unicorn/qemu/target/arm/translate-vfp.inc.c

2798 lines
74 KiB
C
Raw Normal View History

/*
* ARM translation: AArch32 VFP instructions
*
* Copyright (c) 2003 Fabrice Bellard
* Copyright (c) 2005-2007 CodeSourcery
* Copyright (c) 2007 OpenedHand, Ltd.
* Copyright (c) 2019 Linaro, Ltd.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* This file is intended to be included from translate.c; it uses
* some macros and definitions provided by that file.
* It might be possible to convert it to a standalone .c file eventually.
*/
/* Include the generated VFP decoder */
#include "decode-vfp.inc.c"
#include "decode-vfp-uncond.inc.c"
/*
* The imm8 encodes the sign bit, enough bits to represent an exponent in
* the range 01....1xx to 10....0xx, and the most significant 4 bits of
* the mantissa; see VFPExpandImm() in the v8 ARM ARM.
*/
uint64_t vfp_expand_imm(int size, uint8_t imm8)
{
uint64_t imm;
switch (size) {
case MO_64:
imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
(extract32(imm8, 6, 1) ? 0x3fc0 : 0x4000) |
extract32(imm8, 0, 6);
imm <<= 48;
break;
case MO_32:
imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
(extract32(imm8, 6, 1) ? 0x3e00 : 0x4000) |
(extract32(imm8, 0, 6) << 3);
imm <<= 16;
break;
case MO_16:
imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
(extract32(imm8, 6, 1) ? 0x3000 : 0x4000) |
(extract32(imm8, 0, 6) << 6);
break;
default:
g_assert_not_reached();
}
return imm;
}
/*
* Return the offset of a 16-bit half of the specified VFP single-precision
* register. If top is true, returns the top 16 bits; otherwise the bottom
* 16 bits.
*/
static inline long vfp_f16_offset(unsigned reg, bool top)
{
long offs = vfp_reg_offset(false, reg);
#ifdef HOST_WORDS_BIGENDIAN
if (!top) {
offs += 2;
}
#else
if (top) {
offs += 2;
}
#endif
return offs;
}
/*
* Check that VFP access is enabled. If it is, do the necessary
* M-profile lazy-FP handling and then return true.
* If not, emit code to generate an appropriate exception and
* return false.
* The ignore_vfp_enabled argument specifies that we should ignore
* whether VFP is enabled via FPEXC[EN]: this should be true for FMXR/FMRX
* accesses to FPSID, FPEXC, MVFR0, MVFR1, MVFR2, and false for all other insns.
*/
static bool full_vfp_access_check(DisasContext *s, bool ignore_vfp_enabled)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
if (s->fp_excp_el) {
if (arm_dc_feature(s, ARM_FEATURE_M)) {
gen_exception_insn(s, 4, EXCP_NOCP, syn_uncategorized(),
s->fp_excp_el);
} else {
gen_exception_insn(s, 4, EXCP_UDEF,
syn_fp_access_trap(1, 0xe, false),
s->fp_excp_el);
}
return false;
}
if (!s->vfp_enabled && !ignore_vfp_enabled) {
assert(!arm_dc_feature(s, ARM_FEATURE_M));
unallocated_encoding(s);
return false;
}
if (arm_dc_feature(s, ARM_FEATURE_M)) {
/* Handle M-profile lazy FP state mechanics */
/* Trigger lazy-state preservation if necessary */
if (s->v7m_lspact) {
/*
* Lazy state saving affects external memory and also the NVIC,
* so we must mark it as an IO operation for icount.
*/
if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
gen_io_start(tcg_ctx);
}
gen_helper_v7m_preserve_fp_state(tcg_ctx, tcg_ctx->cpu_env);
if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
gen_io_end(tcg_ctx);
}
/*
* If the preserve_fp_state helper doesn't throw an exception
* then it will clear LSPACT; we don't need to repeat this for
* any further FP insns in this TB.
*/
s->v7m_lspact = false;
}
/* Update ownership of FP context: set FPCCR.S to match current state */
if (s->v8m_fpccr_s_wrong) {
TCGv_i32 tmp;
tmp = load_cpu_field(s, v7m.fpccr[M_REG_S]);
if (s->v8m_secure) {
tcg_gen_ori_i32(tcg_ctx, tmp, tmp, R_V7M_FPCCR_S_MASK);
} else {
tcg_gen_andi_i32(tcg_ctx, tmp, tmp, ~R_V7M_FPCCR_S_MASK);
}
store_cpu_field(s, tmp, v7m.fpccr[M_REG_S]);
/* Don't need to do this for any further FP insns in this TB */
s->v8m_fpccr_s_wrong = false;
}
if (s->v7m_new_fp_ctxt_needed) {
/*
* Create new FP context by updating CONTROL.FPCA, CONTROL.SFPA
* and the FPSCR.
*/
TCGv_i32 control, fpscr;
uint32_t bits = R_V7M_CONTROL_FPCA_MASK;
fpscr = load_cpu_field(s, v7m.fpdscr[s->v8m_secure]);
gen_helper_vfp_set_fpscr(tcg_ctx, tcg_ctx->cpu_env, fpscr);
tcg_temp_free_i32(tcg_ctx, fpscr);
/*
* We don't need to arrange to end the TB, because the only
* parts of FPSCR which we cache in the TB flags are the VECLEN
* and VECSTRIDE, and those don't exist for M-profile.
*/
if (s->v8m_secure) {
bits |= R_V7M_CONTROL_SFPA_MASK;
}
control = load_cpu_field(s, v7m.control[M_REG_S]);
tcg_gen_ori_i32(tcg_ctx, control, control, bits);
store_cpu_field(s, control, v7m.control[M_REG_S]);
/* Don't need to do this for any further FP insns in this TB */
s->v7m_new_fp_ctxt_needed = false;
}
}
return true;
}
/*
* The most usual kind of VFP access check, for everything except
* FMXR/FMRX to the always-available special registers.
*/
static bool vfp_access_check(DisasContext *s)
{
return full_vfp_access_check(s, false);
}
static bool trans_VSEL(DisasContext *s, arg_VSEL *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
uint32_t rd, rn, rm;
bool dp = a->dp;
if (!dc_isar_feature(aa32_vsel, s)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist */
if (dp && !dc_isar_feature(aa32_fp_d32, s) &&
((a->vm | a->vn | a->vd) & 0x10)) {
return false;
}
if (dp && !dc_isar_feature(aa32_fpdp, s)) {
return false;
}
rd = a->vd;
rn = a->vn;
rm = a->vm;
if (!vfp_access_check(s)) {
return true;
}
if (dp) {
TCGv_i64 frn, frm, dest;
TCGv_i64 tmp, zero, zf, nf, vf;
zero = tcg_const_i64(tcg_ctx, 0);
frn = tcg_temp_new_i64(tcg_ctx);
frm = tcg_temp_new_i64(tcg_ctx);
dest = tcg_temp_new_i64(tcg_ctx);
zf = tcg_temp_new_i64(tcg_ctx);
nf = tcg_temp_new_i64(tcg_ctx);
vf = tcg_temp_new_i64(tcg_ctx);
tcg_gen_extu_i32_i64(tcg_ctx, zf, tcg_ctx->cpu_ZF);
tcg_gen_ext_i32_i64(tcg_ctx, nf, tcg_ctx->cpu_NF);
tcg_gen_ext_i32_i64(tcg_ctx, vf, tcg_ctx->cpu_VF);
neon_load_reg64(s, frn, rn);
neon_load_reg64(s, frm, rm);
switch (a->cc) {
case 0: /* eq: Z */
tcg_gen_movcond_i64(tcg_ctx, TCG_COND_EQ, dest, zf, zero,
frn, frm);
break;
case 1: /* vs: V */
tcg_gen_movcond_i64(tcg_ctx, TCG_COND_LT, dest, vf, zero,
frn, frm);
break;
case 2: /* ge: N == V -> N ^ V == 0 */
tmp = tcg_temp_new_i64(tcg_ctx);
tcg_gen_xor_i64(tcg_ctx, tmp, vf, nf);
tcg_gen_movcond_i64(tcg_ctx, TCG_COND_GE, dest, tmp, zero,
frn, frm);
tcg_temp_free_i64(tcg_ctx, tmp);
break;
case 3: /* gt: !Z && N == V */
tcg_gen_movcond_i64(tcg_ctx, TCG_COND_NE, dest, zf, zero,
frn, frm);
tmp = tcg_temp_new_i64(tcg_ctx);
tcg_gen_xor_i64(tcg_ctx, tmp, vf, nf);
tcg_gen_movcond_i64(tcg_ctx, TCG_COND_GE, dest, tmp, zero,
dest, frm);
tcg_temp_free_i64(tcg_ctx, tmp);
break;
}
neon_store_reg64(s, dest, rd);
tcg_temp_free_i64(tcg_ctx, frn);
tcg_temp_free_i64(tcg_ctx, frm);
tcg_temp_free_i64(tcg_ctx, dest);
tcg_temp_free_i64(tcg_ctx, zf);
tcg_temp_free_i64(tcg_ctx, nf);
tcg_temp_free_i64(tcg_ctx, vf);
tcg_temp_free_i64(tcg_ctx, zero);
} else {
TCGv_i32 frn, frm, dest;
TCGv_i32 tmp, zero;
zero = tcg_const_i32(tcg_ctx, 0);
frn = tcg_temp_new_i32(tcg_ctx);
frm = tcg_temp_new_i32(tcg_ctx);
dest = tcg_temp_new_i32(tcg_ctx);
neon_load_reg32(s, frn, rn);
neon_load_reg32(s, frm, rm);
switch (a->cc) {
case 0: /* eq: Z */
tcg_gen_movcond_i32(tcg_ctx, TCG_COND_EQ, dest, tcg_ctx->cpu_ZF, zero,
frn, frm);
break;
case 1: /* vs: V */
tcg_gen_movcond_i32(tcg_ctx, TCG_COND_LT, dest, tcg_ctx->cpu_VF, zero,
frn, frm);
break;
case 2: /* ge: N == V -> N ^ V == 0 */
tmp = tcg_temp_new_i32(tcg_ctx);
tcg_gen_xor_i32(tcg_ctx, tmp, tcg_ctx->cpu_VF, tcg_ctx->cpu_NF);
tcg_gen_movcond_i32(tcg_ctx, TCG_COND_GE, dest, tmp, zero,
frn, frm);
tcg_temp_free_i32(tcg_ctx, tmp);
break;
case 3: /* gt: !Z && N == V */
tcg_gen_movcond_i32(tcg_ctx, TCG_COND_NE, dest, tcg_ctx->cpu_ZF, zero,
frn, frm);
tmp = tcg_temp_new_i32(tcg_ctx);
tcg_gen_xor_i32(tcg_ctx, tmp, tcg_ctx->cpu_VF, tcg_ctx->cpu_NF);
tcg_gen_movcond_i32(tcg_ctx, TCG_COND_GE, dest, tmp, zero,
dest, frm);
tcg_temp_free_i32(tcg_ctx, tmp);
break;
}
neon_store_reg32(s, dest, rd);
tcg_temp_free_i32(tcg_ctx, frn);
tcg_temp_free_i32(tcg_ctx, frm);
tcg_temp_free_i32(tcg_ctx, dest);
tcg_temp_free_i32(tcg_ctx, zero);
}
return true;
}
static bool trans_VMINMAXNM(DisasContext *s, arg_VMINMAXNM *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
uint32_t rd, rn, rm;
bool dp = a->dp;
bool vmin = a->op;
TCGv_ptr fpst;
if (!dc_isar_feature(aa32_vminmaxnm, s)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist */
if (dp && !dc_isar_feature(aa32_fp_d32, s) &&
((a->vm | a->vn | a->vd) & 0x10)) {
return false;
}
if (dp && !dc_isar_feature(aa32_fpdp, s)) {
return false;
}
rd = a->vd;
rn = a->vn;
rm = a->vm;
if (!vfp_access_check(s)) {
return true;
}
fpst = get_fpstatus_ptr(s, 0);
if (dp) {
TCGv_i64 frn, frm, dest;
frn = tcg_temp_new_i64(tcg_ctx);
frm = tcg_temp_new_i64(tcg_ctx);
dest = tcg_temp_new_i64(tcg_ctx);
neon_load_reg64(s, frn, rn);
neon_load_reg64(s, frm, rm);
if (vmin) {
gen_helper_vfp_minnumd(tcg_ctx, dest, frn, frm, fpst);
} else {
gen_helper_vfp_maxnumd(tcg_ctx, dest, frn, frm, fpst);
}
neon_store_reg64(s, dest, rd);
tcg_temp_free_i64(tcg_ctx, frn);
tcg_temp_free_i64(tcg_ctx, frm);
tcg_temp_free_i64(tcg_ctx, dest);
} else {
TCGv_i32 frn, frm, dest;
frn = tcg_temp_new_i32(tcg_ctx);
frm = tcg_temp_new_i32(tcg_ctx);
dest = tcg_temp_new_i32(tcg_ctx);
neon_load_reg32(s, frn, rn);
neon_load_reg32(s, frm, rm);
if (vmin) {
gen_helper_vfp_minnums(tcg_ctx, dest, frn, frm, fpst);
} else {
gen_helper_vfp_maxnums(tcg_ctx, dest, frn, frm, fpst);
}
neon_store_reg32(s, dest, rd);
tcg_temp_free_i32(tcg_ctx, frn);
tcg_temp_free_i32(tcg_ctx, frm);
tcg_temp_free_i32(tcg_ctx, dest);
}
tcg_temp_free_ptr(tcg_ctx, fpst);
return true;
}
/*
* Table for converting the most common AArch32 encoding of
* rounding mode to arm_fprounding order (which matches the
* common AArch64 order); see ARM ARM pseudocode FPDecodeRM().
