Implement hardware page table walker. This implementation is
limiter only to MIPS32.
Backports commit 074cfcb4daedf59ccbbbc83c24eee80e0e8f4c71 from qemu
Add PWCtl register (CP0 Register 5, Select 6).
The PWCtl register configures hardware page table walking for TLB
refills.
This register is required for the hardware page walker feature. It
exists only if Config3 PW bit is set to 1. It contains following
fields:
PWEn (31) - Hardware Page Table walker enable
PWDirExt (30) - If 1, 4-th level implemented (MIPS64 only)
XK (28) - If 1, walker handles xkseg (MIPS64 only)
XS (27) - If 1, walker handles xsseg (MIPS64 only)
XU (26) - If 1, walker handles xuseg (MIPS64 only)
DPH (7) - Dual Page format of Huge Page support
HugePg (6) - Huge Page PTE supported in Directory levels
PSn (5..0) - Bit position of PTEvld in Huge Page PTE
Backports commit 103be64c26c166f12b3e1308edadef3443723ff1 from qemu
Add PWSize register (CP0 Register 5, Select 7).
The PWSize register configures hardware page table walking for TLB
refills.
This register is required for the hardware page walker feature. It
exists only if Config3 PW bit is set to 1. It contains following
fields:
BDW (37..32) Base Directory index width (MIPS64 only)
GDW (29..24) Global Directory index width
UDW (23..18) Upper Directory index width
MDW (17..12) Middle Directory index width
PTW (11..6 ) Page Table index width
PTEW ( 5..0 ) Left shift applied to the Page Table index
Backports commit 20b28ebc49945583d7191b57755cfd92433de9ff from qemu
Add PWField register (CP0 Register 5, Select 6).
The PWField register configures hardware page table walking for TLB
refills.
This register is required for the hardware page walker feature. It
exists only if Config3 PW bit is set to 1. It contains following
fields:
MIPS64:
BDI (37..32) - Base Directory index
GDI (29..24) - Global Directory index
UDI (23..18) - Upper Directory index
MDI (17..12) - Middle Directory index
PTI (11..6 ) - Page Table index
PTEI ( 5..0 ) - Page Table Entry shift
MIPS32:
GDW (29..24) - Global Directory index
UDW (23..18) - Upper Directory index
MDW (17..12) - Middle Directory index
PTW (11..6 ) - Page Table index
PTEW ( 5..0 ) - Page Table Entry shift
Backports commit fa75ad1459f4f6abbeb6d375a812dfad61320f58 from qemu
Add code to insert calls to a helper function to do the stack
limit checking when we handle these forms of instruction
that write to SP:
* ADD (SP plus immediate)
* ADD (SP plus register)
* SUB (SP minus immediate)
* SUB (SP minus register)
* MOV (register)
Backports commit 5520318939fea5d659bf808157cd726cb967b761 from qemu
It has not had users since f83311e476 ("target-m68k: use floatx80
internally", 2017-06-21).
Note that no other bit-width has floatX_trunc_to_int.
Backports commit c953da8f0be5e026d1c9128660736d72294feb3e from qemu
if MemoryRegion intialization fails it's left in semi-initialized state,
where it's size is not 0 and attached as child to owner object.
And this leds to crash in following use-case:
(monitor) object_add memory-backend-file,id=mem1,size=99999G,mem-path=/tmp/foo,discard-data=yes
memory.c:2083: memory_region_get_ram_ptr: Assertion `mr->ram_block' failed
Aborted (core dumped)
it happens due to assumption that memory region is intialized when
memory_region_size() != 0
and therefore it's ok to access it in
file_backend_unparent()
if (memory_region_size() != 0)
memory_region_get_ram_ptr()
which happens when object_add fails and unparents failed backend making
file_backend_unparent() access invalid memory region.
Fix it by making sure that memory_region_init_foo() APIs cleanup externally
visible side effects on failure (like set size to 0 and unparenting object)
Added a helper for ROTX based on the pseudocode from the
architecture spec. This instraction was not present in previous
MIPS instruction sets.
Backports commit e222f5067269392af489731221750976d0cf3c05 from qemu
The API for cpu_transaction_failed() says that it takes the physical
address for the failed transaction. However we were actually passing
it the offset within the target MemoryRegion. We don't currently
have any target CPU implementations of this hook that require the
physical address; fix this bug so we don't get confused if we ever
do add one.
Backports commit 2d54f19401bc54b3b56d1cc44c96e4087b604b97 from qemu
Instead of passing env and leaving it up to the helper to get the
right fpstatus we pass it explicitly. There was already a get_fpstatus
helper for neon for the 32 bit code. We also add an get_ahp_flag() for
passing the state of the alternative FP16 format flag. This leaves
scope for later tracking the AHP state in translation flags.
