:00
42,
36,
0,0, 0,0, 0,0, 0,0, 0,0, 0,0,
(1 << CP0EBase_WG),
2017-01-23 04:39:34 +00:00
CPU_MIPS64R2 | ASE_MIPS3D,
MMU_TYPE_R4000,
2015-08-21 07:04:50 +00:00
},
{
"I6400",
0x1A900,
MIPS_CONFIG0 | (0x2 << CP0C0_AR) | (0x2 << CP0C0_AT) |
2015-08-21 07:04:50 +00:00
(MMU_TYPE_R4000 << CP0C0_MT),
MIPS_CONFIG1 | (1 << CP0C1_FP) | (15 << CP0C1_MMU) |
(2 << CP0C1_IS) | (5 << CP0C1_IL) | (3 << CP0C1_IA) |
(2 << CP0C1_DS) | (5 << CP0C1_DL) | (3 << CP0C1_DA) |
2015-08-21 07:04:50 +00:00
(0 << CP0C1_PC) | (1 << CP0C1_WR) | (1 << CP0C1_EP),
MIPS_CONFIG2,
MIPS_CONFIG3 | (1U << CP0C3_M) | (1 << CP0C3_CMGCR) | (1 << CP0C3_MSAP) |
(1 << CP0C3_BP) | (1 << CP0C3_BI) | (1 << CP0C3_ULRI) |
(1 << CP0C3_RXI) | (1 << CP0C3_LPA) | (1 << CP0C3_VInt),
MIPS_CONFIG4 | (1U << CP0C4_M) | (3 << CP0C4_IE) |
(1 << CP0C4_AE) | (0xfc << CP0C4_KScrExist),
MIPS_CONFIG5 | (1 << CP0C5_XNP) | (1 << CP0C5_VP) |
(1 << CP0C5_LLB) | (1 << CP0C5_MRP),
(1 << CP0C5_MSAEn) | (1 << CP0C5_SBRI) |
(1 << CP0C5_FRE) | (1 << CP0C5_UFE),
0,
2017-01-23 04:39:34 +00:00
0,
0,
0,
0,
32,
2,
0x30D8FFFF,
0,
2017-01-23 04:39:34 +00:00
0,
(1 << FCR0_FREP) | (1 << FCR0_HAS2008) | (1 << FCR0_F64) |
(1 << FCR0_L) | (1 << FCR0_W) | (1 << FCR0_D) |
(1 << FCR0_S) | (0x03 << FCR0_PRID) | (0x0 << FCR0_REV),
0x0103FFFF,
(1 << FCR31_ABS2008) | (1 << FCR31_NAN2008),
0x03 << MSAIR_ProcID,
48,
48,
0,0, 0,0, 0,0, 0,0, 0,0,
(1 << CP0PG_ELPA),
2017-01-23 04:39:34 +00:00
(1 << CP0PG_IEC) | (1 << CP0PG_XIE) |
(1U << CP0PG_RIE),
(1 << CP0EBase_WG),
CPU_MIPS64R6 | ASE_MSA,
MMU_TYPE_R4000,
2015-08-21 07:04:50 +00:00
},
{
"5KEc",
0x00018900,
MIPS_CONFIG0 | (0x1 << CP0C0_AR) | (0x2 << CP0C0_AT) |
(MMU_TYPE_R4000 << CP0C0_MT),
MIPS_CONFIG1 | (31 << CP0C1_MMU) |
(1 << CP0C1_IS) | (4 << CP0C1_IL) | (1 << CP0C1_IA) |
(1 << CP0C1_DS) | (4 << CP0C1_DL) | (1 << CP0C1_DA) |
(1 << CP0C1_PC) | (1 << CP0C1_WR) | (1 << CP0C1_EP),
MIPS_CONFIG2,
MIPS_CONFIG3,
0,
0,
0,
0,
0,
0,
0,
4,
32,
2,
0x12F8FFFF,
0,
0,
0, // CP1_fcr0
0,
0, // CP1_fcr31
0,
42,