*/
static const uint8_t fp_decode_rm[] = {
FPROUNDING_TIEAWAY,
FPROUNDING_TIEEVEN,
FPROUNDING_POSINF,
FPROUNDING_NEGINF,
};
static bool trans_VRINT(DisasContext *s, arg_VRINT *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
uint32_t rd, rm;
bool dp = a->dp;
TCGv_ptr fpst;
TCGv_i32 tcg_rmode;
int rounding = fp_decode_rm[a->rm];
if (!dc_isar_feature(aa32_vrint, s)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist */
if (dp && !dc_isar_feature(aa32_fp_d32, s) &&
((a->vm | a->vd) & 0x10)) {
return false;
}
if (dp && !dc_isar_feature(aa32_fpdp, s)) {
return false;
}
rd = a->vd;
rm = a->vm;
if (!vfp_access_check(s)) {
return true;
}
fpst = get_fpstatus_ptr(s, 0);
tcg_rmode = tcg_const_i32(tcg_ctx, arm_rmode_to_sf(rounding));
gen_helper_set_rmode(tcg_ctx, tcg_rmode, tcg_rmode, fpst);
if (dp) {
TCGv_i64 tcg_op;
TCGv_i64 tcg_res;
tcg_op = tcg_temp_new_i64(tcg_ctx);
tcg_res = tcg_temp_new_i64(tcg_ctx);
neon_load_reg64(s, tcg_op, rm);
gen_helper_rintd(tcg_ctx, tcg_res, tcg_op, fpst);
neon_store_reg64(s, tcg_res, rd);
tcg_temp_free_i64(tcg_ctx, tcg_op);
tcg_temp_free_i64(tcg_ctx, tcg_res);
} else {
TCGv_i32 tcg_op;
TCGv_i32 tcg_res;
tcg_op = tcg_temp_new_i32(tcg_ctx);
tcg_res = tcg_temp_new_i32(tcg_ctx);
neon_load_reg32(s, tcg_op, rm);
gen_helper_rints(tcg_ctx, tcg_res, tcg_op, fpst);
neon_store_reg32(s, tcg_res, rd);
tcg_temp_free_i32(tcg_ctx, tcg_op);
tcg_temp_free_i32(tcg_ctx, tcg_res);
}
gen_helper_set_rmode(tcg_ctx, tcg_rmode, tcg_rmode, fpst);
tcg_temp_free_i32(tcg_ctx, tcg_rmode);
tcg_temp_free_ptr(tcg_ctx, fpst);
return true;
}
static bool trans_VCVT(DisasContext *s, arg_VCVT *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
uint32_t rd, rm;
bool dp = a->dp;
TCGv_ptr fpst;
TCGv_i32 tcg_rmode, tcg_shift;
int rounding = fp_decode_rm[a->rm];
bool is_signed = a->op;
if (!dc_isar_feature(aa32_vcvt_dr, s)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist */
if (dp && !dc_isar_feature(aa32_fp_d32, s) && (a->vm & 0x10)) {
return false;
}
if (dp && !dc_isar_feature(aa32_fpdp, s)) {
return false;
}
rd = a->vd;
rm = a->vm;
if (!vfp_access_check(s)) {
return true;
}
fpst = get_fpstatus_ptr(s, 0);
tcg_shift = tcg_const_i32(tcg_ctx, 0);
tcg_rmode = tcg_const_i32(tcg_ctx, arm_rmode_to_sf(rounding));
gen_helper_set_rmode(tcg_ctx, tcg_rmode, tcg_rmode, fpst);
if (dp) {
TCGv_i64 tcg_double, tcg_res;
TCGv_i32 tcg_tmp;
tcg_double = tcg_temp_new_i64(tcg_ctx);
tcg_res = tcg_temp_new_i64(tcg_ctx);
tcg_tmp = tcg_temp_new_i32(tcg_ctx);
neon_load_reg64(s, tcg_double, rm);
if (is_signed) {
gen_helper_vfp_tosld(tcg_ctx, tcg_res, tcg_double, tcg_shift, fpst);
} else {
gen_helper_vfp_tould(tcg_ctx, tcg_res, tcg_double, tcg_shift, fpst);
}
tcg_gen_extrl_i64_i32(tcg_ctx, tcg_tmp, tcg_res);
neon_store_reg32(s, tcg_tmp, rd);
tcg_temp_free_i32(tcg_ctx, tcg_tmp);
tcg_temp_free_i64(tcg_ctx, tcg_res);
tcg_temp_free_i64(tcg_ctx, tcg_double);
} else {
TCGv_i32 tcg_single, tcg_res;
tcg_single = tcg_temp_new_i32(tcg_ctx);
tcg_res = tcg_temp_new_i32(tcg_ctx);
neon_load_reg32(s, tcg_single, rm);
if (is_signed) {
gen_helper_vfp_tosls(tcg_ctx, tcg_res, tcg_single, tcg_shift, fpst);
} else {
gen_helper_vfp_touls(tcg_ctx, tcg_res, tcg_single, tcg_shift, fpst);
}
neon_store_reg32(s, tcg_res, rd);
tcg_temp_free_i32(tcg_ctx, tcg_res);
tcg_temp_free_i32(tcg_ctx, tcg_single);
}
gen_helper_set_rmode(tcg_ctx, tcg_rmode, tcg_rmode, fpst);
tcg_temp_free_i32(tcg_ctx, tcg_rmode);
tcg_temp_free_i32(tcg_ctx, tcg_shift);
tcg_temp_free_ptr(tcg_ctx, fpst);
return true;
}
static bool trans_VMOV_to_gp(DisasContext *s, arg_VMOV_to_gp *a)
{
/* VMOV scalar to general purpose register */
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i32 tmp;
int pass;
uint32_t offset;
/* UNDEF accesses to D16-D31 if they don't exist */
if (!dc_isar_feature(aa32_fp_d32, s) && (a->vn & 0x10)) {
return false;
}
offset = a->index << a->size;
pass = extract32(offset, 2, 1);
offset = extract32(offset, 0, 2) * 8;
if (a->size != 2 && !arm_dc_feature(s, ARM_FEATURE_NEON)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
tmp = neon_load_reg(s, a->vn, pass);
switch (a->size) {
case 0:
if (offset) {
tcg_gen_shri_i32(tcg_ctx, tmp, tmp, offset);
}
if (a->u) {
gen_uxtb(tmp);
} else {
gen_sxtb(tmp);
}
break;
case 1:
if (a->u) {
if (offset) {
tcg_gen_shri_i32(tcg_ctx, tmp, tmp, 16);
} else {
gen_uxth(tmp);
}
} else {
if (offset) {
tcg_gen_sari_i32(tcg_ctx, tmp, tmp, 16);
} else {
gen_sxth(tmp);
}
}
break;
case 2:
break;
}
store_reg(s, a->rt, tmp);
return true;
}
static bool trans_VMOV_from_gp(DisasContext *s, arg_VMOV_from_gp *a)
{
/* VMOV general purpose register to scalar */
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i32 tmp, tmp2;
int pass;
uint32_t offset;
/* UNDEF accesses to D16-D31 if they don't exist */
if (!dc_isar_feature(aa32_fp_d32, s) && (a->vn & 0x10)) {
return false;
}
offset = a->index << a->size;
pass = extract32(offset, 2, 1);
offset = extract32(offset, 0, 2) * 8;
if (a->size != 2 && !arm_dc_feature(s, ARM_FEATURE_NEON)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
tmp = load_reg(s, a->rt);
switch (a->size) {
case 0:
tmp2 = neon_load_reg(s, a->vn, pass);
tcg_gen_deposit_i32(tcg_ctx, tmp, tmp2, tmp, offset, 8);
tcg_temp_free_i32(tcg_ctx, tmp2);
break;
case 1:
tmp2 = neon_load_reg(s, a->vn, pass);
tcg_gen_deposit_i32(tcg_ctx, tmp, tmp2, tmp, offset, 16);
tcg_temp_free_i32(tcg_ctx, tmp2);
break;
case 2:
break;
}
neon_store_reg(s, a->vn, pass, tmp);
return true;
}
static bool trans_VDUP(DisasContext *s, arg_VDUP *a)
{
/* VDUP (general purpose register) */
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i32 tmp;
int size, vec_size;
if (!arm_dc_feature(s, ARM_FEATURE_NEON)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist */
if (!dc_isar_feature(aa32_fp_d32, s) && (a->vn & 0x10)) {
return false;
}
if (a->b && a->e) {
return false;
}
if (a->q && (a->vn & 1)) {
return false;
}
vec_size = a->q ? 16 : 8;
if (a->b) {
size = 0;
} else if (a->e) {
size = 1;
} else {
size = 2;
}
if (!vfp_access_check(s)) {
return true;
}
tmp = load_reg(s, a->rt);
tcg_gen_gvec_dup_i32(tcg_ctx, size, neon_reg_offset(a->vn, 0),
vec_size, vec_size, tmp);
tcg_temp_free_i32(tcg_ctx, tmp);
return true;
}
static bool trans_VMSR_VMRS(DisasContext *s, arg_VMSR_VMRS *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i32 tmp;
bool ignore_vfp_enabled = false;
if (arm_dc_feature(s, ARM_FEATURE_M)) {
/*
* The only M-profile VFP vmrs/vmsr sysreg is FPSCR.
* Accesses to R15 are UNPREDICTABLE; we choose to undef.
* (FPSCR -> r15 is a special case which writes to the PSR flags.)
*/
if (a->rt == 15 && (!a->l || a->reg != ARM_VFP_FPSCR)) {
return false;
}
}
switch (a->reg) {
case ARM_VFP_FPSID:
/*
* VFPv2 allows access to FPSID from userspace; VFPv3 restricts
* all ID registers to privileged access only.
*/
if (IS_USER(s) && arm_dc_feature(s, ARM_FEATURE_VFP3)) {
return false;
}
ignore_vfp_enabled = true;
break;
case ARM_VFP_MVFR0:
case ARM_VFP_MVFR1:
if (IS_USER(s) || !arm_dc_feature(s, ARM_FEATURE_MVFR)) {
return false;
}
ignore_vfp_enabled = true;
break;
case ARM_VFP_MVFR2:
if (IS_USER(s) || !arm_dc_feature(s, ARM_FEATURE_V8)) {
return false;
}
ignore_vfp_enabled = true;
break;
case ARM_VFP_FPSCR:
break;
case ARM_VFP_FPEXC:
if (IS_USER(s)) {
return false;
}
ignore_vfp_enabled = true;
break;
case ARM_VFP_FPINST:
case ARM_VFP_FPINST2:
/* Not present in VFPv3 */
if (IS_USER(s) || arm_dc_feature(s, ARM_FEATURE_VFP3)) {
return false;
}
break;
default:
return false;
}
if (!full_vfp_access_check(s, ignore_vfp_enabled)) {
return true;
}
if (a->l) {
/* VMRS, move VFP special register to gp register */
switch (a->reg) {
case ARM_VFP_FPSID:
case ARM_VFP_FPEXC:
case ARM_VFP_FPINST:
case ARM_VFP_FPINST2:
case ARM_VFP_MVFR0:
case ARM_VFP_MVFR1:
case ARM_VFP_MVFR2:
tmp = load_cpu_field(s, vfp.xregs[a->reg]);
break;
case ARM_VFP_FPSCR:
if (a->rt == 15) {
tmp = load_cpu_field(s, vfp.xregs[ARM_VFP_FPSCR]);
tcg_gen_andi_i32(tcg_ctx, tmp, tmp, 0xf0000000);
} else {
tmp = tcg_temp_new_i32(tcg_ctx);
gen_helper_vfp_get_fpscr(tcg_ctx, tmp, tcg_ctx->cpu_env);
}
break;
default:
g_assert_not_reached();
}
if (a->rt == 15) {
/* Set the 4 flag bits in the CPSR. */
gen_set_nzcv(s, tmp);
tcg_temp_free_i32(tcg_ctx, tmp);
} else {
store_reg(s, a->rt, tmp);
}
} else {
/* VMSR, move gp register to VFP special register */
switch (a->reg) {
case ARM_VFP_FPSID:
case ARM_VFP_MVFR0:
case ARM_VFP_MVFR1:
case ARM_VFP_MVFR2:
/* Writes are ignored. */
break;
case ARM_VFP_FPSCR:
tmp = load_reg(s, a->rt);
gen_helper_vfp_set_fpscr(tcg_ctx, tcg_ctx->cpu_env, tmp);
tcg_temp_free_i32(tcg_ctx, tmp);
gen_lookup_tb(s);
break;
case ARM_VFP_FPEXC:
/*
* TODO: VFP subarchitecture support.