Backports commit 486624fcd3eaca6165ab8401d73bbae6c0fb81c1 from qemu
The instruction "ucvtf v0.4h, v04h, #2", with input 0x8000u,
overflows the intermediate float16 to infinity before we have a
chance to scale the output. Use float64 as the intermediate type
so that no input argument (uint32_t in this case) can overflow
or round before scaling. Given the declared argument, the signed
int32_t function has the same problem.
When converting from float16 to integer, using u/int32_t instead
of u/int16_t means that the bounding is incorrect.
Backports commit 88808a022c06f98d81cd3f2d105a5734c5614839 from qemu
Given that this atomic operation will be used by both risc-v
and aarch64, let's not duplicate code across the two targets.
Backports commit 5507c2bf35aa6b4705939349184e71afd5e058b2 from qemu
These operations are re-invented by several targets so far.
Several supported hosts have insns for these, so place the
expanders out-of-line for a future introduction of tcg opcodes.
Backports commit b87fb8cd9f9a0ba599ff79e7bf03222da02e5724 from qemu
Drop TCGV_PTR_TO_NAT and TCGV_NAT_TO_PTR internal macros.
Add tcg_temp_local_new_ptr, tcg_gen_brcondi_ptr, tcg_gen_ext_i32_ptr,
tcg_gen_trunc_i64_ptr, tcg_gen_extu_ptr_i64, tcg_gen_trunc_ptr_i32.
Use inlines instead of macros where possible.
Backports commit 5bfa803448638a45542441fd6b7cc1241403ea72 from qemu
The MDCR_EL2.TDE bit allows the exception level targeted by debug
exceptions to be set to EL2 for code executing at EL0. We handle
this in the arm_debug_target_el() function, but this is only used for
hardware breakpoint and watchpoint exceptions, not for the exception
generated when the guest executes an AArch32 BKPT or AArch64 BRK
instruction. We don't have enough information for a translate-time
equivalent of arm_debug_target_el(), so instead make BKPT and BRK
call a special purpose helper which can do the routing, rather than
the generic exception_with_syndrome helper.
Backports commit c900a2e62dd6dde11c8f5249b638caad05bb15be from qemu
Currently CPUState::cpu_index is monotonically increasing and a newly
created CPU always gets the next higher index. The next available
index is calculated by counting the existing number of CPUs. This is
fine as long as we only add CPUs, but there are architectures which
are starting to support CPU removal, too. For an architecture like PowerPC
which derives its CPU identifier (device tree ID) from cpu_index, the
existing logic of generating cpu_index values causes problems.
With the currently proposed method of handling vCPU removal by parking
the vCPU fd in QEMU
(Ref: http://lists.gnu.org/archive/html/qemu-devel/2015-02/msg02604.html),
generating cpu_index this way will not work for PowerPC.
This patch changes the way cpu_index is handed out by maintaining
a bit map of the CPUs that tracks both addition and removal of CPUs.
The CPU bitmap allocation logic is part of cpu_exec_init(), which is
called by instance_init routines of various CPU targets. Newly added
cpu_exec_exit() API handles the deallocation part and this routine is
called from generic CPU instance_finalize.
Note: This new CPU enumeration is for !CONFIG_USER_ONLY only.
CONFIG_USER_ONLY continues to have the old enumeration logic.
Backports commit b7bca7333411bd19c449147e8202ae6b0e4a8e09 from qemu
With all targets defining CPU_RESOLVING_TYPE, refactor
cpu_parse_cpu_model(type, cpu_model) to parse_cpu_model(cpu_model)
so that callers won't have to know internal resolving cpu
type. Place it in exec.c so it could be called from both
target independed vl.c and *-user/main.c.
That allows us to stop abusing cpu type from
MachineClass::default_cpu_type
as resolver class in vl.c which were confusing part of
cpu_parse_cpu_model().
Also with new parse_cpu_model(), the last users of cpu_init()
in null-machine.c and bsd/linux-user targets could be switched
to cpu_create() API and cpu_init() API will be removed by
follow up patch.
With no longer users left remove MachineState::cpu_model field,
new code should use MachineState::cpu_type instead and
leave cpu_model parsing to generic code in vl.c.
Backports commit 2278b93941d42c30e2950d4b8dff4943d064e7de from qemu
The only difference from qstring_get_str() is that it allows the qstring
to be NULL. If so, NULL is returned.
Backports commit 775932020dd6bd7e9c1acc0d7779677d8b4c094c from qemu
Instantiate a QObject* from a literal QLitObject.
LitObject only supports int64_t for now. uint64_t and double aren't
implemented.
Backports commit 3cf42b8b3af1bd61e736a9ca0f94806c7931ae56 from qemu
Backports commits 2994fd96d986578a342f2342501b4ad30f6d0a85,
701e3c78ce45fa630ffc6826c4b9a4218954bc7f, and
d1853231c60d16af78cf4d1608d043614bfbac0b from qemuu
This function needs to be converted to QOM hook and virtualised for
multi-arch. This rename interferes, as cpu-qom will not have access
to the renaming causing name divergence. This rename doesn't really do
anything anyway so just delete it.
