Make the CCR register banked if v8M security extensions are enabled.
This is slightly more complicated than the other "add banking"
patches because there is one bit in the register which is not
banked. We keep the live data in the NS copy of the register,
and adjust it on register reads and writes. (Since we don't
currently implement the behaviour that the bit controls, there
is nowhere else that needs to care.)
This patch includes the enforcement of the bits which are newly
RES1 in ARMv8M.
Backports commit 9d40cd8a68cfc7606f4548cc9e812bab15c6dc28 from qemu
Make the MPU registers MPU_MAIR0 and MPU_MAIR1 banked if v8M security
extensions are enabled.
We can freely add more items to vmstate_m_security without
breaking migration compatibility, because no CPU currently
has the ARM_FEATURE_M_SECURITY bit enabled and so this
subsection is not yet used by anything.
Backports commit 62c58ee0b24eafb44c06402fe059fbd7972eb409 from qemu
Make the MPU registers MPU_MAIR0 and MPU_MAIR1 banked if v8M security
extensions are enabled.
Backports commit 4125e6feb71c810ca38f0d8e66e748b472a9cc54 from qemu
Make the FAULTMASK register banked if v8M security extensions are enabled.
Note that we do not yet implement the functionality of the new
AIRCR.PRIS bit (which allows the effect of the NS copy of FAULTMASK to
be restricted).
This patch includes the code to determine for v8M which copy
of FAULTMASK should be updated on exception exit; further
changes will be required to the exception exit code in general
to support v8M, so this is just a small piece of that.
The v8M ARM ARM introduces a notation where individual paragraphs
are labelled with R (for rule) or I (for information) followed
by a random group of subscript letters. In comments where we want
to refer to a particular part of the manual we use this convention,
which should be more stable across document revisions than using
section or page numbers.
Backports commit 42a6686b2f6199d086a58edd7731faeb2dbe7c14 from qemu
Make the PRIMASK register banked if v8M security extensions are enabled.
Note that we do not yet implement the functionality of the new
AIRCR.PRIS bit (which allows the effect of the NS copy of PRIMASK to
be restricted).
Backports commit 6d8048341995b31a77dc2e0dcaaf4e3df0e3121a from qemu
Make the BASEPRI register banked if v8M security extensions are enabled.
Note that we do not yet implement the functionality of the new
AIRCR.PRIS bit (which allows the effect of the NS copy of BASEPRI to
be restricted).
Backports commit acf949411ffb675edbfb707e235800b02e6a36f8 from qemu
Now that MPU lookups can return different results for v8M
when the CPU is in secure vs non-secure state, we need to
have separate MMU indexes; add the secure counterparts
to the existing three M profile MMU indexes.
Backports commit 66787c7868d05d29974e09201611b718c976f955 from qemu
If a v8M CPU supports the security extension then we need to
give it two AddressSpaces, the same way we do already for
an A profile core with EL3.
Backports commit 1d2091bc75ab7f9e2c43082f361a528a63c79527 from qemu
As the first step in implementing ARM v8M's security extension:
* add a new feature bit ARM_FEATURE_M_SECURITY
* add the CPU state field that indicates whether the CPU is
currently in the secure state
* add a migration subsection for this new state
(we will add the Secure copies of banked register state
to this subsection in later patches)
* add a #define for the one new-in-v8M exception type
* make the CPU debug log print S/NS status
Backports commit 1e577cc7cffd3de14dbd321de5c3ef191c6ab07f from qemu
As part of ARMv8M, we need to add support for the PMSAv8 MPU
architecture.
PMSAv8 differs from PMSAv7 both in register/data layout (for instance
using base and limit registers rather than base and size) and also in
behaviour (for example it does not have subregions); rather than
trying to wedge it into the existing PMSAv7 code and data structures,
we define separate ones.
This commit adds the data structures which hold the state for a
PMSAv8 MPU and the register interface to it. The implementation of
the MPU behaviour will be added in a subsequent commit.
Backports commit 0e1a46bbd2d6c39614b87f4e88ea305acce8a35f from qemu
ARM is a fixed-length ISA and we can compute the page crossing
condition exactly once during init_disas_context.