36,
0,0, 0,0, 0,0, 0,0, 0,0, 0,0,
0,
CPU_MIPS64R2,
MMU_TYPE_R4000,
},
{
"5KEf",
0x00018900,
MIPS_CONFIG0 | (0x1 << CP0C0_AR) | (0x2 << CP0C0_AT) |
(MMU_TYPE_R4000 << CP0C0_MT),
MIPS_CONFIG1 | (1 << CP0C1_FP) | (31 << CP0C1_MMU) |
(1 << CP0C1_IS) | (4 << CP0C1_IL) | (1 << CP0C1_IA) |
(1 << CP0C1_DS) | (4 << CP0C1_DL) | (1 << CP0C1_DA) |
(1 << CP0C1_PC) | (1 << CP0C1_WR) | (1 << CP0C1_EP),
MIPS_CONFIG2,
MIPS_CONFIG3,
0,
0,
0,
0,
0,
0,
0,
4,
32,
2,
0x36F8FFFF,
0,
0,
(1 << FCR0_F64) | (1 << FCR0_L) | (1 << FCR0_W) |
(1 << FCR0_D) | (1 << FCR0_S) |
(0x89 << FCR0_PRID) | (0x0 << FCR0_REV),
0,
0,
0,
42,
36,
0,0, 0,0, 0,0, 0,0, 0,0, 0,0,
0,
CPU_MIPS64R2,
MMU_TYPE_R4000,
},
2015-08-21 07:04:50 +00:00
{
"Loongson-2E",
0x6302,
2015-08-21 07:04:50 +00:00
/*64KB I-cache and d-cache. 4 way with 32 bit cache line size*/
(0x1<<17) | (0x1<<16) | (0x1<<11) | (0x1<<8) | (0x1<<5) |
2015-08-21 07:04:50 +00:00
(0x1<<4) | (0x1<<1),
/* Note: Config1 is only used internally, Loongson-2E has only Config0. */
(1 << CP0C1_FP) | (47 << CP0C1_MMU),
0,
2017-01-23 04:39:34 +00:00
0,
0,0,
0,0,
0,
0,
0,
0,
16,
2,
0x35D0FFFF,
0,
0,
2017-01-23 04:39:34 +00:00
(0x5 << FCR0_PRID) | (0x1 << FCR0_REV),
0xFF83FFFF,
2017-01-23 04:39:34 +00:00
0,
0,
2017-01-23 04:39:34 +00:00
40,
40,
0,0, 0,0, 0,0, 0,0, 0,0, 0,0,
0,
2017-01-23 04:39:34 +00:00
CPU_LOONGSON2E,
MMU_TYPE_R4000,
2015-08-21 07:04:50 +00:00
},
{
"Loongson-2F",
0x6303,
/*64KB I-cache and d-cache. 4 way with 32 bit cache line size*/
(0x1<<17) | (0x1<<16) | (0x1<<11) | (0x1<<8) | (0x1<<5) |
2015-08-21 07:04:50 +00:00
(0x1<<4) | (0x1<<1),
/* Note: Config1 is only used internally, Loongson-2F has only Config0. */
(1 << CP0C1_FP) | (47 << CP0C1_MMU),
0,
0,
0,0,
0,0,
0,
0,
0,
0,
16,
2,
0xF5D0FF1F, /*bit5:7 not writable*/
0,
0,
(0x5 << FCR0_PRID) | (0x1 << FCR0_REV),
0xFF83FFFF,
0,
0,
40,
40,
0,0, 0,0, 0,0, 0,0, 0,0, 0,0,
0,
CPU_LOONGSON2F,
MMU_TYPE_R4000,
2015-08-21 07:04:50 +00:00
},
{
/* A generic CPU providing MIPS64 DSP R2 ASE features.