* For now, keep the EN bit only
*/
tmp = load_reg(s, a->rt);
tcg_gen_andi_i32(tcg_ctx, tmp, tmp, 1 << 30);
store_cpu_field(s, tmp, vfp.xregs[a->reg]);
gen_lookup_tb(s);
break;
case ARM_VFP_FPINST:
case ARM_VFP_FPINST2:
tmp = load_reg(s, a->rt);
store_cpu_field(s, tmp, vfp.xregs[a->reg]);
break;
default:
g_assert_not_reached();
}
}
return true;
}
static bool trans_VMOV_single(DisasContext *s, arg_VMOV_single *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i32 tmp;
if (!vfp_access_check(s)) {
return true;
}
if (a->l) {
/* VFP to general purpose register */
tmp = tcg_temp_new_i32(tcg_ctx);
neon_load_reg32(s, tmp, a->vn);
if (a->rt == 15) {
/* Set the 4 flag bits in the CPSR. */
gen_set_nzcv(s, tmp);
tcg_temp_free_i32(tcg_ctx, tmp);
} else {
store_reg(s, a->rt, tmp);
}
} else {
/* general purpose register to VFP */
tmp = load_reg(s, a->rt);
neon_store_reg32(s, tmp, a->vn);
tcg_temp_free_i32(tcg_ctx, tmp);
}
return true;
}
static bool trans_VMOV_64_sp(DisasContext *s, arg_VMOV_64_sp *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i32 tmp;
/*
* VMOV between two general-purpose registers and two single precision
* floating point registers
*/
if (!vfp_access_check(s)) {
return true;
}
if (a->op) {
/* fpreg to gpreg */
tmp = tcg_temp_new_i32(tcg_ctx);
neon_load_reg32(s, tmp, a->vm);
store_reg(s, a->rt, tmp);
tmp = tcg_temp_new_i32(tcg_ctx);
neon_load_reg32(s, tmp, a->vm + 1);
store_reg(s, a->rt2, tmp);
} else {
/* gpreg to fpreg */
tmp = load_reg(s, a->rt);
neon_store_reg32(s, tmp, a->vm);
tcg_temp_free_i32(tcg_ctx, tmp);
tmp = load_reg(s, a->rt2);
neon_store_reg32(s, tmp, a->vm + 1);
tcg_temp_free_i32(tcg_ctx, tmp);
}
return true;
}
static bool trans_VMOV_64_dp(DisasContext *s, arg_VMOV_64_dp *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i32 tmp;
/*
* VMOV between two general-purpose registers and one double precision
* floating point register
*/
/* UNDEF accesses to D16-D31 if they don't exist */
if (!dc_isar_feature(aa32_fp_d32, s) && (a->vm & 0x10)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
if (a->op) {
/* fpreg to gpreg */
tmp = tcg_temp_new_i32(tcg_ctx);
neon_load_reg32(s, tmp, a->vm * 2);
store_reg(s, a->rt, tmp);
tmp = tcg_temp_new_i32(tcg_ctx);
neon_load_reg32(s, tmp, a->vm * 2 + 1);
store_reg(s, a->rt2, tmp);
} else {
/* gpreg to fpreg */
tmp = load_reg(s, a->rt);
neon_store_reg32(s, tmp, a->vm * 2);
tcg_temp_free_i32(tcg_ctx, tmp);
tmp = load_reg(s, a->rt2);
neon_store_reg32(s, tmp, a->vm * 2 + 1);
tcg_temp_free_i32(tcg_ctx, tmp);
}
return true;
}
static bool trans_VLDR_VSTR_sp(DisasContext *s, arg_VLDR_VSTR_sp *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
uint32_t offset;
TCGv_i32 addr, tmp;
if (!vfp_access_check(s)) {
return true;
}
offset = a->imm << 2;
if (!a->u) {
offset = -offset;
}
/* For thumb, use of PC is UNPREDICTABLE. */
addr = add_reg_for_lit(s, a->rn, offset);
tcg_gen_addi_i32(tcg_ctx, addr, addr, offset);
tmp = tcg_temp_new_i32(tcg_ctx);
if (a->l) {
gen_aa32_ld32u(s, tmp, addr, get_mem_index(s));
neon_store_reg32(s, tmp, a->vd);
} else {
neon_load_reg32(s, tmp, a->vd);
gen_aa32_st32(s, tmp, addr, get_mem_index(s));
}
tcg_temp_free_i32(tcg_ctx, tmp);
tcg_temp_free_i32(tcg_ctx, addr);
return true;
}
static bool trans_VLDR_VSTR_dp(DisasContext *s, arg_VLDR_VSTR_dp *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
uint32_t offset;
TCGv_i32 addr;
TCGv_i64 tmp;
/* UNDEF accesses to D16-D31 if they don't exist */
if (!dc_isar_feature(aa32_fp_d32, s) && (a->vd & 0x10)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
offset = a->imm << 2;
if (!a->u) {
offset = -offset;
}
/* For thumb, use of PC is UNPREDICTABLE. */
addr = add_reg_for_lit(s, a->rn, offset);
tcg_gen_addi_i32(tcg_ctx, addr, addr, offset);
tmp = tcg_temp_new_i64(tcg_ctx);
if (a->l) {
gen_aa32_ld64(s, tmp, addr, get_mem_index(s));
neon_store_reg64(s, tmp, a->vd);
} else {
neon_load_reg64(s, tmp, a->vd);
gen_aa32_st64(s, tmp, addr, get_mem_index(s));
}
tcg_temp_free_i64(tcg_ctx, tmp);
tcg_temp_free_i32(tcg_ctx, addr);
return true;
}
static bool trans_VLDM_VSTM_sp(DisasContext *s, arg_VLDM_VSTM_sp *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
uint32_t offset;
TCGv_i32 addr, tmp;
int i, n;
n = a->imm;
if (n == 0 || (a->vd + n) > 32) {
/*
* UNPREDICTABLE cases for bad immediates: we choose to
* UNDEF to avoid generating huge numbers of TCG ops
*/
return false;
}
if (a->rn == 15 && a->w) {
/* writeback to PC is UNPREDICTABLE, we choose to UNDEF */
return false;
}
if (!vfp_access_check(s)) {
return true;
}
/* For thumb, use of PC is UNPREDICTABLE. */
addr = add_reg_for_lit(s, a->rn, 0);
if (a->p) {
/* pre-decrement */
tcg_gen_addi_i32(tcg_ctx, addr, addr, -(a->imm << 2));
}
if (s->v8m_stackcheck && a->rn == 13 && a->w) {
/*
* Here 'addr' is the lowest address we will store to,
* and is either the old SP (if post-increment) or
* the new SP (if pre-decrement). For post-increment
* where the old value is below the limit and the new
* value is above, it is UNKNOWN whether the limit check
* triggers; we choose to trigger.
*/
gen_helper_v8m_stackcheck(tcg_ctx, tcg_ctx->cpu_env, addr);
}
offset = 4;
tmp = tcg_temp_new_i32(tcg_ctx);
for (i = 0; i < n; i++) {
if (a->l) {
/* load */
gen_aa32_ld32u(s, tmp, addr, get_mem_index(s));
neon_store_reg32(s, tmp, a->vd + i);
} else {
/* store */
neon_load_reg32(s, tmp, a->vd + i);
gen_aa32_st32(s, tmp, addr, get_mem_index(s));
}
tcg_gen_addi_i32(tcg_ctx, addr, addr, offset);
}
tcg_temp_free_i32(tcg_ctx, tmp);
if (a->w) {
/* writeback */
if (a->p) {
offset = -offset * n;
tcg_gen_addi_i32(tcg_ctx, addr, addr, offset);
}
store_reg(s, a->rn, addr);
} else {
tcg_temp_free_i32(tcg_ctx, addr);
}
return true;
}
static bool trans_VLDM_VSTM_dp(DisasContext *s, arg_VLDM_VSTM_dp *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
uint32_t offset;
TCGv_i32 addr;
TCGv_i64 tmp;
int i, n;
n = a->imm >> 1;
if (n == 0 || (a->vd + n) > 32 || n > 16) {
/*
* UNPREDICTABLE cases for bad immediates: we choose to
* UNDEF to avoid generating huge numbers of TCG ops
*/
return false;
}
if (a->rn == 15 && a->w) {
/* writeback to PC is UNPREDICTABLE, we choose to UNDEF */
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist */
if (!dc_isar_feature(aa32_fp_d32, s) && (a->vd + n) > 16) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
/* For thumb, use of PC is UNPREDICTABLE. */
addr = add_reg_for_lit(s, a->rn, 0);
if (a->p) {
/* pre-decrement */
tcg_gen_addi_i32(tcg_ctx, addr, addr, -(a->imm << 2));
}
if (s->v8m_stackcheck && a->rn == 13 && a->w) {
/*
* Here 'addr' is the lowest address we will store to,
* and is either the old SP (if post-increment) or
* the new SP (if pre-decrement). For post-increment
* where the old value is below the limit and the new
* value is above, it is UNKNOWN whether the limit check
* triggers; we choose to trigger.
*/
gen_helper_v8m_stackcheck(tcg_ctx, tcg_ctx->cpu_env, addr);
}
offset = 8;
tmp = tcg_temp_new_i64(tcg_ctx);
for (i = 0; i < n; i++) {
if (a->l) {
/* load */
gen_aa32_ld64(s, tmp, addr, get_mem_index(s));
neon_store_reg64(s, tmp, a->vd + i);
} else {
/* store */
neon_load_reg64(s, tmp, a->vd + i);
gen_aa32_st64(s, tmp, addr, get_mem_index(s));
}
tcg_gen_addi_i32(tcg_ctx, addr, addr, offset);
}
tcg_temp_free_i64(tcg_ctx, tmp);
if (a->w) {
/* writeback */
if (a->p) {
offset = -offset * n;
} else if (a->imm & 1) {
offset = 4;
} else {
offset = 0;
}
if (offset != 0) {
tcg_gen_addi_i32(tcg_ctx, addr, addr, offset);
}
store_reg(s, a->rn, addr);
} else {
tcg_temp_free_i32(tcg_ctx, addr);
}
return true;
}
target/arm: Convert VFP VMLA to decodetree Convert the VFP VMLA instruction to decodetree. This is the first of the VFP 3-operand data processing instructions, so we include in this patch the code which loops over the elements for an old-style VFP vector operation. The existing code to do this looping uses the deprecated cpu_F0s/F0d/F1s/F1d TCG globals; since we are going to be converting instructions one at a time anyway we can take the opportunity to make the new loop use TCG temporaries, which means we can do that conversion one operation at a time rather than needing to do it all in one go. We include an UNDEF check which was missing in the old code: short-vector operations (with stride or length non-zero) were deprecated in v7A and must UNDEF in v8A, so if the MVFR0 FPShVec field does not indicate that support for short vectors is present we UNDEF the operations that would use them. (This is a change of behaviour for Cortex-A7, Cortex-A15 and the v8 CPUs, which previously were all incorrectly allowing short-vector operations.) Note that the conversion fixes a bug in the old code for the case of VFP short-vector "mixed scalar/vector operations". These happen where the destination register is in a vector bank but but the second operand is in a scalar bank. For example vmla.f64 d10, d1, d16 with length 2 stride 2 is equivalent to the pair of scalar operations vmla.f64 d10, d1, d16 vmla.f64 d8, d3, d16 where the destination and first input register cycle through their vector but the second input is scalar (d16). In the old decoder the gen_vfp_F1_mul() operation uses cpu_F1{s,d} as a temporary output for the multiply, which trashes the second input operand. For the fully-scalar case (where we never do a second iteration) and the fully-vector case (where the loop loads the new second input operand) this doesn't matter, but for the mixed scalar/vector case we will end up using the wrong value for later loop iterations. In the new code we use TCG temporaries and so avoid the bug. This bug is present for all the multiply-accumulate insns that operate on short vectors: VMLA, VMLS, VNMLA, VNMLS. Note 2: the expression used to calculate the next register number in the vector bank is not in fact correct; we leave this behaviour unchanged from the old decoder and will fix this bug later in the series. Backports commit 266bd25c485597c94209bfdb3891c1d0c573c164 from qemu
2019-06-13 21:59:10 +00:00
/*
* Types for callbacks for do_vfp_3op_sp() and do_vfp_3op_dp().
* The callback should emit code to write a value to vd. If
* do_vfp_3op_{sp,dp}() was passed reads_vd then the TCGv vd
* will contain the old value of the relevant VFP register;
* otherwise it must be written to only.
*/
typedef void VFPGen3OpSPFn(TCGContext *, TCGv_i32 vd,
TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst);
typedef void VFPGen3OpDPFn(TCGContext *, TCGv_i64 vd,
TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst);
/*
* Types for callbacks for do_vfp_2op_sp() and do_vfp_2op_dp().
* The callback should emit code to write a value to vd (which
* should be written to only).
*/
typedef void VFPGen2OpSPFn(TCGContext *, TCGv_i32 vd, TCGv_i32 vm);
typedef void VFPGen2OpDPFn(TCGContext *, TCGv_i64 vd, TCGv_i64 vm);
/*
* Return true if the specified S reg is in a scalar bank
* (ie if it is s0..s7)
*/
static inline bool vfp_sreg_is_scalar(int reg)
{
return (reg & 0x18) == 0;
}
/*
* Return true if the specified D reg is in a scalar bank
* (ie if it is d0..d3 or d16..d19)
*/
static inline bool vfp_dreg_is_scalar(int reg)
{
return (reg & 0xc) == 0;
}
/*
* Advance the S reg number forwards by delta within its bank
* (ie increment the low 3 bits but leave the rest the same)
*/
static inline int vfp_advance_sreg(int reg, int delta)
{
return ((reg + delta) & 0x7) | (reg & ~0x7);
}
/*
* Advance the D reg number forwards by delta within its bank
* (ie increment the low 2 bits but leave the rest the same)
*/
static inline int vfp_advance_dreg(int reg, int delta)
{
return ((reg + delta) & 0x3) | (reg & ~0x3);
}
target/arm: Convert VFP VMLA to decodetree Convert the VFP VMLA instruction to decodetree. This is the first of the VFP 3-operand data processing instructions, so we include in this patch the code which loops over the elements for an old-style VFP vector operation. The existing code to do this looping uses the deprecated cpu_F0s/F0d/F1s/F1d TCG globals; since we are going to be converting instructions one at a time anyway we can take the opportunity to make the new loop use TCG temporaries, which means we can do that conversion one operation at a time rather than needing to do it all in one go. We include an UNDEF check which was missing in the old code: short-vector operations (with stride or length non-zero) were deprecated in v7A and must UNDEF in v8A, so if the MVFR0 FPShVec field does not indicate that support for short vectors is present we UNDEF the operations that would use them. (This is a change of behaviour for Cortex-A7, Cortex-A15 and the v8 CPUs, which previously were all incorrectly allowing short-vector operations.) Note that the conversion fixes a bug in the old code for the case of VFP short-vector "mixed scalar/vector operations". These happen where the destination register is in a vector bank but but the second operand is in a scalar bank. For example vmla.f64 d10, d1, d16 with length 2 stride 2 is equivalent to the pair of scalar operations vmla.f64 d10, d1, d16 vmla.f64 d8, d3, d16 where the destination and first input register cycle through their vector but the second input is scalar (d16). In the old decoder the gen_vfp_F1_mul() operation uses cpu_F1{s,d} as a temporary output for the multiply, which trashes the second input operand. For the fully-scalar case (where we never do a second iteration) and the fully-vector case (where the loop loads the new second input operand) this doesn't matter, but for the mixed scalar/vector case we will end up using the wrong value for later loop iterations. In the new code we use TCG temporaries and so avoid the bug. This bug is present for all the multiply-accumulate insns that operate on short vectors: VMLA, VMLS, VNMLA, VNMLS. Note 2: the expression used to calculate the next register number in the vector bank is not in fact correct; we leave this behaviour unchanged from the old decoder and will fix this bug later in the series. Backports commit 266bd25c485597c94209bfdb3891c1d0c573c164 from qemu
2019-06-13 21:59:10 +00:00
/*
* Perform a 3-operand VFP data processing instruction. fn is the
* callback to do the actual operation; this function deals with the
* code to handle looping around for VFP vector processing.
