Add support for generating the ISS (Instruction Specific Syndrome) for
Data Abort exceptions taken from AArch64.
These syndromes are used by hypervisors for example to trap and emulate
memory accesses.
We save the decoded data out-of-band with the TBs at translation time.
When exceptions hit, the extra data attached to the TB is used to
recreate the state needed to encode instruction syndromes.
This avoids the need to emit moves with every load/store.
Based on a suggestion from Peter Maydell.
Backports commit aaa1f954d4cab243e3d5337a72bc6d104e1c4808 from qemu
Add the Hypervisor System Trap Register for EL2.
This register is used early in the Linux boot and without it the kernel
aborts with a "Synchronous Abort" error.
Backports commit 2a5a9abd4bc45e2f4c62c77e07aebe53608c6915 from qemu
exec-all.h contains TCG-specific definitions. It is not needed outside
TCG-specific files such as translate.c, exec.c or *helper.c.
One generic function had snuck into include/exec/exec-all.h; move it to
include/qom/cpu.h.
Backports commit 63c915526d6a54a95919ebece83fa9ca631b2508 from qemu
Make ARMCPU an opaque type within cpu-qom.h, and move all definitions of
private methods, as well as all type definitions that require knowledge
of the layout to cpu.h. This helps making files independent of NEED_CPU_H
if they only need to pass around CPU pointers.
Backports commit 74e755647c1598a6845df1ee4f8b96d01afd96e7 from qemu
We are inconsistent with the type of tb->flags: usage varies loosely
between int and uint64_t. Settle to uint32_t everywhere, which is
superior to both: at least one target (aarch64) uses the most significant
bit in the u32, and uint64_t is wasteful.
Compile-tested for all targets.
Backports commit 89fee74a0f066dfd73830a7b5fa137e87888c870 from qemu
System emulation only has a little-endian target; BE32 mode
is implemented by adjusting the low bits of the address
for every byte and halfword load and store. 64-bit accesses
flip the low and high words.
Backports commit e334bd3190f6c4ca12f1d40d316dc471c70009ab from qemu
Introduce a tbflags for endianness, set based upon the CPUs current
endianness. This in turn propagates through to the disas endianness
flag.
Backports commit 91cca2cda9823b1e7a049cb308a05104b5076cba from qemu
endian with address manipulations on subword accesses (to give the
illusion of BE). But user-mode cannot tell the difference and is
already implemented as straight BE. So handle the difference in the
endianess query, where USER mode is BE and system is not.
Backports commit b2e62d9a7b9a2eb10e451a57813bad168376e122 from qemu
There is a CPU data endianness test that is used to drive the
virtio_big_endian test.
Move this up to the header so it can be more generally used for endian
tests. The KVM specific cpu_syncronize_state call is left behind in the
virtio specific function.
Rename it arm_cpu-data_is_big_endian() to more accurately capture that
this is for data accesses only.
Backports commit ed50ff7875d61a75517c92deb0444d73fbbca878 from qemu
bswap_code is a CPU property of sorts ("is the iside endianness the
opposite way round to TARGET_WORDS_BIGENDIAN?") but it is not the
actual CPU state involved here which is SCTLR.B (set for BE32
binaries, clear for BE8).
Replace bswap_code with SCTLR.B, and pass that to arm_ld*_code.
The next patches will make data fetches honor both SCTLR.B and
CPSR.E appropriately.
Backports commit f9fd40ebe4f55e0048e002925b8d65e66d56e7a7 from qemu
Fix two issues with our implementation of the SDCR:
* it is only present from ARMv8 onwards
* it does not contain several of the trap bits present in its 64-bit
counterpart the MDCR_EL3
Put the register description in the right place so that it does not
get enabled for ARMv7 and earlier, and give it a write function so that
we can mask out the bits which should not be allowed to have an effect
if EL3 is 32-bit.
Backports commit a8d64e735182cbbb5dcc98f41656b118c45e57cc from qemu
Add an argument to cpsr_write() to indicate what kind of CPSR
write is being requested, since the exact behaviour should
differ for the different cases.
Backports commit 50866ba5a2cfe922aaf3edb79f6eac5b0653477a from qemu
If access to FPEXC32_EL2 is trapped by CPTR_EL2.TFP or CPTR_EL3.TFP,
this should be reported with a syndrome register indicating an
FP access trap, not one indicating a system register access trap.
Backports commit f2cae6092767aaf418778eada15be444c23883be from qemu
Implement the traps to EL2 and EL3 controlled by the bits
MDCR_EL2.TDOSA MDCR_EL3.TDOSA. These can configurably trap
accesses to the "powerdown debug" registers.
