1st mmap returns *ptr* which aligns to host page size,
| size + align |
------------------------------------------
ptr
input param *align* could be 1M, or 2M, or host page size. After
QEMU_ALIGN_UP, offset will >= 0
2nd mmap use flag MAP_FIXED, then it return ptr+offset, or else fail.
If it success, then we will have something like:
| offset | size |
--------------------------------------
ptr ptr1
*ptr1* is what we really want to return, it equals ptr+offset.
Backports commit 6e4c890e15b23f078650499fbde11760b8eccf10 from qemu
When CPU vendor is set to AMD, the AMD feature alias bits on
CPUID[0x80000001].EDX are already automatically copied from CPUID[1].EDX
on x86_cpu_realizefn(). When CPU vendor is Intel, those bits are
reserved and should be zero. On either case, those bits shouldn't be set
in the CPU model table.
Commit 726a8ff68677d8d5fba17eb0ffb85076bfb598dc removed those
bits from most CPU models, but the Opteron_* entries still have
them. Remove the alias bits from Opteron_* too.
Add an assert() to x86_register_cpudef_type() to ensure we don't
make the same mistake again.
Backports commit 2a923a293df95334fa22634016efdd138f49da7f from qemu
AVX512_VPOPCNTDQ: Vector POPCNT instructions for word and qwords.
variable precision.
Backports commit f77543772dcd38fa438470d9b80bafbd3a3ebbd7 from qemu
Like the original MIPS, HPPA has the MSB of an SNaN set.
However, it has different rules for silencing an SNaN:
(1) msb is cleared and (2) msb-1 must be set if the fraction
is now zero, and (implementation defined) may be set always.
I haven't checked real hardware but chose the set always
alternative because it's easy and within spec.
Backports commit 005fa38d86257d471ac461c066a5409a9f5ebb02 from qemu
C11 allows errno to be clobbered by pretty much any library function
call, so in general callers need to take care to save errno before
calling other functions.
However, for error reporting functions this is rather awkward and can
make the code on the caller side more complicated than
necessary. error_setg_errno() already takes care of preserving errno
and some functions rely on that, so just promise that we continue to
do so in the future.
Backports commit 98cb89af4df7e1776ce418ed6167b6e214a64435 from qemu
Enable the ARM_FEATURE_EL2 bit on Cortex-A52 and
Cortex-A57, since this is all now sufficiently implemented
to work with the GICv3. We provide the usual CPU property
to disable it for backwards compatibility with the older
virt boards.
In this commit, we disable the EL2 feature on the
virt and ZynpMP boards, so there is no overall effect.
Another commit will expose a board-level property to
allow the user to enable EL2.
Backports commit c25bd18a04c8bd0f19556d719864b7b08528222d from qemu
The PSCI spec states that a CPU_ON call should cause the new
CPU to be started in the highest implemented Non-secure
exception level. We were incorrectly starting it at the
exception level of the caller, which happens to be correct
if EL2 is not implemented. Implement the correct logic
as described in the PSCI 1.0 spec section 6.4:
* if EL2 exists and SCR_EL3.HCE is set: start in EL2
* otherwise start in EL1
Backports commit 3f591a20221511c639cc7959755e570801a21cd2 from qemu
Split ARM on/off function from PSCI support code.
This will allow to reuse these functions in other code.
Backports commit 825482adde1f971cbddf27e15fb4453ab3fae994 from qemu
The DBGVCR_EL2 system register is needed to run a 32-bit
EL1 guest under a Linux EL2 64-bit hypervisor. Its only
purpose is to provide AArch64 with access to the state of
the DBGVCR AArch32 register. Since we only have a dummy
DBGVCR, implement a corresponding dummy DBGVCR32_EL2.
Backports commit 4d2ec4da1c2d60c9fd8bad137506870c2f980410 from qemu
To run a VM in 32-bit EL1 our AArch32 interrupt handling code
needs to be able to cope with VIRQ and VFIQ exceptions.