2015-08-21 07:04:50 +00:00
FIXME: Eventually this should be replaced by a real CPU model. */
"mips64dspr2",
0x00010000,
MIPS_CONFIG0 | (0x1 << CP0C0_AR) | (0x2 << CP0C0_AT) |
2015-08-21 07:04:50 +00:00
(MMU_TYPE_R4000 << CP0C0_MT),
MIPS_CONFIG1 | (1 << CP0C1_FP) | (63 << CP0C1_MMU) |
2015-08-21 07:04:50 +00:00
(2 << CP0C1_IS) | (4 << CP0C1_IL) | (3 << CP0C1_IA) |
(2 << CP0C1_DS) | (4 << CP0C1_DL) | (3 << CP0C1_DA) |
(1 << CP0C1_PC) | (1 << CP0C1_WR) | (1 << CP0C1_EP),
MIPS_CONFIG2,
MIPS_CONFIG3 | (1U << CP0C3_M) | (1 << CP0C3_DSP2P) |
2015-08-21 07:04:50 +00:00
(1 << CP0C3_DSPP) | (1 << CP0C3_LPA),
0,0,
2017-01-23 04:39:34 +00:00
0,0,
0,
0,
0,
0,
32,
2,
0x37FBFFFF,
0,
2017-01-23 04:39:34 +00:00
0,
(1 << FCR0_F64) | (1 << FCR0_3D) | (1 << FCR0_PS) |
2015-08-21 07:04:50 +00:00
(1 << FCR0_L) | (1 << FCR0_W) | (1 << FCR0_D) |
(1 << FCR0_S) | (0x00 << FCR0_PRID) | (0x0 << FCR0_REV),
0xFF83FFFF,
0,
0,
2017-01-23 04:39:34 +00:00
42,
2015-08-21 07:04:50 +00:00
/* The architectural limit is 59, but we have hardcoded 36 bit
in some places...
59, */ /* the architectural limit */
36,
0,0, 0,0, 0,0, 0,0, 0,0, 0,0,
0,
CPU_MIPS64R2 | ASE_DSP | ASE_DSP_R2,
MMU_TYPE_R4000,
2015-08-21 07:04:50 +00:00
},
#endif
};
const int mips_defs_number = ARRAY_SIZE(mips_defs);
2015-08-21 07:04:50 +00:00
void mips_cpu_list (FILE *f, fprintf_function cpu_fprintf)
{
int i;
for (i = 0; i < ARRAY_SIZE(mips_defs); i++) {
(*cpu_fprintf)(f, "MIPS '%s'\n",
mips_defs[i].name);
}
}
#ifndef CONFIG_USER_ONLY
static void no_mmu_init (CPUMIPSState *env, const mips_def_t *def)
{
env->tlb->nb_tlb = 1;
env->tlb->map_address = &no_mmu_map_address;
}
static void fixed_mmu_init (CPUMIPSState *env, const mips_def_t *def)
{
env->tlb->nb_tlb = 1;
env->tlb->map_address = &fixed_mmu_map_address;
}
static void r4k_mmu_init (CPUMIPSState *env, const mips_def_t *def)
{
env->tlb->nb_tlb = 1 + ((def->CP0_Config1 >> CP0C1_MMU) & 63);
env->tlb->map_address = &r4k_map_address;
env->tlb->helper_tlbwi = r4k_helper_tlbwi;
env->tlb->helper_tlbwr = r4k_helper_tlbwr;
env->tlb->helper_tlbp = r4k_helper_tlbp;
env->tlb->helper_tlbr = r4k_helper_tlbr;
env->tlb->helper_tlbinv = r4k_helper_tlbinv;
env->tlb->helper_tlbinvf = r4k_helper_tlbinvf;
}
static void mmu_init (CPUMIPSState *env, const mips_def_t *def)
{
MIPSCPU *cpu = mips_env_get_cpu(env);
env->tlb = g_malloc0(sizeof(CPUMIPSTLBContext));
switch (def->mmu_type) {
case MMU_TYPE_NONE:
no_mmu_init(env, def);
break;
case MMU_TYPE_R4000:
r4k_mmu_init(env, def);
break;
case MMU_TYPE_FMT:
fixed_mmu_init(env, def);
break;
case MMU_TYPE_R3000:
case MMU_TYPE_R6000:
case MMU_TYPE_R8000:
default:
cpu_abort(CPU(cpu), "MMU type not supported\n");
}
}
#endif /* CONFIG_USER_ONLY */
static void fpu_init (CPUMIPSState *env, const mips_def_t *def)
{
int i;
for (i = 0; i < MIPS_FPU_MAX; i++)
env->fpus[i].fcr0 = def->CP1_fcr0;
memcpy(&env->active_fpu, &env->fpus[0], sizeof(env->active_fpu));
}
static void mvp_init (CPUMIPSState *env, const mips_def_t *def)
{
env->mvp = g_malloc0(sizeof(CPUMIPSMVPContext));
/* MVPConf1 implemented, TLB sharable, no gating storage support,
programmable cache partitioning implemented, number of allocatable
and sharable TLB entries, MVP has allocatable TCs, 2 VPEs