Backports commit 8642c1b81e0418df066a7960a7426d85a923a253 from qemu
Unify half a dozen copies of very similar code (the only difference being
whether comparisons were case-sensitive) and use it also in Tricore,
which did not do any sorting of CPU model names.
Backports commit 47c66009ab793241e8210b3018c77a9ce9506aa8 from qemu
A few block drivers will need to rename .bdrv_create options for their
QAPIfication, so let's have a helper function for that.
Backports commit bcebf102ccc3c6db327f341adc379fdf0673ca6b from qemu
This shares an cached empty FlatView among address spaces. The empty
FV is used every time when a root MR renders into a FV without memory
sections which happens when MR or its children are not enabled or
zero-sized. The empty_view is not NULL to keep the rest of memory
API intact; it also has a dispatch tree for the same reason.
On POWER8 with 255 CPUs, 255 virtio-net, 40 PCI bridges guest this halves
the amount of FlatView's in use (557 -> 260) and dispatch tables
(~800000 -> ~370000). In an unrelated experiment with 112 non-virtio
devices on x86 ("-M pc"), only 4 FlatViews are alive, and about ~2000
are created at startup.
Backports commit 092aa2fc65b7a35121616aad8f39d47b8f921618 from qemu
Since FlatViews are shared now and ASes not, this gets rid of
address_space_init_shareable().
This should cause no behavioural change.
Backports commit b516572f31c0ea0937cd9d11d9bd72dd83809886 from qemu
This renames some helpers to reflect better what they do.
This should cause no behavioural change.
Backports commit 8629d3fcb77e9775e44d9051bad0fb5187925eae from qemu
FlatView's will be shared between AddressSpace's and subpage_t
and MemoryRegionSection cannot store AS anymore, hence this change.
In particular, for:
typedef struct subpage_t {
MemoryRegion iomem;
- AddressSpace *as;
+ FlatView *fv;
hwaddr base;
uint16_t sub_section[];
} subpage_t;
struct MemoryRegionSection {
MemoryRegion *mr;
- AddressSpace *address_space;
+ FlatView *fv;
hwaddr offset_within_region;
Int128 size;
hwaddr offset_within_address_space;
bool readonly;
};
This should cause no behavioural change.
Backports commit 166206845f7fd75e720e6feea0bb01957c8da07f from qemu
As we are going to share FlatView's between AddressSpace's,
and AddressSpaceDispatch is a structure to perform quick lookup
in FlatView, this moves ASD to FlatView.
After previosly open coded ASD rendering, we can also remove
as->next_dispatch as the new FlatView pointer is stored
on a stack and set to an AS atomically.
flatview_destroy() is executed under RCU instead of
address_space_dispatch_free() now.
This makes mem_begin/mem_commit to work with ASD and mem_add with FV
as later on mem_add will be taking FV as an argument anyway.
This should cause no behavioural change.
Backports commit 66a6df1dc6d5b28cc3e65db0d71683fbdddc6b62 from qemu
Convert all machines to use DEFINE_MACHINE() instead of QEMUMachine
automatically using a script.
Backports commit e264d29de28c5b0be3d063307ce9fb613b427cc3 from qemu
Since f3218a8 ("softfloat: add floatx80 constants")
floatx80_infinity is defined but never used.
This patch updates floatx80 functions to use
this definition.
This allows to define a different default Infinity
value on m68k: the m68k FPU defines infinity with
all bits set to zero in the mantissa.
Backports commit 0f605c889ca3fe9744166ad4149d0dff6dacb696 from qemu
Much like recpe the ARM ARM has simplified the pseudo code for the
calculation which is done on a fixed point 9 bit integer maths. So
while adding f16 we can also clean this up to be a little less heavy
on the floating point and just return the fractional part and leave
the calle's to do the final packing of the result.
Backports commit d719cbc7641991d16b891ffbbfc3a16a04e37b9a from qemu
Also removes a load of symbols that seem unnecessary from the header_gen script
It looks like the ARM ARM has simplified the pseudo code for the
calculation which is done on a fixed point 9 bit integer maths. So
while adding f16 we can also clean this up to be a little less heavy
on the floating point and just return the fractional part and leave
the calle's to do the final packing of the result.
Backports commit 5eb70735af1c0b607bf2671a53aff3710cc1672f from qemu
This is a little bit of a departure from softfloat's original approach
as we skip the estimate step in favour of a straight iteration. There
is a minor optimisation to avoid calculating more bits of precision
than we need however this still brings a performance drop, especially
for float64 operations.
Backports commit c13bb2da9eedfbc5886c8048df1bc1114b285fb0 from qemu