Backports commit d0264d86b026e9d948de577b05ff86d708658576 from qemu
We need not check for ARM vs Thumb state in order to dispatch
disassembly of every instruction.
Backports commit 722ef0a562a8cd810297b00516e36380e2f33353 from qemu
Since AArch64 uses a fixed-width ISA, we can pre-compute the number of
insns remaining on the page. Also, we can check for single-step once.
Backports commit dcc3a21209a8eeae0fe43966012f8e08d3566f98 from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit 58350fa4b2852fede96cfebad0b26bf79bca419c from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit 4013f7fc811e90b89da3a516dc71b01ca0e7e54e from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit be4079641f1bc755fc5d3ff194cf505c506227d8 from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit 70d3c035ae36a2c5c0f991ba958526127c92bb67 from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit 24299c892cbfe29120f051b6b7d0bcf3e0cc8e85 from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit 13189a9080b35b13af23f2be4806fa0cdbb31af3 from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit 0cb56b373da70047979b61b042f59aaff4012e1b from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit a68956ad7f8510bdc0b54793c65c62c6a94570a4 from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit f62bd897e64c6fb1f93e8795e835980516fe53b5 from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit b14768544fd715a3f1742c10fc36ae81c703cbc1 from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit 5c03990665aa9095e4d2734c8ca0f936a8e8f000 from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit 1d8a5535238fc5976e0542a413f4ad88f5d4b233 from qemu
Incrementally paves the way towards using the generic
instruction translation loop.
Backports commit dcba3a8d443842f7a30a2c52d50a6b50b6982b35 from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit e0d110d943891b719de7ca075fc17fa8ea5749b8 from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit 47e981b42553f00110024c33897354f9014e83e9 from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit 2c2f8cacd8cf4f67d6f1384b19d38f9a0a25878b from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit e6b41ec37f0a9742374dfdb90e662745969cd7ea from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit e6b41ec37f0a9742374dfdb90e662745969cd7ea from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit 9d75f52b34053066b8e8fc37610d5f300d67538b from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit 9761d39b09c4beb1340bf3074be3d3e0a5d453a4 from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit 6cf147aa299e49f7794858609a1e8ef19f81c007 from qemu
There's nothing magic about the exception that we generate in order
to execute the magic kernel page. We can and should allow gdb to
set a breakpoint at this location.
Backports commit 3805c2eba8999049bbbea29fdcdea4d47d943c88 from qemu
Used later. An enum makes expected values explicit and
bounds the value space of switches.
Backports commit 77fc6f5e28667634916f114ae04c6029cd7b9c45 from qemu
Fold DISAS_EXC and DISAS_TB_JUMP into DISAS_NORETURN.
In both cases all following code is dead. In the first
case because we have exited the TB via exception; in the
second case because we have exited the TB via goto_tb
and its associated machinery.
Backports commit a0c231e651b249960906f250b8e5eef5ed9888c4 from qemu
This target is not sophisticated in its use of cleanups at the
end of the translation loop. For the most part, any condition
that exits the TB is dealt with by emitting the exiting opcode
right then and there. Therefore the only is_jmp indicator that
is needed is DISAS_NORETURN.
For two stack segment modifying cases, we have not yet exited
the TB (therefore DISAS_NORETURN feels wrong), but intend to exit.
The caller of gen_movl_seg_T0 currently checks for any non-zero
value, therefore DISAS_TOO_MANY seems acceptable for that usage.
Backports commit 1e39d97af086d525cd0408eaa5d19783ea165906 from qemu
For external aborts, we will want to be able to specify the EA
(external abort type) bit in the syndrome field. Allow callers of
deliver_fault() to do that by adding a field to ARMMMUFaultInfo which
we use when constructing the syndrome values.
Backports commit c528af7aa64f159eb30b46e567b650c5440fc117 from qemu
We currently have some similar code in tlb_fill() and in
arm_cpu_do_unaligned_access() for delivering a data abort or prefetch
abort. We're also going to want to do the same thing to handle
external aborts. Factor out the common code into a new function
deliver_fault().
Backports commit aac43da1d772a50778ab1252c13c08c2eb31fb39 from qemu