*/
static bool do_vfp_3op_sp(DisasContext *s, VFPGen3OpSPFn *fn,
int vd, int vn, int vm, bool reads_vd)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
uint32_t delta_m = 0;
uint32_t delta_d = 0;
int veclen = s->vec_len;
TCGv_i32 f0, f1, fd;
TCGv_ptr fpst;
if (!dc_isar_feature(aa32_fpshvec, s) &&
(veclen != 0 || s->vec_stride != 0)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
if (veclen > 0) {
/* Figure out what type of vector operation this is. */
if (vfp_sreg_is_scalar(vd)) {
target/arm: Convert VFP VMLA to decodetree Convert the VFP VMLA instruction to decodetree. This is the first of the VFP 3-operand data processing instructions, so we include in this patch the code which loops over the elements for an old-style VFP vector operation. The existing code to do this looping uses the deprecated cpu_F0s/F0d/F1s/F1d TCG globals; since we are going to be converting instructions one at a time anyway we can take the opportunity to make the new loop use TCG temporaries, which means we can do that conversion one operation at a time rather than needing to do it all in one go. We include an UNDEF check which was missing in the old code: short-vector operations (with stride or length non-zero) were deprecated in v7A and must UNDEF in v8A, so if the MVFR0 FPShVec field does not indicate that support for short vectors is present we UNDEF the operations that would use them. (This is a change of behaviour for Cortex-A7, Cortex-A15 and the v8 CPUs, which previously were all incorrectly allowing short-vector operations.) Note that the conversion fixes a bug in the old code for the case of VFP short-vector "mixed scalar/vector operations". These happen where the destination register is in a vector bank but but the second operand is in a scalar bank. For example vmla.f64 d10, d1, d16 with length 2 stride 2 is equivalent to the pair of scalar operations vmla.f64 d10, d1, d16 vmla.f64 d8, d3, d16 where the destination and first input register cycle through their vector but the second input is scalar (d16). In the old decoder the gen_vfp_F1_mul() operation uses cpu_F1{s,d} as a temporary output for the multiply, which trashes the second input operand. For the fully-scalar case (where we never do a second iteration) and the fully-vector case (where the loop loads the new second input operand) this doesn't matter, but for the mixed scalar/vector case we will end up using the wrong value for later loop iterations. In the new code we use TCG temporaries and so avoid the bug. This bug is present for all the multiply-accumulate insns that operate on short vectors: VMLA, VMLS, VNMLA, VNMLS. Note 2: the expression used to calculate the next register number in the vector bank is not in fact correct; we leave this behaviour unchanged from the old decoder and will fix this bug later in the series. Backports commit 266bd25c485597c94209bfdb3891c1d0c573c164 from qemu
2019-06-13 21:59:10 +00:00
/* scalar */
veclen = 0;
} else {
delta_d = s->vec_stride + 1;
if (vfp_sreg_is_scalar(vm)) {
target/arm: Convert VFP VMLA to decodetree Convert the VFP VMLA instruction to decodetree. This is the first of the VFP 3-operand data processing instructions, so we include in this patch the code which loops over the elements for an old-style VFP vector operation. The existing code to do this looping uses the deprecated cpu_F0s/F0d/F1s/F1d TCG globals; since we are going to be converting instructions one at a time anyway we can take the opportunity to make the new loop use TCG temporaries, which means we can do that conversion one operation at a time rather than needing to do it all in one go. We include an UNDEF check which was missing in the old code: short-vector operations (with stride or length non-zero) were deprecated in v7A and must UNDEF in v8A, so if the MVFR0 FPShVec field does not indicate that support for short vectors is present we UNDEF the operations that would use them. (This is a change of behaviour for Cortex-A7, Cortex-A15 and the v8 CPUs, which previously were all incorrectly allowing short-vector operations.) Note that the conversion fixes a bug in the old code for the case of VFP short-vector "mixed scalar/vector operations". These happen where the destination register is in a vector bank but but the second operand is in a scalar bank. For example vmla.f64 d10, d1, d16 with length 2 stride 2 is equivalent to the pair of scalar operations vmla.f64 d10, d1, d16 vmla.f64 d8, d3, d16 where the destination and first input register cycle through their vector but the second input is scalar (d16). In the old decoder the gen_vfp_F1_mul() operation uses cpu_F1{s,d} as a temporary output for the multiply, which trashes the second input operand. For the fully-scalar case (where we never do a second iteration) and the fully-vector case (where the loop loads the new second input operand) this doesn't matter, but for the mixed scalar/vector case we will end up using the wrong value for later loop iterations. In the new code we use TCG temporaries and so avoid the bug. This bug is present for all the multiply-accumulate insns that operate on short vectors: VMLA, VMLS, VNMLA, VNMLS. Note 2: the expression used to calculate the next register number in the vector bank is not in fact correct; we leave this behaviour unchanged from the old decoder and will fix this bug later in the series. Backports commit 266bd25c485597c94209bfdb3891c1d0c573c164 from qemu
2019-06-13 21:59:10 +00:00
/* mixed scalar/vector */
delta_m = 0;
} else {
/* vector */
delta_m = delta_d;
}
}
}
f0 = tcg_temp_new_i32(tcg_ctx);
f1 = tcg_temp_new_i32(tcg_ctx);
fd = tcg_temp_new_i32(tcg_ctx);
fpst = get_fpstatus_ptr(s, 0);
neon_load_reg32(s, f0, vn);
neon_load_reg32(s, f1, vm);
for (;;) {
if (reads_vd) {
neon_load_reg32(s, fd, vd);
}
fn(tcg_ctx, fd, f0, f1, fpst);
neon_store_reg32(s, fd, vd);
if (veclen == 0) {
break;
}
/* Set up the operands for the next iteration */
veclen--;
vd = vfp_advance_sreg(vd, delta_d);
vn = vfp_advance_sreg(vn, delta_d);
target/arm: Convert VFP VMLA to decodetree Convert the VFP VMLA instruction to decodetree. This is the first of the VFP 3-operand data processing instructions, so we include in this patch the code which loops over the elements for an old-style VFP vector operation. The existing code to do this looping uses the deprecated cpu_F0s/F0d/F1s/F1d TCG globals; since we are going to be converting instructions one at a time anyway we can take the opportunity to make the new loop use TCG temporaries, which means we can do that conversion one operation at a time rather than needing to do it all in one go. We include an UNDEF check which was missing in the old code: short-vector operations (with stride or length non-zero) were deprecated in v7A and must UNDEF in v8A, so if the MVFR0 FPShVec field does not indicate that support for short vectors is present we UNDEF the operations that would use them. (This is a change of behaviour for Cortex-A7, Cortex-A15 and the v8 CPUs, which previously were all incorrectly allowing short-vector operations.) Note that the conversion fixes a bug in the old code for the case of VFP short-vector "mixed scalar/vector operations". These happen where the destination register is in a vector bank but but the second operand is in a scalar bank. For example vmla.f64 d10, d1, d16 with length 2 stride 2 is equivalent to the pair of scalar operations vmla.f64 d10, d1, d16 vmla.f64 d8, d3, d16 where the destination and first input register cycle through their vector but the second input is scalar (d16). In the old decoder the gen_vfp_F1_mul() operation uses cpu_F1{s,d} as a temporary output for the multiply, which trashes the second input operand. For the fully-scalar case (where we never do a second iteration) and the fully-vector case (where the loop loads the new second input operand) this doesn't matter, but for the mixed scalar/vector case we will end up using the wrong value for later loop iterations. In the new code we use TCG temporaries and so avoid the bug. This bug is present for all the multiply-accumulate insns that operate on short vectors: VMLA, VMLS, VNMLA, VNMLS. Note 2: the expression used to calculate the next register number in the vector bank is not in fact correct; we leave this behaviour unchanged from the old decoder and will fix this bug later in the series. Backports commit 266bd25c485597c94209bfdb3891c1d0c573c164 from qemu
2019-06-13 21:59:10 +00:00
neon_load_reg32(s, f0, vn);
if (delta_m) {
vm = vfp_advance_sreg(vm, delta_m);
target/arm: Convert VFP VMLA to decodetree Convert the VFP VMLA instruction to decodetree. This is the first of the VFP 3-operand data processing instructions, so we include in this patch the code which loops over the elements for an old-style VFP vector operation. The existing code to do this looping uses the deprecated cpu_F0s/F0d/F1s/F1d TCG globals; since we are going to be converting instructions one at a time anyway we can take the opportunity to make the new loop use TCG temporaries, which means we can do that conversion one operation at a time rather than needing to do it all in one go. We include an UNDEF check which was missing in the old code: short-vector operations (with stride or length non-zero) were deprecated in v7A and must UNDEF in v8A, so if the MVFR0 FPShVec field does not indicate that support for short vectors is present we UNDEF the operations that would use them. (This is a change of behaviour for Cortex-A7, Cortex-A15 and the v8 CPUs, which previously were all incorrectly allowing short-vector operations.) Note that the conversion fixes a bug in the old code for the case of VFP short-vector "mixed scalar/vector operations". These happen where the destination register is in a vector bank but but the second operand is in a scalar bank. For example vmla.f64 d10, d1, d16 with length 2 stride 2 is equivalent to the pair of scalar operations vmla.f64 d10, d1, d16 vmla.f64 d8, d3, d16 where the destination and first input register cycle through their vector but the second input is scalar (d16). In the old decoder the gen_vfp_F1_mul() operation uses cpu_F1{s,d} as a temporary output for the multiply, which trashes the second input operand. For the fully-scalar case (where we never do a second iteration) and the fully-vector case (where the loop loads the new second input operand) this doesn't matter, but for the mixed scalar/vector case we will end up using the wrong value for later loop iterations. In the new code we use TCG temporaries and so avoid the bug. This bug is present for all the multiply-accumulate insns that operate on short vectors: VMLA, VMLS, VNMLA, VNMLS. Note 2: the expression used to calculate the next register number in the vector bank is not in fact correct; we leave this behaviour unchanged from the old decoder and will fix this bug later in the series. Backports commit 266bd25c485597c94209bfdb3891c1d0c573c164 from qemu
2019-06-13 21:59:10 +00:00
neon_load_reg32(s, f1, vm);
}
}
tcg_temp_free_i32(tcg_ctx, f0);
tcg_temp_free_i32(tcg_ctx, f1);
tcg_temp_free_i32(tcg_ctx, fd);
tcg_temp_free_ptr(tcg_ctx, fpst);
return true;
}
static bool do_vfp_3op_dp(DisasContext *s, VFPGen3OpDPFn *fn,
int vd, int vn, int vm, bool reads_vd)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
uint32_t delta_m = 0;
uint32_t delta_d = 0;
int veclen = s->vec_len;
TCGv_i64 f0, f1, fd;
TCGv_ptr fpst;
/* UNDEF accesses to D16-D31 if they don't exist */
if (!dc_isar_feature(aa32_fp_d32, s) && ((vd | vn | vm) & 0x10)) {
return false;
}
if (!dc_isar_feature(aa32_fpdp, s)) {
return false;
}
target/arm: Convert VFP VMLA to decodetree Convert the VFP VMLA instruction to decodetree. This is the first of the VFP 3-operand data processing instructions, so we include in this patch the code which loops over the elements for an old-style VFP vector operation. The existing code to do this looping uses the deprecated cpu_F0s/F0d/F1s/F1d TCG globals; since we are going to be converting instructions one at a time anyway we can take the opportunity to make the new loop use TCG temporaries, which means we can do that conversion one operation at a time rather than needing to do it all in one go. We include an UNDEF check which was missing in the old code: short-vector operations (with stride or length non-zero) were deprecated in v7A and must UNDEF in v8A, so if the MVFR0 FPShVec field does not indicate that support for short vectors is present we UNDEF the operations that would use them. (This is a change of behaviour for Cortex-A7, Cortex-A15 and the v8 CPUs, which previously were all incorrectly allowing short-vector operations.) Note that the conversion fixes a bug in the old code for the case of VFP short-vector "mixed scalar/vector operations". These happen where the destination register is in a vector bank but but the second operand is in a scalar bank. For example vmla.f64 d10, d1, d16 with length 2 stride 2 is equivalent to the pair of scalar operations vmla.f64 d10, d1, d16 vmla.f64 d8, d3, d16 where the destination and first input register cycle through their vector but the second input is scalar (d16). In the old decoder the gen_vfp_F1_mul() operation uses cpu_F1{s,d} as a temporary output for the multiply, which trashes the second input operand. For the fully-scalar case (where we never do a second iteration) and the fully-vector case (where the loop loads the new second input operand) this doesn't matter, but for the mixed scalar/vector case we will end up using the wrong value for later loop iterations. In the new code we use TCG temporaries and so avoid the bug. This bug is present for all the multiply-accumulate insns that operate on short vectors: VMLA, VMLS, VNMLA, VNMLS. Note 2: the expression used to calculate the next register number in the vector bank is not in fact correct; we leave this behaviour unchanged from the old decoder and will fix this bug later in the series. Backports commit 266bd25c485597c94209bfdb3891c1d0c573c164 from qemu
2019-06-13 21:59:10 +00:00
if (!dc_isar_feature(aa32_fpshvec, s) &&
(veclen != 0 || s->vec_stride != 0)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
if (veclen > 0) {
/* Figure out what type of vector operation this is. */
if (vfp_dreg_is_scalar(vd)) {
target/arm: Convert VFP VMLA to decodetree Convert the VFP VMLA instruction to decodetree. This is the first of the VFP 3-operand data processing instructions, so we include in this patch the code which loops over the elements for an old-style VFP vector operation. The existing code to do this looping uses the deprecated cpu_F0s/F0d/F1s/F1d TCG globals; since we are going to be converting instructions one at a time anyway we can take the opportunity to make the new loop use TCG temporaries, which means we can do that conversion one operation at a time rather than needing to do it all in one go. We include an UNDEF check which was missing in the old code: short-vector operations (with stride or length non-zero) were deprecated in v7A and must UNDEF in v8A, so if the MVFR0 FPShVec field does not indicate that support for short vectors is present we UNDEF the operations that would use them. (This is a change of behaviour for Cortex-A7, Cortex-A15 and the v8 CPUs, which previously were all incorrectly allowing short-vector operations.) Note that the conversion fixes a bug in the old code for the case of VFP short-vector "mixed scalar/vector operations". These happen where the destination register is in a vector bank but but the second operand is in a scalar bank. For example vmla.f64 d10, d1, d16 with length 2 stride 2 is equivalent to the pair of scalar operations vmla.f64 d10, d1, d16 vmla.f64 d8, d3, d16 where the destination and first input register cycle through their vector but the second input is scalar (d16). In the old decoder the gen_vfp_F1_mul() operation uses cpu_F1{s,d} as a temporary output for the multiply, which trashes the second input operand. For the fully-scalar case (where we never do a second iteration) and the fully-vector case (where the loop loads the new second input operand) this doesn't matter, but for the mixed scalar/vector case we will end up using the wrong value for later loop iterations. In the new code we use TCG temporaries and so avoid the bug. This bug is present for all the multiply-accumulate insns that operate on short vectors: VMLA, VMLS, VNMLA, VNMLS. Note 2: the expression used to calculate the next register number in the vector bank is not in fact correct; we leave this behaviour unchanged from the old decoder and will fix this bug later in the series. Backports commit 266bd25c485597c94209bfdb3891c1d0c573c164 from qemu
2019-06-13 21:59:10 +00:00
/* scalar */
veclen = 0;
} else {
delta_d = (s->vec_stride >> 1) + 1;
