Thereby decoupling the resulting translated code from the current state
of the system.
Backports commit 2399d4e7cec22ecf1c51062d2ebfd45220dbaace from qemu
Convert all existing readers of tb->cflags to tb_cflags, so that we
use atomic_read and therefore avoid undefined behaviour in C11.
Note that the remaining setters/getters of the field are protected
by tb_lock, and therefore do not need conversion.
Luckily all readers access the field via 'tb->cflags' (so no foo.cflags,
bar->cflags in the code base), which makes the conversion easily
scriptable:
FILES=$(git grep 'tb->cflags' target include/exec/gen-icount.h \
accel/tcg/translator.c | cut -f1 -d':' | sort | uniq)
perl -pi -e 's/([^.>])tb->cflags/$1tb_cflags(tb)/g' $FILES
perl -pi -e 's/([a-z->.]*)(->|\.)tb->cflags/tb_cflags($1$2tb)/g' $FILES
Then manually fixed the few errors that checkpatch reported.
Compile-tested for all targets.
Backports commit c5a49c63fa26e8825ad101dfe86339ae4c216539 from qemu
Now we have a working '-cpu max', the linux-user-only
'any' CPU is pretty much the same thing, so implement it
that way.
For the moment we don't add any of the extra feature bits
to the system-emulation "max", because we don't set the
ID register bits we would need to to advertise those
features as present.
Backports commit a0032cc5427d0d396aa0a9383ad9980533448ea4 from qemu
Add support for "-cpu max" for ARM guests. This CPU type behaves
like "-cpu host" when KVM is enabled, and like a system CPU with
the maximum possible feature set otherwise. (Note that this means
it won't be migratable across versions, as we will likely add
features to it in future.)
Backports commit bab52d4bba3f22921a690a887b4bd0342f2754cd from qemu
The cortex A53 TRM specifies that bits 24 and 25 of the L2CTLR register
specify the number of cores in the processor, not the total number of
cores in the system. To report this correctly on machines with multiple
CPU clusters (ARM's big.LITTLE or Xilinx's ZynqMP) we need to allow
the machine to overwrite this value. To do this let's add an optional
property.
Backports commit f9a697112ee64180354f98309a5d6b691cc8699d from qemu
Convert all machines to use DEFINE_MACHINE() instead of QEMUMachine
automatically using a script.
Backports commit e264d29de28c5b0be3d063307ce9fb613b427cc3 from qemu
The integer size check was already outside of the opcode switch;
move the floating-point size check outside as well. Unify the
size vs index adjustment between fp and integer paths.
Backports commit 449f264b1749ac0e59c58bbc2eacdb3dc302c2bf from qemu
Add a Cortex-M33 definition. The M33 is an M profile CPU
which implements the ARM v8M architecture, including the
M profile Security Extension.
Backports commit c7b26382fee8b745c6e903c85281babf30c2cb7c from qemu
The Cortex-M33 allows the system to specify the reset value of the
secure Vector Table Offset Register (VTOR) by asserting config
signals. In particular, guest images for the MPS2 AN505 board rely
on the MPS2's initial VTOR being correct for that board.
Implement a QEMU property so board and SoC code can set the reset
value to the correct value.
Backports commit 38e2a77c9d6876e58f45cabb1dd9a6a60c22b39e from qemu
This includes FMOV, FABS, FNEG, FSQRT and FRINT[NPMZAXI]. We re-use
existing helpers to achieve this.
Backports commit c2c08713a6a5846bbe601d4d1b4f9708ba77efdc from qemu
This covers the encoding group:
Advanced SIMD scalar three same FP16
As all the helpers are already there it is simply a case of calling the
existing helpers in the scalar context.
Backports commit 7c93b7741b29b3ffda81a6e9525771b4409db99f from qemu
I only needed to do a little light re-factoring to support the
half-precision helpers.
Backports commit 5c36d89567cfd049a7c59ff219639f788225068f from qemu
Much like recpe the ARM ARM has simplified the pseudo code for the
calculation which is done on a fixed point 9 bit integer maths. So
while adding f16 we can also clean this up to be a little less heavy
on the floating point and just return the fractional part and leave
the calle's to do the final packing of the result.
Backports commit d719cbc7641991d16b891ffbbfc3a16a04e37b9a from qemu
Also removes a load of symbols that seem unnecessary from the header_gen script
It looks like the ARM ARM has simplified the pseudo code for the
calculation which is done on a fixed point 9 bit integer maths. So
while adding f16 we can also clean this up to be a little less heavy
on the floating point and just return the fractional part and leave
the calle's to do the final packing of the result.
Backports commit 5eb70735af1c0b607bf2671a53aff3710cc1672f from qemu
Neither of these operations alter the floating point status registers
so we can do a pure bitwise operation, either squashing any sign
bit (ABS) or inverting it (NEG).
Backports commit 15f8a233c8c023dbc77b6fe6cd7c79eac9bee263 from qemu
I re-use the existing handle_2misc_fcmp_zero handler and tweak it
slightly to deal with the half-precision case.
Backports commit 7d4dd1a73a023f75c893623710e43743501b318e from qemu
This adds the full range of half-precision floating point to integral
instructions.
Backports commit 6109aea2d954891027acba64a13f1f1c7463cfac from qemu
This actually covers two different sections of the encoding table:
Advanced SIMD scalar two-register miscellaneous FP16
Advanced SIMD two-register miscellaneous (FP16)
The difference between the two is covered by a combination of Q (bit
30) and S (bit 28). Notably the FRINTx instructions are only
available in the vector form.
This is just the decode skeleton which will be filled out by later
patches.
Backports commit 5d432be6fd6efe37833ac82623c3abd35117b421 from qemu
A bunch of the vectorised bitwise operations just operate on larger
chunks at a time. We can do the same for the new half-precision
operations by introducing some TWOHALFOP helpers which work on each
half of a pair of half-precision operations at once.
Hopefully all this hoop jumping will get simpler once we have
generically vectorised helpers here.
Backports commit 6089030c7322d8f96b54fb9904e53b0f464bb8fe from qemu