implemented, 5 TCs implemented. */
env->mvp->CP0_MVPConf0 = (1U << CP0MVPC0_M) | (1 << CP0MVPC0_TLBS) |
(0 << CP0MVPC0_GS) | (1 << CP0MVPC0_PCP) |
// TODO: actually do 2 VPEs.
// (1 << CP0MVPC0_TCA) | (0x1 << CP0MVPC0_PVPE) |
// (0x04 << CP0MVPC0_PTC);
(1 << CP0MVPC0_TCA) | (0x0 << CP0MVPC0_PVPE) |
(0x00 << CP0MVPC0_PTC);
#if !defined(CONFIG_USER_ONLY)
/* Usermode has no TLB support */
env->mvp->CP0_MVPConf0 |= (env->tlb->nb_tlb << CP0MVPC0_PTLBE);
#endif
/* Allocatable CP1 have media extensions, allocatable CP1 have FP support,
no UDI implemented, no CP2 implemented, 1 CP1 implemented. */
env->mvp->CP0_MVPConf1 = (1U << CP0MVPC1_CIM) | (1 << CP0MVPC1_CIF) |
(0x0 << CP0MVPC1_PCX) | (0x0 << CP0MVPC1_PCP2) |
(0x1 << CP0MVPC1_PCP1);
}
static void msa_reset(CPUMIPSState *env)
{
#ifdef CONFIG_USER_ONLY
/* MSA access enabled */
env->CP0_Config5 |= 1 << CP0C5_MSAEn;
env->CP0_Status |= (1 << CP0St_CU1) | (1 << CP0St_FR);
#endif
/* MSA CSR:
- non-signaling floating point exception mode off (NX bit is 0)
- Cause, Enables, and Flags are all 0
- round to nearest / ties to even (RM bits are 0) */
env->active_tc.msacsr = 0;
restore_msa_fp_status(env);
2015-08-21 07:04:50 +00:00
/* tininess detected after rounding.*/
set_float_detect_tininess(float_tininess_after_rounding,
&env->active_tc.msa_fp_status);
/* clear float_status exception flags */
set_float_exception_flags(0, &env->active_tc.msa_fp_status);
/* clear float_status nan mode */
set_default_nan_mode(0, &env->active_tc.msa_fp_status);
softfloat: Implement run-time-configurable meaning of signaling NaN bit This patch modifies SoftFloat library so that it can be configured in run-time in relation to the meaning of signaling NaN bit, while, at the same time, strictly preserving its behavior on all existing platforms. Background: In floating-point calculations, there is a need for denoting undefined or unrepresentable values. This is achieved by defining certain floating-point numerical values to be NaNs (which stands for "not a number"). For additional reasons, virtually all modern floating-point unit implementations use two kinds of NaNs: quiet and signaling. The binary representations of these two kinds of NaNs, as a rule, differ only in one bit (that bit is, traditionally, the first bit of mantissa). Up to 2008, standards for floating-point did not specify all details about binary representation of NaNs. More specifically, the meaning of the bit that is used for distinguishing between signaling and quiet NaNs was not strictly prescribed. (IEEE 754-2008 was the first floating-point standard that defined that meaning clearly, see [1], p. 35) As a result, different platforms took different approaches, and that presented considerable challenge for multi-platform emulators like QEMU. Mips platform represents the most complex case among QEMU-supported platforms regarding signaling NaN bit. Up to the Release 6 of Mips architecture, "1" in signaling NaN bit denoted signaling NaN, which is opposite to IEEE 754-2008 standard. From Release 6 on, Mips architecture adopted IEEE standard prescription, and "0" denotes signaling NaN. On top of that, Mips architecture for SIMD (also known as MSA, or vector