if (vfp_dreg_is_scalar(vm)) {
target/arm: Convert VFP VMLA to decodetree Convert the VFP VMLA instruction to decodetree. This is the first of the VFP 3-operand data processing instructions, so we include in this patch the code which loops over the elements for an old-style VFP vector operation. The existing code to do this looping uses the deprecated cpu_F0s/F0d/F1s/F1d TCG globals; since we are going to be converting instructions one at a time anyway we can take the opportunity to make the new loop use TCG temporaries, which means we can do that conversion one operation at a time rather than needing to do it all in one go. We include an UNDEF check which was missing in the old code: short-vector operations (with stride or length non-zero) were deprecated in v7A and must UNDEF in v8A, so if the MVFR0 FPShVec field does not indicate that support for short vectors is present we UNDEF the operations that would use them. (This is a change of behaviour for Cortex-A7, Cortex-A15 and the v8 CPUs, which previously were all incorrectly allowing short-vector operations.) Note that the conversion fixes a bug in the old code for the case of VFP short-vector "mixed scalar/vector operations". These happen where the destination register is in a vector bank but but the second operand is in a scalar bank. For example vmla.f64 d10, d1, d16 with length 2 stride 2 is equivalent to the pair of scalar operations vmla.f64 d10, d1, d16 vmla.f64 d8, d3, d16 where the destination and first input register cycle through their vector but the second input is scalar (d16). In the old decoder the gen_vfp_F1_mul() operation uses cpu_F1{s,d} as a temporary output for the multiply, which trashes the second input operand. For the fully-scalar case (where we never do a second iteration) and the fully-vector case (where the loop loads the new second input operand) this doesn't matter, but for the mixed scalar/vector case we will end up using the wrong value for later loop iterations. In the new code we use TCG temporaries and so avoid the bug. This bug is present for all the multiply-accumulate insns that operate on short vectors: VMLA, VMLS, VNMLA, VNMLS. Note 2: the expression used to calculate the next register number in the vector bank is not in fact correct; we leave this behaviour unchanged from the old decoder and will fix this bug later in the series. Backports commit 266bd25c485597c94209bfdb3891c1d0c573c164 from qemu
2019-06-13 21:59:10 +00:00
/* mixed scalar/vector */
delta_m = 0;
} else {
/* vector */
delta_m = delta_d;
}
}
}
f0 = tcg_temp_new_i64(tcg_ctx);
f1 = tcg_temp_new_i64(tcg_ctx);
fd = tcg_temp_new_i64(tcg_ctx);
fpst = get_fpstatus_ptr(s, 0);
neon_load_reg64(s, f0, vn);
neon_load_reg64(s, f1, vm);
for (;;) {
if (reads_vd) {
neon_load_reg64(s, fd, vd);
}
fn(tcg_ctx, fd, f0, f1, fpst);
neon_store_reg64(s, fd, vd);
if (veclen == 0) {
break;
}
/* Set up the operands for the next iteration */
veclen--;
vd = vfp_advance_dreg(vd, delta_d);
vn = vfp_advance_dreg(vn, delta_d);
target/arm: Convert VFP VMLA to decodetree Convert the VFP VMLA instruction to decodetree. This is the first of the VFP 3-operand data processing instructions, so we include in this patch the code which loops over the elements for an old-style VFP vector operation. The existing code to do this looping uses the deprecated cpu_F0s/F0d/F1s/F1d TCG globals; since we are going to be converting instructions one at a time anyway we can take the opportunity to make the new loop use TCG temporaries, which means we can do that conversion one operation at a time rather than needing to do it all in one go. We include an UNDEF check which was missing in the old code: short-vector operations (with stride or length non-zero) were deprecated in v7A and must UNDEF in v8A, so if the MVFR0 FPShVec field does not indicate that support for short vectors is present we UNDEF the operations that would use them. (This is a change of behaviour for Cortex-A7, Cortex-A15 and the v8 CPUs, which previously were all incorrectly allowing short-vector operations.) Note that the conversion fixes a bug in the old code for the case of VFP short-vector "mixed scalar/vector operations". These happen where the destination register is in a vector bank but but the second operand is in a scalar bank. For example vmla.f64 d10, d1, d16 with length 2 stride 2 is equivalent to the pair of scalar operations vmla.f64 d10, d1, d16 vmla.f64 d8, d3, d16 where the destination and first input register cycle through their vector but the second input is scalar (d16). In the old decoder the gen_vfp_F1_mul() operation uses cpu_F1{s,d} as a temporary output for the multiply, which trashes the second input operand. For the fully-scalar case (where we never do a second iteration) and the fully-vector case (where the loop loads the new second input operand) this doesn't matter, but for the mixed scalar/vector case we will end up using the wrong value for later loop iterations. In the new code we use TCG temporaries and so avoid the bug. This bug is present for all the multiply-accumulate insns that operate on short vectors: VMLA, VMLS, VNMLA, VNMLS. Note 2: the expression used to calculate the next register number in the vector bank is not in fact correct; we leave this behaviour unchanged from the old decoder and will fix this bug later in the series. Backports commit 266bd25c485597c94209bfdb3891c1d0c573c164 from qemu
2019-06-13 21:59:10 +00:00
neon_load_reg64(s, f0, vn);
if (delta_m) {
vm = vfp_advance_dreg(vm, delta_m);
target/arm: Convert VFP VMLA to decodetree Convert the VFP VMLA instruction to decodetree. This is the first of the VFP 3-operand data processing instructions, so we include in this patch the code which loops over the elements for an old-style VFP vector operation. The existing code to do this looping uses the deprecated cpu_F0s/F0d/F1s/F1d TCG globals; since we are going to be converting instructions one at a time anyway we can take the opportunity to make the new loop use TCG temporaries, which means we can do that conversion one operation at a time rather than needing to do it all in one go. We include an UNDEF check which was missing in the old code: short-vector operations (with stride or length non-zero) were deprecated in v7A and must UNDEF in v8A, so if the MVFR0 FPShVec field does not indicate that support for short vectors is present we UNDEF the operations that would use them. (This is a change of behaviour for Cortex-A7, Cortex-A15 and the v8 CPUs, which previously were all incorrectly allowing short-vector operations.) Note that the conversion fixes a bug in the old code for the case of VFP short-vector "mixed scalar/vector operations". These happen where the destination register is in a vector bank but but the second operand is in a scalar bank. For example vmla.f64 d10, d1, d16 with length 2 stride 2 is equivalent to the pair of scalar operations vmla.f64 d10, d1, d16 vmla.f64 d8, d3, d16 where the destination and first input register cycle through their vector but the second input is scalar (d16). In the old decoder the gen_vfp_F1_mul() operation uses cpu_F1{s,d} as a temporary output for the multiply, which trashes the second input operand. For the fully-scalar case (where we never do a second iteration) and the fully-vector case (where the loop loads the new second input operand) this doesn't matter, but for the mixed scalar/vector case we will end up using the wrong value for later loop iterations. In the new code we use TCG temporaries and so avoid the bug. This bug is present for all the multiply-accumulate insns that operate on short vectors: VMLA, VMLS, VNMLA, VNMLS. Note 2: the expression used to calculate the next register number in the vector bank is not in fact correct; we leave this behaviour unchanged from the old decoder and will fix this bug later in the series. Backports commit 266bd25c485597c94209bfdb3891c1d0c573c164 from qemu
2019-06-13 21:59:10 +00:00
neon_load_reg64(s, f1, vm);
}
}
tcg_temp_free_i64(tcg_ctx, f0);
tcg_temp_free_i64(tcg_ctx, f1);
tcg_temp_free_i64(tcg_ctx, fd);
tcg_temp_free_ptr(tcg_ctx, fpst);
return true;
}
static bool do_vfp_2op_sp(DisasContext *s, VFPGen2OpSPFn *fn, int vd, int vm)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
uint32_t delta_m = 0;
uint32_t delta_d = 0;
int veclen = s->vec_len;
TCGv_i32 f0, fd;
if (!dc_isar_feature(aa32_fpshvec, s) &&
(veclen != 0 || s->vec_stride != 0)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
if (veclen > 0) {
/* Figure out what type of vector operation this is. */
if (vfp_sreg_is_scalar(vd)) {
/* scalar */
veclen = 0;
} else {
delta_d = s->vec_stride + 1;
if (vfp_sreg_is_scalar(vm)) {
/* mixed scalar/vector */
delta_m = 0;
} else {
/* vector */
delta_m = delta_d;
}
}
}
f0 = tcg_temp_new_i32(tcg_ctx);
fd = tcg_temp_new_i32(tcg_ctx);
neon_load_reg32(s, f0, vm);
for (;;) {
fn(tcg_ctx, fd, f0);
neon_store_reg32(s, fd, vd);
if (veclen == 0) {
break;
}
if (delta_m == 0) {
/* single source one-many */
while (veclen--) {
vd = vfp_advance_sreg(vd, delta_d);
neon_store_reg32(s, fd, vd);
}
break;
}
/* Set up the operands for the next iteration */
veclen--;
vd = vfp_advance_sreg(vd, delta_d);
vm = vfp_advance_sreg(vm, delta_m);
neon_load_reg32(s, f0, vm);
}
tcg_temp_free_i32(tcg_ctx, f0);
tcg_temp_free_i32(tcg_ctx, fd);
return true;
}
static bool do_vfp_2op_dp(DisasContext *s, VFPGen2OpDPFn *fn, int vd, int vm)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
uint32_t delta_m = 0;
uint32_t delta_d = 0;
int veclen = s->vec_len;
TCGv_i64 f0, fd;
/* UNDEF accesses to D16-D31 if they don't exist */
if (!dc_isar_feature(aa32_fp_d32, s) && ((vd | vm) & 0x10)) {
return false;
}
if (!dc_isar_feature(aa32_fpshvec, s) &&
(veclen != 0 || s->vec_stride != 0)) {
return false;
}
if (!dc_isar_feature(aa32_fpdp, s)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
if (veclen > 0) {
/* Figure out what type of vector operation this is. */
if (vfp_dreg_is_scalar(vd)) {
/* scalar */
veclen = 0;
} else {
delta_d = (s->vec_stride >> 1) + 1;
if (vfp_dreg_is_scalar(vm)) {
/* mixed scalar/vector */
delta_m = 0;
} else {
/* vector */
delta_m = delta_d;
}
}
}
f0 = tcg_temp_new_i64(tcg_ctx);
fd = tcg_temp_new_i64(tcg_ctx);
neon_load_reg64(s, f0, vm);
for (;;) {
fn(tcg_ctx, fd, f0);
neon_store_reg64(s, fd, vd);
if (veclen == 0) {
break;
}
if (delta_m == 0) {
/* single source one-many */
while (veclen--) {
vd = vfp_advance_dreg(vd, delta_d);
neon_store_reg64(s, fd, vd);
}
break;
}
/* Set up the operands for the next iteration */
veclen--;
vd = vfp_advance_dreg(vd, delta_d);
vd = vfp_advance_dreg(vm, delta_m);
neon_load_reg64(s, f0, vm);
}
tcg_temp_free_i64(tcg_ctx, f0);
tcg_temp_free_i64(tcg_ctx, fd);
return true;
}
target/arm: Convert VFP VMLA to decodetree Convert the VFP VMLA instruction to decodetree. This is the first of the VFP 3-operand data processing instructions, so we include in this patch the code which loops over the elements for an old-style VFP vector operation. The existing code to do this looping uses the deprecated cpu_F0s/F0d/F1s/F1d TCG globals; since we are going to be converting instructions one at a time anyway we can take the opportunity to make the new loop use TCG temporaries, which means we can do that conversion one operation at a time rather than needing to do it all in one go. We include an UNDEF check which was missing in the old code: short-vector operations (with stride or length non-zero) were deprecated in v7A and must UNDEF in v8A, so if the MVFR0 FPShVec field does not indicate that support for short vectors is present we UNDEF the operations that would use them. (This is a change of behaviour for Cortex-A7, Cortex-A15 and the v8 CPUs, which previously were all incorrectly allowing short-vector operations.) Note that the conversion fixes a bug in the old code for the case of VFP short-vector "mixed scalar/vector operations". These happen where the destination register is in a vector bank but but the second operand is in a scalar bank. For example vmla.f64 d10, d1, d16 with length 2 stride 2 is equivalent to the pair of scalar operations vmla.f64 d10, d1, d16 vmla.f64 d8, d3, d16 where the destination and first input register cycle through their vector but the second input is scalar (d16). In the old decoder the gen_vfp_F1_mul() operation uses cpu_F1{s,d} as a temporary output for the multiply, which trashes the second input operand. For the fully-scalar case (where we never do a second iteration) and the fully-vector case (where the loop loads the new second input operand) this doesn't matter, but for the mixed scalar/vector case we will end up using the wrong value for later loop iterations. In the new code we use TCG temporaries and so avoid the bug. This bug is present for all the multiply-accumulate insns that operate on short vectors: VMLA, VMLS, VNMLA, VNMLS. Note 2: the expression used to calculate the next register number in the vector bank is not in fact correct; we leave this behaviour unchanged from the old decoder and will fix this bug later in the series. Backports commit 266bd25c485597c94209bfdb3891c1d0c573c164 from qemu
2019-06-13 21:59:10 +00:00
static void gen_VMLA_sp(TCGContext *tcg_ctx, TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst)
{
/* Note that order of inputs to the add matters for NaNs */
TCGv_i32 tmp = tcg_temp_new_i32(tcg_ctx);
gen_helper_vfp_muls(tcg_ctx, tmp, vn, vm, fpst);
gen_helper_vfp_adds(tcg_ctx, vd, vd, tmp, fpst);
tcg_temp_free_i32(tcg_ctx, tmp);
}
static bool trans_VMLA_sp(DisasContext *s, arg_VMLA_sp *a)
{
return do_vfp_3op_sp(s, gen_VMLA_sp, a->vd, a->vn, a->vm, true);
}
static void gen_VMLA_dp(TCGContext *tcg_ctx, TCGv_i64 vd, TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst)
{
/* Note that order of inputs to the add matters for NaNs */
TCGv_i64 tmp = tcg_temp_new_i64(tcg_ctx);
gen_helper_vfp_muld(tcg_ctx, tmp, vn, vm, fpst);
gen_helper_vfp_addd(tcg_ctx, vd, vd, tmp, fpst);
tcg_temp_free_i64(tcg_ctx, tmp);
}
static bool trans_VMLA_dp(DisasContext *s, arg_VMLA_dp *a)
target/arm: Convert VFP VMLA to decodetree Convert the VFP VMLA instruction to decodetree. This is the first of the VFP 3-operand data processing instructions, so we include in this patch the code which loops over the elements for an old-style VFP vector operation. The existing code to do this looping uses the deprecated cpu_F0s/F0d/F1s/F1d TCG globals; since we are going to be converting instructions one at a time anyway we can take the opportunity to make the new loop use TCG temporaries, which means we can do that conversion one operation at a time rather than needing to do it all in one go. We include an UNDEF check which was missing in the old code: short-vector operations (with stride or length non-zero) were deprecated in v7A and must UNDEF in v8A, so if the MVFR0 FPShVec field does not indicate that support for short vectors is present we UNDEF the operations that would use them. (This is a change of behaviour for Cortex-A7, Cortex-A15 and the v8 CPUs, which previously were all incorrectly allowing short-vector operations.) Note that the conversion fixes a bug in the old code for the case of VFP short-vector "mixed scalar/vector operations". These happen where the destination register is in a vector bank but but the second operand is in a scalar bank. For example vmla.f64 d10, d1, d16 with length 2 stride 2 is equivalent to the pair of scalar operations vmla.f64 d10, d1, d16 vmla.f64 d8, d3, d16 where the destination and first input register cycle through their vector but the second input is scalar (d16). In the old decoder the gen_vfp_F1_mul() operation uses cpu_F1{s,d} as a temporary output for the multiply, which trashes the second input operand. For the fully-scalar case (where we never do a second iteration) and the fully-vector case (where the loop loads the new second input operand) this doesn't matter, but for the mixed scalar/vector case we will end up using the wrong value for later loop iterations. In the new code we use TCG temporaries and so avoid the bug. This bug is present for all the multiply-accumulate insns that operate on short vectors: VMLA, VMLS, VNMLA, VNMLS. Note 2: the expression used to calculate the next register number in the vector bank is not in fact correct; we leave this behaviour unchanged from the old decoder and will fix this bug later in the series. Backports commit 266bd25c485597c94209bfdb3891c1d0c573c164 from qemu
2019-06-13 21:59:10 +00:00
{
return do_vfp_3op_dp(s, gen_VMLA_dp, a->vd, a->vn, a->vm, true);
}
static void gen_VMLS_sp(TCGContext *tcg_ctx, TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst)
{
/*
* VMLS: vd = vd + -(vn * vm)
* Note that order of inputs to the add matters for NaNs.