These behave like IRQ and FIQ except that we don't need to try
to route them to Monitor mode.
Backports commit 87a4b270348c69a446ebcddc039bfae31b1675cb from qemu
We've currently got 18 architectures in QEMU, and thus 18 target-xxx
folders in the root folder of the QEMU source tree. More architectures
(e.g. RISC-V, AVR) are likely to be included soon, too, so the main
folder of the QEMU sources slowly gets quite overcrowded with the
target-xxx folders.
To disburden the main folder a little bit, let's move the target-xxx
folders into a dedicated target/ folder, so that target-xxx/ simply
becomes target/xxx/ instead.
Backports commit fcf5ef2ab52c621a4617ebbef36bf43b4003f4c0 from qemu
In OpenSPARC T1+ TWINX ASIs in store instructions are aliased
with Block Initializing Store ASIs.
"UltraSPARC T1 Supplement Draft D2.1, 14 May 2007" describes them
in the chapter "5.9 Block Initializing Store ASIs"
Integer stores of all sizes are allowed with these ASIs.
Backports commit 3390537b5df4014e24a30f9bdcfa05c2bd0cd6d8 from qemu
According to chapter 13.3 of the
UltraSPARC T1 Supplement to the UltraSPARC Architecture 2005,
only the sun4u format is available for data-access loads.
Store UA2005 entries in the sun4u format to simplify processing.
Backports commit 7285fba083de3f14f6e98abb4469173b56da9480 from qemu
Implement the behavior described in the chapter 13.9.11 of
UltraSPARC T1™ Supplement to the UltraSPARC Architecture 2005:
"If a TLB Data-In replacement is attempted with all TLB
entries locked and valid, the last TLB entry (entry 63) is
replaced."
Backports commit 4797a6851975c1239df440c5f01d8566e63717bb from qemu
Please note that QEMU doesn't impelement Real->Physical address
translation. The "Real Address" is always the "Physical Address".
Backports commit 84f8f5876628963e67f66edde8a71208c4274ac8 from qemu
Accordinf to UA2005, 9.3.3 "Address Space Identifiers",
"In hyperprivileged mode, all instruction fetches and loads and stores with implicit
ASIs use a physical address, regardless of the value of TL".
Backports commit 9a10756d1204c3528e47892195349bf882069846 from qemu
As described in Chapter 5.7.6 of the UltraSPARC Architecture 2005,
outstanding disrupting exceptions that are destined for privileged mode can only
cause a trap when the virtual processor is in nonprivileged or privileged mode and
PSTATE.ie = 1. At all other times, they are held pending.
Backports commit 1a2aefae6627170fdee689b394a65f76080c068a from qemu
Use explicit register pointers while accessing D/I-MMU registers.
Call cpu_unassigned_access on access to missing registers.
Backports commit 20395e63375358bf6dd147057aaf998abf7abdb9 from qemu
while IMMU/DMMU is disabled
- ignore MMU-faults in hypervisorv mode or if CPU doesn't have hypervisor
- signal TT_INSN_REAL_TRANSLATION_MISS/TT_DATA_REAL_TRANSLATION_MISS otherwise
Backports commit 1ceca928538a3633b74a7dc718a05ce6767f2f76 from qemu
We have never has the concept of global TLB entries which would avoid
the flush so we never actually use this flag. Drop it and make clear
that tlb_flush is the sledge-hammer it has always been.
Backports commit d10eb08f5d8389c814b554d01aa2882ac58221bf from qemu
Both the cpu->tb_jmp_cache and SoftMMU TLB structures are only used
when running TCG code so we might as well skip them for anything else.
Backports commit ba7d3d1858c257e39b47f7f12fa2016ffd960b11 from qemu
It is a common thing amongst the various cpu reset functions want to
flush the SoftMMU's TLB entries. This is done either by calling
tlb_flush directly or by way of a general memset of the CPU
structure (sometimes both).