Backports commit 187f678d5c28251dba2b44127e59966b14518ef7 from qemu
Correct some corner cases we were getting wrong for
CNTFRQ access rights:
* should UNDEF from 32-bit Secure EL1
* only writable from the highest implemented exception level,
which might not be EL1 now
To clarify the code, provide a new utility function
arm_highest_el() which returns the highest implemented
exception level.
Backports commit 755026728abb19fba70e6b4396a27fa2e7550d74 from qemu
System registers might have access requirements which need to
be described via a CPAccessFn and which differ for reads and
writes. For this to be possible we need to pass the access
function a parameter to tell it whether the access being checked
is a read or a write.
Backports commit 3f208fd76bcc91a8506681bb8472f2398fe6f487 from qemu
The arm_generate_debug_exceptions() function as originally implemented
assumes no EL2 or EL3. Since we now have much more of an implementation
of those now, fix this assumption.
Backports commit 533e93f1cf12c570aab45f14663dab6fb8ea3ffc from qemu
Implement the MDCR_EL3 register (which is SDCR for AArch32).
For the moment we implement it as reads-as-written.
Backports commit 5513c3abed8e5fabe116830c63f0d3fe1f94bd21 from qemu
Support EL2 and EL3 in arm_el_is_aa64() by implementing the
logic for checking the SCR_EL3 and HCR_EL2 register-width bits
as appropriate to determine the register width of lower exception
levels.
Backports commit 446c81abf8e0572b8d5d23fe056516ac62af278d from qemu
If we have a secure address space, use it in page table walks:
when doing the physical accesses to read descriptors, make them
through the correct address space.
(The descriptor reads are the only direct physical accesses
made in target-arm/ for CPUs which might have TrustZone.)
Backports commit 5ce4ff6502fc6ae01a30c3917996c6c41be1d176 from qemu
Implement the asidx_from_attrs CPU method to return the
Secure or NonSecure address space as appropriate.
(The function is inline so we can use it directly in target-arm
code to be added in later patches.)
Backports commit 017518c1f6ed9939c7f390cb91078f0919b5494c from qemu
Add QOM property to the ARM CPU which boards can use to tell us what
memory region to use for secure accesses. Nonsecure accesses
go via the memory region specified with the base CPU class 'memory'
property.
By default, if no secure region is specified it is the same as the
nonsecure region, and if no nonsecure region is specified we will use
address_space_memory.
Backports commit 9e273ef2174d7cd5b14a16d8638812541d3eb6bb from qemu
The TARGET_HAS_ICE #define is intended to indicate whether a target-*
guest CPU implementation supports the breakpoint handling. However,
all our guest CPUs have that support (the only two which do not
define TARGET_HAS_ICE are unicore32 and openrisc, and in both those
cases the bp support is present and the lack of the #define is just
a bug). So remove the #define entirely: all new guest CPU support
should include breakpoint handling as part of the basic implementation.
Backports commit ec53b45bcd1f74f7a4c31331fa6d50b402cd6d26 from qemu
The code in arm_excp_unmasked() suppresses the ability of PSTATE.AIF
to mask exceptions from a lower EL targeting EL2 or EL3 if the
CPU is 64-bit. This is correct for a target of EL3, but not correct
for targeting EL2. Further, we go to some effort to calculate
scr and hcr values which are not used at all for the 64-bit CPU
case.
Rearrange the code to correctly implement the 64-bit CPU logic
and keep the hcr/scr calculations in the 32-bit CPU codepath.
Backports commit 7cd6de3bb1ca55dfa8f53fb9894803eb33f497b3 from qemu
Implement debug exception routing according to ARM ARM D2.3.1 Pseudocode
description of routing debug exceptions.
Backports commit 81669b8b81eb450d7b89ee5fdd57bdb73d87022d from qemu
Add the MDCR_EL2 register. We don't implement any of
the debug-related traps this register controls yet, so
currently it simply reads back as written.
Backports commit 14cc7b54372995a6ba72c7719372e4f710fc9b5a from qemu
Added oslar_write function to OSLAR_EL1 sysreg, using a status variable
in ARMCPUState.cp15 struct (oslsr_el1). This variable is also linked
to the newly added read-only OSLSR_EL1 register.
Linux reads from this register during its suspend/resume procedure.
Backports commit 1424ca8d4320427c3e93722b65e19077969808a2 from qemu
It is incorrect to call arm_el_is_aa64() function for unimplemented EL.
This patch fixes several attempts to do so.