*/
TCGv_i32 tmp = tcg_temp_new_i32(tcg_ctx);
gen_helper_vfp_muls(tcg_ctx, tmp, vn, vm, fpst);
gen_helper_vfp_negs(tcg_ctx, tmp, tmp);
gen_helper_vfp_adds(tcg_ctx, vd, vd, tmp, fpst);
tcg_temp_free_i32(tcg_ctx, tmp);
}
static bool trans_VMLS_sp(DisasContext *s, arg_VMLS_sp *a)
{
return do_vfp_3op_sp(s, gen_VMLS_sp, a->vd, a->vn, a->vm, true);
}
static void gen_VMLS_dp(TCGContext *tcg_ctx, TCGv_i64 vd, TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst)
{
/*
* VMLS: vd = vd + -(vn * vm)
* Note that order of inputs to the add matters for NaNs.
*/
TCGv_i64 tmp = tcg_temp_new_i64(tcg_ctx);
gen_helper_vfp_muld(tcg_ctx, tmp, vn, vm, fpst);
gen_helper_vfp_negd(tcg_ctx, tmp, tmp);
gen_helper_vfp_addd(tcg_ctx, vd, vd, tmp, fpst);
tcg_temp_free_i64(tcg_ctx, tmp);
}
static bool trans_VMLS_dp(DisasContext *s, arg_VMLS_dp *a)
{
return do_vfp_3op_dp(s, gen_VMLS_dp, a->vd, a->vn, a->vm, true);
}
static void gen_VNMLS_sp(TCGContext *tcg_ctx, TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst)
{
/*
* VNMLS: -fd + (fn * fm)
* Note that it isn't valid to replace (-A + B) with (B - A) or similar
* plausible looking simplifications because this will give wrong results
* for NaNs.
*/
TCGv_i32 tmp = tcg_temp_new_i32(tcg_ctx);
gen_helper_vfp_muls(tcg_ctx, tmp, vn, vm, fpst);
gen_helper_vfp_negs(tcg_ctx, vd, vd);
gen_helper_vfp_adds(tcg_ctx, vd, vd, tmp, fpst);
tcg_temp_free_i32(tcg_ctx, tmp);
}
static bool trans_VNMLS_sp(DisasContext *s, arg_VNMLS_sp *a)
{
return do_vfp_3op_sp(s, gen_VNMLS_sp, a->vd, a->vn, a->vm, true);
}
static void gen_VNMLS_dp(TCGContext *tcg_ctx, TCGv_i64 vd, TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst)
{
/*
* VNMLS: -fd + (fn * fm)
* Note that it isn't valid to replace (-A + B) with (B - A) or similar
* plausible looking simplifications because this will give wrong results
* for NaNs.
*/
TCGv_i64 tmp = tcg_temp_new_i64(tcg_ctx);
gen_helper_vfp_muld(tcg_ctx, tmp, vn, vm, fpst);
gen_helper_vfp_negd(tcg_ctx, vd, vd);
gen_helper_vfp_addd(tcg_ctx, vd, vd, tmp, fpst);
tcg_temp_free_i64(tcg_ctx, tmp);
}
static bool trans_VNMLS_dp(DisasContext *s, arg_VNMLS_dp *a)
{
return do_vfp_3op_dp(s, gen_VNMLS_dp, a->vd, a->vn, a->vm, true);
}
static void gen_VNMLA_sp(TCGContext *tcg_ctx, TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst)
{
/* VNMLA: -fd + -(fn * fm) */
TCGv_i32 tmp = tcg_temp_new_i32(tcg_ctx);
gen_helper_vfp_muls(tcg_ctx, tmp, vn, vm, fpst);
gen_helper_vfp_negs(tcg_ctx, tmp, tmp);
gen_helper_vfp_negs(tcg_ctx, vd, vd);
gen_helper_vfp_adds(tcg_ctx, vd, vd, tmp, fpst);
tcg_temp_free_i32(tcg_ctx, tmp);
}
static bool trans_VNMLA_sp(DisasContext *s, arg_VNMLA_sp *a)
{
return do_vfp_3op_sp(s, gen_VNMLA_sp, a->vd, a->vn, a->vm, true);
}
static void gen_VNMLA_dp(TCGContext *tcg_ctx, TCGv_i64 vd, TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst)
{
/* VNMLA: -fd + (fn * fm) */
TCGv_i64 tmp = tcg_temp_new_i64(tcg_ctx);
gen_helper_vfp_muld(tcg_ctx, tmp, vn, vm, fpst);
gen_helper_vfp_negd(tcg_ctx, tmp, tmp);
gen_helper_vfp_negd(tcg_ctx, vd, vd);
gen_helper_vfp_addd(tcg_ctx, vd, vd, tmp, fpst);
tcg_temp_free_i64(tcg_ctx, tmp);
}
static bool trans_VNMLA_dp(DisasContext *s, arg_VNMLA_dp *a)
{
return do_vfp_3op_dp(s, gen_VNMLA_dp, a->vd, a->vn, a->vm, true);
}
static bool trans_VMUL_sp(DisasContext *s, arg_VMUL_sp *a)
{
return do_vfp_3op_sp(s, gen_helper_vfp_muls, a->vd, a->vn, a->vm, false);
}
static bool trans_VMUL_dp(DisasContext *s, arg_VMUL_dp *a)
{
return do_vfp_3op_dp(s, gen_helper_vfp_muld, a->vd, a->vn, a->vm, false);
}
static void gen_VNMUL_sp(TCGContext *tcg_ctx, TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst)
{
/* VNMUL: -(fn * fm) */
gen_helper_vfp_muls(tcg_ctx, vd, vn, vm, fpst);
gen_helper_vfp_negs(tcg_ctx, vd, vd);
}
static bool trans_VNMUL_sp(DisasContext *s, arg_VNMUL_sp *a)
{
return do_vfp_3op_sp(s, gen_VNMUL_sp, a->vd, a->vn, a->vm, false);
}
static void gen_VNMUL_dp(TCGContext *tcg_ctx, TCGv_i64 vd, TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst)
{
/* VNMUL: -(fn * fm) */
gen_helper_vfp_muld(tcg_ctx, vd, vn, vm, fpst);
gen_helper_vfp_negd(tcg_ctx, vd, vd);
}
static bool trans_VNMUL_dp(DisasContext *s, arg_VNMUL_dp *a)
{
return do_vfp_3op_dp(s, gen_VNMUL_dp, a->vd, a->vn, a->vm, false);
}
static bool trans_VADD_sp(DisasContext *s, arg_VADD_sp *a)
{
return do_vfp_3op_sp(s, gen_helper_vfp_adds, a->vd, a->vn, a->vm, false);
}
static bool trans_VADD_dp(DisasContext *s, arg_VADD_dp *a)
{
return do_vfp_3op_dp(s, gen_helper_vfp_addd, a->vd, a->vn, a->vm, false);
}
static bool trans_VSUB_sp(DisasContext *s, arg_VSUB_sp *a)
{
return do_vfp_3op_sp(s, gen_helper_vfp_subs, a->vd, a->vn, a->vm, false);
}
static bool trans_VSUB_dp(DisasContext *s, arg_VSUB_dp *a)
{
return do_vfp_3op_dp(s, gen_helper_vfp_subd, a->vd, a->vn, a->vm, false);
}
static bool trans_VDIV_sp(DisasContext *s, arg_VDIV_sp *a)
{
return do_vfp_3op_sp(s, gen_helper_vfp_divs, a->vd, a->vn, a->vm, false);
}
static bool trans_VDIV_dp(DisasContext *s, arg_VDIV_dp *a)
{
return do_vfp_3op_dp(s, gen_helper_vfp_divd, a->vd, a->vn, a->vm, false);
}
static bool trans_VFM_sp(DisasContext *s, arg_VFM_sp *a)
{
/*
* VFNMA : fd = muladd(-fd, fn, fm)
* VFNMS : fd = muladd(-fd, -fn, fm)
* VFMA : fd = muladd( fd, fn, fm)
* VFMS : fd = muladd( fd, -fn, fm)
*
* These are fused multiply-add, and must be done as one floating
* point operation with no rounding between the multiplication and
* addition steps. NB that doing the negations here as separate
* steps is correct : an input NaN should come out with its sign
* bit flipped if it is a negated-input.
*/
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_ptr fpst;
TCGv_i32 vn, vm, vd;
/*
* Present in VFPv4 only.
* In v7A, UNPREDICTABLE with non-zero vector length/stride; from
* v8A, must UNDEF. We choose to UNDEF for both v7A and v8A.
*/
if (!arm_dc_feature(s, ARM_FEATURE_VFP4) ||
(s->vec_len != 0 || s->vec_stride != 0)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
vn = tcg_temp_new_i32(tcg_ctx);
vm = tcg_temp_new_i32(tcg_ctx);
vd = tcg_temp_new_i32(tcg_ctx);
neon_load_reg32(s, vn, a->vn);
neon_load_reg32(s, vm, a->vm);
if (a->o2) {
/* VFNMS, VFMS */
gen_helper_vfp_negs(tcg_ctx, vn, vn);
}
neon_load_reg32(s, vd, a->vd);
if (a->o1 & 1) {
/* VFNMA, VFNMS */
gen_helper_vfp_negs(tcg_ctx, vd, vd);
}
fpst = get_fpstatus_ptr(s, 0);
gen_helper_vfp_muladds(tcg_ctx, vd, vn, vm, vd, fpst);
neon_store_reg32(s, vd, a->vd);
tcg_temp_free_ptr(tcg_ctx, fpst);
tcg_temp_free_i32(tcg_ctx, vn);
tcg_temp_free_i32(tcg_ctx, vm);
tcg_temp_free_i32(tcg_ctx, vd);
return true;
}
static bool trans_VFM_dp(DisasContext *s, arg_VFM_dp *a)
{
/*
* VFNMA : fd = muladd(-fd, fn, fm)
* VFNMS : fd = muladd(-fd, -fn, fm)
* VFMA : fd = muladd( fd, fn, fm)
* VFMS : fd = muladd( fd, -fn, fm)
*
* These are fused multiply-add, and must be done as one floating
* point operation with no rounding between the multiplication and
* addition steps. NB that doing the negations here as separate
* steps is correct : an input NaN should come out with its sign
* bit flipped if it is a negated-input.
*/
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_ptr fpst;
TCGv_i64 vn, vm, vd;
/*
* Present in VFPv4 only.