instructions) also specifies signaling bit in accordance to IEEE standard. MSA unit can be implemented with both pre-Release 6 and Release 6 main processor units. QEMU uses SoftFloat library to implement various floating-point-related instructions on all platforms. The current QEMU implementation allows for defining meaning of signaling NaN bit during build time, and is implemented via preprocessor macro called SNAN_BIT_IS_ONE. On the other hand, the change in this patch enables SoftFloat library to be configured in run-time. This configuration is meant to occur during CPU initialization, at the moment when it is definitely known what desired behavior for particular CPU (or any additional FPUs) is. The change is implemented so that it is consistent with existing implementation of similar cases. This means that structure float_status is used for passing the information about desired signaling NaN bit on each invocation of SoftFloat functions. The additional field in float_status is called snan_bit_is_one, which supersedes macro SNAN_BIT_IS_ONE. IMPORTANT: This change is not meant to create any change in emulator behavior or functionality on any platform. It just provides the means for SoftFloat library to be used in a more flexible way - in other words, it will just prepare SoftFloat library for usage related to Mips platform and its specifics regarding signaling bit meaning, which is done in some of subsequent patches from this series. Further break down of changes: 1) Added field snan_bit_is_one to the structure float_status, and correspondent setter function set_snan_bit_is_one(). 2) Constants <float16|float32|float64|floatx80|float128>_default_nan (used both internally and externally) converted to functions <float16|float32|float64|floatx80|float128>_default_nan(float_status*). This is necessary since they are dependent on signaling bit meaning. At the same time, for the sake of code cleanup and simplicity, constants <floatx80|float128>_default_nan_<low|high> (used only internally within SoftFloat library) are removed, as not needed. 3) Added a float_status* argument to SoftFloat library functions XXX_is_quiet_nan(XXX a_), XXX_is_signaling_nan(XXX a_), XXX_maybe_silence_nan(XXX a_). This argument must be present in order to enable correct invocation of new version of functions XXX_default_nan(). (XXX is <float16|float32|float64|floatx80|float128> here) 4) Updated code for all platforms to reflect changes in SoftFloat library. This change is twofolds: it includes modifications of SoftFloat library functions invocations, and an addition of invocation of function set_snan_bit_is_one() during CPU initialization, with arguments that are appropriate for each particular platform. It was established that all platforms zero their main CPU data structures, so snan_bit_is_one(0) in appropriate places is not added, as it is not needed. [1] "IEEE Standard for Floating-Point Arithmetic", IEEE Computer Society, August 29, 2008. Backports commit af39bc8c49224771ec0d38f1b693ea78e221d7bc from qemu
2018-02-25 00:43:05 +00:00
/* set proper signanling bit meaning ("1" means "quiet") */
set_snan_bit_is_one(0, &env->active_tc.msa_fp_status);
2015-08-21 07:04:50 +00:00
}