Backports commit 2cde031f5a34996bab32571a26b1a6bcf3e5b5d9 from qemu
The only generic code relying on this is linux-user. Linux user
already has a lot of #ifdef TARGET_ customisation so instead, define
ELF_ARCH as either EM_ARM or EM_AARCH64 appropriately.
The armv7m bootloader can just pass EM_ARM directly, as that
is architecture specific code. Note that arm_boot already has its own
logic selecting an arm specific elf machine so this makes V7M more
consistent with arm_boot.
This removes another architecture specific definition from the global
namespace.
Backports commit b597c3f7da17fcb37d394a16a6c0ef0a02846177 from qemu
This is set to true when the index is for an instruction fetch
translation.
The core get_page_addr_code() sets it, as do the SOFTMMU_CODE_ACCESS
acessors.
All targets ignore it for now, and all other callers pass "false".
This will allow targets who wish to split the mmu index between
instruction and data accesses to do so. A subsequent patch will
do just that for PowerPC.
Backports commit 97ed5ccdee95f0b98bedc601ff979e368583472c from qemu
There is an error in arm_excp_unmasked() function:
bitwise operator & is used with integer and bool operands
causing an incorrect zeroed result.
The patch fixes it.
Backports commit 771842585f3119f69641ed90a97d56eb9ed6f5ae from qemu
For the A64 instruction set, the semihosting call instruction
is 'HLT 0xf000'. Wire this up to call do_arm_semihosting()
if semihosting is enabled.
Backports commit 8012c84ff92a36d05dfe61af9b24dd01a7ea25e4 from qemu
The 64-bit A64 semihosting API has some pervasive changes from
the 32-bit version:
* all parameter blocks are arrays of 64-bit values, not 32-bit
* the semihosting call number is passed in W0
* the return value is a 64-bit value in X0
Implement the necessary handling for this widening.
Backports relevant parts of commit faacc041619581c566c21ed87aa1933420731282 from qemu
Some coprocessor register access functions need to be able
to report "trap to EL3 with an 'uncategorized' syndrome";
add the necessary CPAccessResult enum and handling for it.
I don't currently know of any registers that need to trap
to EL2 with the 'uncategorized' syndrome, but adding the
_EL2 enum as well is trivial and fills in what would
otherwise be an odd gap in the handling.
Backports commit e76157264da20b85698b09fa5eb8e02e515e232c from qemu
On CPUs with EL3, there are two physical timers, one for Secure and one
for Non-secure. Implement this extra timer and the AArch64 registers
which access it.
Backports commit b4d3978c2fdf944e428a46d2850dbd950b6fbe78 from qemu
It's easy to accidentally define two cpregs which both try
to reset the same underlying state field (for instance a
clash between an AArch64 EL3 definition and an AArch32
banked register definition). if the two definitions disagree
about the reset value then the result is dependent on which
one happened to be reached last in the hashtable enumeration.
Add a consistency check to detect and assert in these cases:
after reset, we run a second pass where we check that the
reset operation doesn't change the value of the register.
Backports commit 49a661910c1374858602a3002b67115893673c25 from qemu
Remove un-needed usages of ENV_GET_CPU() by converting the APIs to use
CPUState pointers and retrieving the env_ptr as minimally needed.
Scripted conversion for target-* change:
for I in target-*/cpu.h; do
sed -i \
's/\(^int cpu_[^_]*_exec(\)[^ ][^ ]* \*s);$/\1CPUState *cpu);/' \
$I;
done
Backports commit ea3e9847408131abc840240bd61e892d28459452 from qemu
Unified MPU only. Uses ARM architecture major revision to switch
between PMSAv5 and v7 when ARM_FEATURE_MPU is set. PMSA v6 remains
unsupported and is asserted against.
Backports commit f6bda88ff839e2adefe4959b7def420b90703855 from qemu
Define the arm CP registers for PMSAv7 and their accessor functions.
RGNR serves as a shared index that indexes into arrays storing the
DRBAR, DRSR and DRACR registers. DRBAR and friends have to be VMSDd
separately from the CP interface using a new PMSA specific VMSD
subsection.
Backports commit 6cb0b013a1fa421cdfb83257cd33f855cc90649a from qemu
cp_reg_reset() is called from g_hash_table_foreach() which does not
define a specific ordering of the hash table iteration. Thus doing reset
for registers marked as ALIAS would give an ambiguous result when
resetvalue is different for original and alias registers. Exit
cp_reg_reset() early when passed an alias register. Then clean up alias
register definitions from needless resetvalue and resetfn.
In particular, this fixes a bug in the handling of the PMCR register,
which had different resetvalues for its 32 and 64-bit views.
Backports commit b061a82b8afcc45ce09d770d9c0acdf429401054 from qemu