* In v7A, UNPREDICTABLE with non-zero vector length/stride; from
* v8A, must UNDEF. We choose to UNDEF for both v7A and v8A.
*/
if (!arm_dc_feature(s, ARM_FEATURE_VFP4) ||
(s->vec_len != 0 || s->vec_stride != 0)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist. */
if (!dc_isar_feature(aa32_fp_d32, s) && ((a->vd | a->vn | a->vm) & 0x10)) {
return false;
}
if (!dc_isar_feature(aa32_fpdp, s)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
vn = tcg_temp_new_i64(tcg_ctx);
vm = tcg_temp_new_i64(tcg_ctx);
vd = tcg_temp_new_i64(tcg_ctx);
neon_load_reg64(s, vn, a->vn);
neon_load_reg64(s, vm, a->vm);
if (a->o2) {
/* VFNMS, VFMS */
gen_helper_vfp_negd(tcg_ctx, vn, vn);
}
neon_load_reg64(s, vd, a->vd);
if (a->o1 & 1) {
/* VFNMA, VFNMS */
gen_helper_vfp_negd(tcg_ctx, vd, vd);
}
fpst = get_fpstatus_ptr(s, 0);
gen_helper_vfp_muladdd(tcg_ctx, vd, vn, vm, vd, fpst);
neon_store_reg64(s, vd, a->vd);
tcg_temp_free_ptr(tcg_ctx, fpst);
tcg_temp_free_i64(tcg_ctx, vn);
tcg_temp_free_i64(tcg_ctx, vm);
tcg_temp_free_i64(tcg_ctx, vd);
return true;
}
static bool trans_VMOV_imm_sp(DisasContext *s, arg_VMOV_imm_sp *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
uint32_t delta_d = 0;
int veclen = s->vec_len;
TCGv_i32 fd;
uint32_t vd;
vd = a->vd;
if (!dc_isar_feature(aa32_fpshvec, s) &&
(veclen != 0 || s->vec_stride != 0)) {
return false;
}
if (!arm_dc_feature(s, ARM_FEATURE_VFP3)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
if (veclen > 0) {
/* Figure out what type of vector operation this is. */
if (vfp_sreg_is_scalar(vd)) {
/* scalar */
veclen = 0;
} else {
delta_d = s->vec_stride + 1;
}
}
fd = tcg_const_i32(tcg_ctx, vfp_expand_imm(MO_32, a->imm));
for (;;) {
neon_store_reg32(s, fd, vd);
if (veclen == 0) {
break;
}
/* Set up the operands for the next iteration */
veclen--;
vd = vfp_advance_sreg(vd, delta_d);
}
tcg_temp_free_i32(tcg_ctx, fd);
return true;
}
static bool trans_VMOV_imm_dp(DisasContext *s, arg_VMOV_imm_dp *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
uint32_t delta_d = 0;
int veclen = s->vec_len;
TCGv_i64 fd;
uint32_t vd;
vd = a->vd;
/* UNDEF accesses to D16-D31 if they don't exist. */
if (!dc_isar_feature(aa32_fp_d32, s) && (vd & 0x10)) {
return false;
}
if (!dc_isar_feature(aa32_fpdp, s)) {
return false;
}
if (!dc_isar_feature(aa32_fpshvec, s) &&
(veclen != 0 || s->vec_stride != 0)) {
return false;
}
if (!arm_dc_feature(s, ARM_FEATURE_VFP3)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
if (veclen > 0) {
/* Figure out what type of vector operation this is. */
if (vfp_dreg_is_scalar(vd)) {
/* scalar */
veclen = 0;
} else {
delta_d = (s->vec_stride >> 1) + 1;
}
}
fd = tcg_const_i64(tcg_ctx, vfp_expand_imm(MO_64, a->imm));
for (;;) {
neon_store_reg64(s, fd, vd);
if (veclen == 0) {
break;
}
/* Set up the operands for the next iteration */
veclen--;
vd = vfp_advance_dreg(vd, delta_d);
}
tcg_temp_free_i64(tcg_ctx, fd);
return true;
}
static bool trans_VMOV_reg_sp(DisasContext *s, arg_VMOV_reg_sp *a)
{
return do_vfp_2op_sp(s, tcg_gen_mov_i32, a->vd, a->vm);
}
static bool trans_VMOV_reg_dp(DisasContext *s, arg_VMOV_reg_dp *a)
{
return do_vfp_2op_dp(s, tcg_gen_mov_i64, a->vd, a->vm);
}
static bool trans_VABS_sp(DisasContext *s, arg_VABS_sp *a)
{
return do_vfp_2op_sp(s, gen_helper_vfp_abss, a->vd, a->vm);
}
static bool trans_VABS_dp(DisasContext *s, arg_VABS_dp *a)
{
return do_vfp_2op_dp(s, gen_helper_vfp_absd, a->vd, a->vm);
}
static bool trans_VNEG_sp(DisasContext *s, arg_VNEG_sp *a)
{
return do_vfp_2op_sp(s, gen_helper_vfp_negs, a->vd, a->vm);
}
static bool trans_VNEG_dp(DisasContext *s, arg_VNEG_dp *a)
{
return do_vfp_2op_dp(s, gen_helper_vfp_negd, a->vd, a->vm);
}
static void gen_VSQRT_sp(TCGContext *tcg_ctx, TCGv_i32 vd, TCGv_i32 vm)
{
gen_helper_vfp_sqrts(tcg_ctx, vd, vm, tcg_ctx->cpu_env);
}
static bool trans_VSQRT_sp(DisasContext *s, arg_VSQRT_sp *a)
{
return do_vfp_2op_sp(s, gen_VSQRT_sp, a->vd, a->vm);
}
static void gen_VSQRT_dp(TCGContext *tcg_ctx, TCGv_i64 vd, TCGv_i64 vm)
{
gen_helper_vfp_sqrtd(tcg_ctx, vd, vm, tcg_ctx->cpu_env);
}
static bool trans_VSQRT_dp(DisasContext *s, arg_VSQRT_dp *a)
{
return do_vfp_2op_dp(s, gen_VSQRT_dp, a->vd, a->vm);
}
static bool trans_VCMP_sp(DisasContext *s, arg_VCMP_sp *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i32 vd, vm;
/* Vm/M bits must be zero for the Z variant */
if (a->z && a->vm != 0) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
vd = tcg_temp_new_i32(tcg_ctx);
vm = tcg_temp_new_i32(tcg_ctx);
neon_load_reg32(s, vd, a->vd);
if (a->z) {
tcg_gen_movi_i32(tcg_ctx, vm, 0);
} else {
neon_load_reg32(s, vm, a->vm);
}
if (a->e) {
gen_helper_vfp_cmpes(tcg_ctx, vd, vm, tcg_ctx->cpu_env);
} else {
gen_helper_vfp_cmps(tcg_ctx, vd, vm, tcg_ctx->cpu_env);
}
tcg_temp_free_i32(tcg_ctx, vd);
tcg_temp_free_i32(tcg_ctx, vm);
return true;
}
static bool trans_VCMP_dp(DisasContext *s, arg_VCMP_dp *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i64 vd, vm;
/* Vm/M bits must be zero for the Z variant */
if (a->z && a->vm != 0) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist. */
if (!dc_isar_feature(aa32_fp_d32, s) && ((a->vd | a->vm) & 0x10)) {
return false;
}
if (!dc_isar_feature(aa32_fpdp, s)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
vd = tcg_temp_new_i64(tcg_ctx);
vm = tcg_temp_new_i64(tcg_ctx);
neon_load_reg64(s, vd, a->vd);
if (a->z) {
tcg_gen_movi_i64(tcg_ctx, vm, 0);
} else {
neon_load_reg64(s, vm, a->vm);
}
if (a->e) {
gen_helper_vfp_cmped(tcg_ctx, vd, vm, tcg_ctx->cpu_env);
} else {
gen_helper_vfp_cmpd(tcg_ctx, vd, vm, tcg_ctx->cpu_env);
}
tcg_temp_free_i64(tcg_ctx, vd);
tcg_temp_free_i64(tcg_ctx, vm);
return true;
}
static bool trans_VCVT_f32_f16(DisasContext *s, arg_VCVT_f32_f16 *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_ptr fpst;
TCGv_i32 ahp_mode;
TCGv_i32 tmp;
if (!dc_isar_feature(aa32_fp16_spconv, s)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
fpst = get_fpstatus_ptr(s, false);
ahp_mode = get_ahp_flag(s);
tmp = tcg_temp_new_i32(tcg_ctx);
/* The T bit tells us if we want the low or high 16 bits of Vm */
tcg_gen_ld16u_i32(tcg_ctx, tmp, tcg_ctx->cpu_env, vfp_f16_offset(a->vm, a->t));
gen_helper_vfp_fcvt_f16_to_f32(tcg_ctx, tmp, tmp, fpst, ahp_mode);
neon_store_reg32(s, tmp, a->vd);
tcg_temp_free_i32(tcg_ctx, ahp_mode);
tcg_temp_free_ptr(tcg_ctx, fpst);
tcg_temp_free_i32(tcg_ctx, tmp);
return true;
}
static bool trans_VCVT_f64_f16(DisasContext *s, arg_VCVT_f64_f16 *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_ptr fpst;
TCGv_i32 ahp_mode;
TCGv_i32 tmp;
TCGv_i64 vd;
if (!dc_isar_feature(aa32_fp16_dpconv, s)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist. */
if (!dc_isar_feature(aa32_fp_d32, s) && (a->vd & 0x10)) {
return false;
}
if (!dc_isar_feature(aa32_fpdp, s)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
fpst = get_fpstatus_ptr(s, false);
ahp_mode = get_ahp_flag(s);
tmp = tcg_temp_new_i32(tcg_ctx);
/* The T bit tells us if we want the low or high 16 bits of Vm */
tcg_gen_ld16u_i32(tcg_ctx, tmp, tcg_ctx->cpu_env, vfp_f16_offset(a->vm, a->t));
vd = tcg_temp_new_i64(tcg_ctx);
gen_helper_vfp_fcvt_f16_to_f64(tcg_ctx, vd, tmp, fpst, ahp_mode);
neon_store_reg64(s, vd, a->vd);
tcg_temp_free_i32(tcg_ctx, ahp_mode);
tcg_temp_free_ptr(tcg_ctx, fpst);
tcg_temp_free_i32(tcg_ctx, tmp);
tcg_temp_free_i64(tcg_ctx, vd);
return true;
}
static bool trans_VCVT_f16_f32(DisasContext *s, arg_VCVT_f16_f32 *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_ptr fpst;
TCGv_i32 ahp_mode;
TCGv_i32 tmp;
if (!dc_isar_feature(aa32_fp16_spconv, s)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
fpst = get_fpstatus_ptr(s, false);
ahp_mode = get_ahp_flag(s);
tmp = tcg_temp_new_i32(tcg_ctx);
neon_load_reg32(s, tmp, a->vm);
gen_helper_vfp_fcvt_f32_to_f16(tcg_ctx, tmp, tmp, fpst, ahp_mode);
tcg_gen_st16_i32(tcg_ctx, tmp, tcg_ctx->cpu_env, vfp_f16_offset(a->vd, a->t));
tcg_temp_free_i32(tcg_ctx, ahp_mode);
tcg_temp_free_ptr(tcg_ctx, fpst);
tcg_temp_free_i32(tcg_ctx, tmp);
return true;
}
static bool trans_VCVT_f16_f64(DisasContext *s, arg_VCVT_f16_f64 *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_ptr fpst;
TCGv_i32 ahp_mode;
TCGv_i32 tmp;
TCGv_i64 vm;
if (!dc_isar_feature(aa32_fp16_dpconv, s)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist. */
if (!dc_isar_feature(aa32_fp_d32, s) && (a->vm & 0x10)) {
return false;
}
if (!dc_isar_feature(aa32_fpdp, s)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
fpst = get_fpstatus_ptr(s, false);
ahp_mode = get_ahp_flag(s);
tmp = tcg_temp_new_i32(tcg_ctx);
vm = tcg_temp_new_i64(tcg_ctx);
neon_load_reg64(s, vm, a->vm);
gen_helper_vfp_fcvt_f64_to_f16(tcg_ctx, tmp, vm, fpst, ahp_mode);
tcg_temp_free_i64(tcg_ctx, vm);
tcg_gen_st16_i32(tcg_ctx, tmp, tcg_ctx->cpu_env, vfp_f16_offset(a->vd, a->t));
tcg_temp_free_i32(tcg_ctx, ahp_mode);
tcg_temp_free_ptr(tcg_ctx, fpst);
tcg_temp_free_i32(tcg_ctx, tmp);
return true;
}
static bool trans_VRINTR_sp(DisasContext *s, arg_VRINTR_sp *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_ptr fpst;
TCGv_i32 tmp;
if (!dc_isar_feature(aa32_vrint, s)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
tmp = tcg_temp_new_i32(tcg_ctx);
neon_load_reg32(s, tmp, a->vm);
fpst = get_fpstatus_ptr(s, false);
gen_helper_rints(tcg_ctx, tmp, tmp, fpst);
neon_store_reg32(s, tmp, a->vd);
tcg_temp_free_ptr(tcg_ctx, fpst);
tcg_temp_free_i32(tcg_ctx, tmp);
return true;
}
static bool trans_VRINTR_dp(DisasContext *s, arg_VRINTR_dp *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_ptr fpst;
TCGv_i64 tmp;
if (!dc_isar_feature(aa32_vrint, s)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist. */
if (!dc_isar_feature(aa32_fp_d32, s) && ((a->vd | a->vm) & 0x10)) {
return false;
}
if (!dc_isar_feature(aa32_fpdp, s)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
tmp = tcg_temp_new_i64(tcg_ctx);
neon_load_reg64(s, tmp, a->vm);
fpst = get_fpstatus_ptr(s, false);
gen_helper_rintd(tcg_ctx, tmp, tmp, fpst);
neon_store_reg64(s, tmp, a->vd);
tcg_temp_free_ptr(tcg_ctx, fpst);
tcg_temp_free_i64(tcg_ctx, tmp);
return true;
}
static bool trans_VRINTZ_sp(DisasContext *s, arg_VRINTZ_sp *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_ptr fpst;
TCGv_i32 tmp;
TCGv_i32 tcg_rmode;
if (!dc_isar_feature(aa32_vrint, s)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
tmp = tcg_temp_new_i32(tcg_ctx);
neon_load_reg32(s, tmp, a->vm);
fpst = get_fpstatus_ptr(s, false);
tcg_rmode = tcg_const_i32(tcg_ctx, float_round_to_zero);
gen_helper_set_rmode(tcg_ctx, tcg_rmode, tcg_rmode, fpst);
gen_helper_rints(tcg_ctx, tmp, tmp, fpst);
gen_helper_set_rmode(tcg_ctx, tcg_rmode, tcg_rmode, fpst);
neon_store_reg32(s, tmp, a->vd);
tcg_temp_free_ptr(tcg_ctx, fpst);
tcg_temp_free_i32(tcg_ctx, tcg_rmode);
tcg_temp_free_i32(tcg_ctx, tmp);
return true;
}
static bool trans_VRINTZ_dp(DisasContext *s, arg_VRINTZ_dp *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_ptr fpst;
TCGv_i64 tmp;
TCGv_i32 tcg_rmode;
if (!dc_isar_feature(aa32_vrint, s)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist. */
if (!dc_isar_feature(aa32_fp_d32, s) && ((a->vd | a->vm) & 0x10)) {
return false;
}
if (!dc_isar_feature(aa32_fpdp, s)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
tmp = tcg_temp_new_i64(tcg_ctx);
neon_load_reg64(s, tmp, a->vm);
fpst = get_fpstatus_ptr(s, false);
tcg_rmode = tcg_const_i32(tcg_ctx, float_round_to_zero);
gen_helper_set_rmode(tcg_ctx, tcg_rmode, tcg_rmode, fpst);
gen_helper_rintd(tcg_ctx, tmp, tmp, fpst);
gen_helper_set_rmode(tcg_ctx, tcg_rmode, tcg_rmode, fpst);
neon_store_reg64(s, tmp, a->vd);
tcg_temp_free_ptr(tcg_ctx, fpst);
tcg_temp_free_i64(tcg_ctx, tmp);
tcg_temp_free_i32(tcg_ctx, tcg_rmode);
return true;
}
static bool trans_VRINTX_sp(DisasContext *s, arg_VRINTX_sp *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_ptr fpst;
TCGv_i32 tmp;
if (!dc_isar_feature(aa32_vrint, s)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
tmp = tcg_temp_new_i32(tcg_ctx);
neon_load_reg32(s, tmp, a->vm);
fpst = get_fpstatus_ptr(s, false);
gen_helper_rints_exact(tcg_ctx, tmp, tmp, fpst);
neon_store_reg32(s, tmp, a->vd);
tcg_temp_free_ptr(tcg_ctx, fpst);
tcg_temp_free_i32(tcg_ctx, tmp);
return true;
}
static bool trans_VRINTX_dp(DisasContext *s, arg_VRINTX_dp *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_ptr fpst;
TCGv_i64 tmp;
if (!dc_isar_feature(aa32_vrint, s)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist. */
if (!dc_isar_feature(aa32_fp_d32, s) && ((a->vd | a->vm) & 0x10)) {
return false;
}
if (!dc_isar_feature(aa32_fpdp, s)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
tmp = tcg_temp_new_i64(tcg_ctx);
neon_load_reg64(s, tmp, a->vm);
fpst = get_fpstatus_ptr(s, false);
gen_helper_rintd_exact(tcg_ctx, tmp, tmp, fpst);
neon_store_reg64(s, tmp, a->vd);
tcg_temp_free_ptr(tcg_ctx, fpst);
tcg_temp_free_i64(tcg_ctx, tmp);
return true;
}
static bool trans_VCVT_sp(DisasContext *s, arg_VCVT_sp *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i64 vd;
TCGv_i32 vm;
/* UNDEF accesses to D16-D31 if they don't exist. */
if (!dc_isar_feature(aa32_fp_d32, s) && (a->vd & 0x10)) {
return false;
}
if (!dc_isar_feature(aa32_fpdp, s)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
vm = tcg_temp_new_i32(tcg_ctx);
vd = tcg_temp_new_i64(tcg_ctx);
neon_load_reg32(s, vm, a->vm);
gen_helper_vfp_fcvtds(tcg_ctx, vd, vm, tcg_ctx->cpu_env);
neon_store_reg64(s, vd, a->vd);
tcg_temp_free_i32(tcg_ctx, vm);
tcg_temp_free_i64(tcg_ctx, vd);
return true;
}
static bool trans_VCVT_dp(DisasContext *s, arg_VCVT_dp *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i64 vm;
TCGv_i32 vd;
/* UNDEF accesses to D16-D31 if they don't exist. */
if (!dc_isar_feature(aa32_fp_d32, s) && (a->vm & 0x10)) {
return false;
}
if (!dc_isar_feature(aa32_fpdp, s)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
vd = tcg_temp_new_i32(tcg_ctx);
vm = tcg_temp_new_i64(tcg_ctx);
neon_load_reg64(s, vm, a->vm);
gen_helper_vfp_fcvtsd(tcg_ctx, vd, vm, tcg_ctx->cpu_env);
neon_store_reg32(s, vd, a->vd);
tcg_temp_free_i32(tcg_ctx, vd);
tcg_temp_free_i64(tcg_ctx, vm);
return true;
}
static bool trans_VCVT_int_sp(DisasContext *s, arg_VCVT_int_sp *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i32 vm;
TCGv_ptr fpst;
if (!vfp_access_check(s)) {
return true;
}
vm = tcg_temp_new_i32(tcg_ctx);
neon_load_reg32(s, vm, a->vm);
fpst = get_fpstatus_ptr(s, false);
if (a->s) {
/* i32 -> f32 */
gen_helper_vfp_sitos(tcg_ctx, vm, vm, fpst);
} else {
/* u32 -> f32 */
gen_helper_vfp_uitos(tcg_ctx, vm, vm, fpst);
}
neon_store_reg32(s, vm, a->vd);
tcg_temp_free_i32(tcg_ctx, vm);
tcg_temp_free_ptr(tcg_ctx, fpst);
return true;
}
static bool trans_VCVT_int_dp(DisasContext *s, arg_VCVT_int_dp *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i32 vm;
TCGv_i64 vd;
TCGv_ptr fpst;
/* UNDEF accesses to D16-D31 if they don't exist. */
if (!dc_isar_feature(aa32_fp_d32, s) && (a->vd & 0x10)) {
return false;
}
if (!dc_isar_feature(aa32_fpdp, s)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
vm = tcg_temp_new_i32(tcg_ctx);
vd = tcg_temp_new_i64(tcg_ctx);
neon_load_reg32(s, vm, a->vm);
fpst = get_fpstatus_ptr(s, false);
if (a->s) {
/* i32 -> f64 */
gen_helper_vfp_sitod(tcg_ctx, vd, vm, fpst);
} else {
/* u32 -> f64 */
gen_helper_vfp_uitod(tcg_ctx, vd, vm, fpst);
}
neon_store_reg64(s, vd, a->vd);
tcg_temp_free_i32(tcg_ctx, vm);
tcg_temp_free_i64(tcg_ctx, vd);
tcg_temp_free_ptr(tcg_ctx, fpst);
return true;
}
static bool trans_VJCVT(DisasContext *s, arg_VJCVT *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i32 vd;
TCGv_i64 vm;
if (!dc_isar_feature(aa32_jscvt, s)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist. */
if (!dc_isar_feature(aa32_fp_d32, s) && (a->vm & 0x10)) {
return false;
}
if (!dc_isar_feature(aa32_fpdp, s)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
vm = tcg_temp_new_i64(tcg_ctx);
vd = tcg_temp_new_i32(tcg_ctx);
neon_load_reg64(s, vm, a->vm);
gen_helper_vjcvt(tcg_ctx, vd, vm, tcg_ctx->cpu_env);
neon_store_reg32(s, vd, a->vd);
tcg_temp_free_i64(tcg_ctx, vm);
tcg_temp_free_i32(tcg_ctx, vd);
return true;
}
static bool trans_VCVT_fix_sp(DisasContext *s, arg_VCVT_fix_sp *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i32 vd, shift;
TCGv_ptr fpst;
int frac_bits;
if (!arm_dc_feature(s, ARM_FEATURE_VFP3)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
frac_bits = (a->opc & 1) ? (32 - a->imm) : (16 - a->imm);
vd = tcg_temp_new_i32(tcg_ctx);
neon_load_reg32(s, vd, a->vd);
fpst = get_fpstatus_ptr(s, false);
shift = tcg_const_i32(tcg_ctx, frac_bits);
/* Switch on op:U:sx bits */
switch (a->opc) {
case 0:
gen_helper_vfp_shtos(tcg_ctx, vd, vd, shift, fpst);
break;
case 1:
gen_helper_vfp_sltos(tcg_ctx, vd, vd, shift, fpst);
break;
case 2:
gen_helper_vfp_uhtos(tcg_ctx, vd, vd, shift, fpst);
break;
case 3:
gen_helper_vfp_ultos(tcg_ctx, vd, vd, shift, fpst);
break;
case 4:
gen_helper_vfp_toshs_round_to_zero(tcg_ctx, vd, vd, shift, fpst);
break;
case 5:
gen_helper_vfp_tosls_round_to_zero(tcg_ctx, vd, vd, shift, fpst);
break;
case 6:
gen_helper_vfp_touhs_round_to_zero(tcg_ctx, vd, vd, shift, fpst);
break;
case 7:
gen_helper_vfp_touls_round_to_zero(tcg_ctx, vd, vd, shift, fpst);
break;
default:
g_assert_not_reached();
}
neon_store_reg32(s, vd, a->vd);
tcg_temp_free_i32(tcg_ctx, vd);
tcg_temp_free_i32(tcg_ctx, shift);
tcg_temp_free_ptr(tcg_ctx, fpst);
return true;
}
static bool trans_VCVT_fix_dp(DisasContext *s, arg_VCVT_fix_dp *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i64 vd;
TCGv_i32 shift;
TCGv_ptr fpst;
int frac_bits;
if (!arm_dc_feature(s, ARM_FEATURE_VFP3)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist. */
if (!dc_isar_feature(aa32_fp_d32, s) && (a->vd & 0x10)) {
return false;
}
if (!dc_isar_feature(aa32_fpdp, s)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
frac_bits = (a->opc & 1) ? (32 - a->imm) : (16 - a->imm);
vd = tcg_temp_new_i64(tcg_ctx);
neon_load_reg64(s, vd, a->vd);
fpst = get_fpstatus_ptr(s, false);
shift = tcg_const_i32(tcg_ctx, frac_bits);
/* Switch on op:U:sx bits */
switch (a->opc) {
case 0:
gen_helper_vfp_shtod(tcg_ctx, vd, vd, shift, fpst);
break;
case 1:
gen_helper_vfp_sltod(tcg_ctx, vd, vd, shift, fpst);
break;
case 2:
gen_helper_vfp_uhtod(tcg_ctx, vd, vd, shift, fpst);
break;
case 3:
gen_helper_vfp_ultod(tcg_ctx, vd, vd, shift, fpst);
break;
case 4:
gen_helper_vfp_toshd_round_to_zero(tcg_ctx, vd, vd, shift, fpst);
break;
case 5:
gen_helper_vfp_tosld_round_to_zero(tcg_ctx, vd, vd, shift, fpst);
break;
case 6:
gen_helper_vfp_touhd_round_to_zero(tcg_ctx, vd, vd, shift, fpst);
break;
case 7:
gen_helper_vfp_tould_round_to_zero(tcg_ctx, vd, vd, shift, fpst);
break;
default:
g_assert_not_reached();
}
neon_store_reg64(s, vd, a->vd);
tcg_temp_free_i64(tcg_ctx, vd);
tcg_temp_free_i32(tcg_ctx, shift);
tcg_temp_free_ptr(tcg_ctx, fpst);
return true;
}
static bool trans_VCVT_sp_int(DisasContext *s, arg_VCVT_sp_int *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i32 vm;
TCGv_ptr fpst;
if (!vfp_access_check(s)) {
return true;
}
fpst = get_fpstatus_ptr(s, false);
vm = tcg_temp_new_i32(tcg_ctx);
neon_load_reg32(s, vm, a->vm);
if (a->s) {
if (a->rz) {
gen_helper_vfp_tosizs(tcg_ctx, vm, vm, fpst);
} else {
gen_helper_vfp_tosis(tcg_ctx, vm, vm, fpst);
}
} else {
if (a->rz) {
gen_helper_vfp_touizs(tcg_ctx, vm, vm, fpst);
} else {
gen_helper_vfp_touis(tcg_ctx, vm, vm, fpst);
}
}
neon_store_reg32(s, vm, a->vd);
tcg_temp_free_i32(tcg_ctx, vm);
tcg_temp_free_ptr(tcg_ctx, fpst);
return true;
}
static bool trans_VCVT_dp_int(DisasContext *s, arg_VCVT_dp_int *a)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i32 vd;
TCGv_i64 vm;
TCGv_ptr fpst;
/* UNDEF accesses to D16-D31 if they don't exist. */
if (!dc_isar_feature(aa32_fp_d32, s) && (a->vm & 0x10)) {
return false;
}
if (!dc_isar_feature(aa32_fpdp, s)) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
fpst = get_fpstatus_ptr(s, false);
vm = tcg_temp_new_i64(tcg_ctx);
vd = tcg_temp_new_i32(tcg_ctx);
neon_load_reg64(s, vm, a->vm);
if (a->s) {
if (a->rz) {
gen_helper_vfp_tosizd(tcg_ctx, vd, vm, fpst);
} else {
gen_helper_vfp_tosid(tcg_ctx, vd, vm, fpst);
}
} else {
if (a->rz) {
gen_helper_vfp_touizd(tcg_ctx, vd, vm, fpst);
} else {
gen_helper_vfp_touid(tcg_ctx, vd, vm, fpst);
}
}
neon_store_reg32(s, vd, a->vd);
tcg_temp_free_i32(tcg_ctx, vd);
tcg_temp_free_i64(tcg_ctx, vm);
tcg_temp_free_ptr(tcg_ctx, fpst);
return true;
}