This moves the tlb_flush call to the common reset function and
additionally ensures it is only done for the CONFIG_SOFTMMU case and
when tcg is enabled.
In some target cases we add an empty end_of_reset_fields structure to the
target vCPU structure so have a clear end point for any memset which
is resetting value in the structure before CPU_COMMON (where the TLB
structures are).
While this is a nice clean-up in general it is also a precursor for
changes coming to cputlb for MTTCG where the clearing of entries
can't be done arbitrarily across vCPUs. Currently the cpu_reset
function is usually called from the context of another vCPU as the
architectural power up sequence is run. By using the cputlb API
functions we can ensure the right behaviour in the future.
Backports commit 1f5c00cfdb8114c1e3a13426588ceb64f82c9ddb from qemu
On 680x0 family only.
Address Register indirect With postincrement:
When using the stack pointer (A7) with byte size data, the register
is incremented by two.
Address Register indirect With predecrement:
When using the stack pointer (A7) with byte size data, the register
is decremented by two.
Backports commit 727d937b59f1f722f983e20f9cd23b0e7ef60165 from qemu
gen_flush_flags() is setting unconditionally cc_op_synced to 1
and s->cc_op to CC_OP_FLAGS, whereas env->cc_op can be set
to something else by a previous tcg fragment.
We fix that by not setting cc_op_synced to 1
(except for gen_helper_flush_flags() that updates env->cc_op)
FIX: https://github.com/vivier/qemu-m68k/issues/19
Backports commit 695576db2daaf2bdc63e7f6d36038b61caed622a from qemu
M680x0 bit operations with an immediate value use 9 bits of the 16bit
value, while coldfire ones use only 8 bits.
Backports commit fe53c2be8c12da345bd788b949e0b2360e4b3db3 from qemu
In commit c52ab08aee6f7d4717fc6b517174043126bd302f,
the patch snippet for the "syscall" insn got applied to "iret".
Backports commit 410e98146ffde201ab4c778823ac8beaa74c4c3f from qemu
Particularly when andc is also available, this is two insns
shorter than using clz to compute ctz.
Backports commit 14e99210f6c6cede461a54b2e0f9b4cd55175f00 from qemu
The number of actual invocations of ctpop itself does not warrent
an opcode, but it is very helpful for POWER7 to use in generating
an expansion for ctz.
Backports commit a768e4e99247911f00c5c0267c12d4e207d5f6cc from qemu
The number of actual invocations does not warrent an opcode,
and the backends generating it. But at least we can eliminate
redundant helpers.
Backports commit 086920c2c8008f125fd38781072fa25c3ad158ea from qemu
Previously we could not have different constraints for different ISA levels,
which prevented us from eliding the matching constraint for shifts.
We do now have to make sure that the operands match for constant shifts.
We can also handle some small left shifts via lea.
Backports commit 6a5aed4bdc7078838a8098336588d56c9ce09d1d from qemu
Use a switch instead of searching a table. Share constraints between
32-bit and 64-bit, when at all possible.
Backports commit cd26449a505f808e479af4fdd539e05767e09c06 from qemu
This allows an output operand to match an input operand
only when the input operand needs a register.
Backports commit 17280ff4a5f264e01e55ae514ee6d3586f9577b2 from qemu
This will let us choose how to interpret a given constraint
depending on whether the opcode is 32- or 64-bit. Which will
let us share more constraint combinations between opcodes.
At the same time, change the interface to return the advanced
pointer instead of passing it in/out by reference.
Backports commit 069ea736b50b75fdec99c9b8cc603b97bd98419e from qemu
This will allow the target to tailor the constraints to the
auto-detected ISA extensions.
Backports commit f69d277ece43c42c7ab0144c2ff05ba740f6706b from qemu
A couple of places where it was easy to identify a right-shift
followed by an extract or and-with-immediate, and the obvious
sign-extract from a high byte register.
Backports commit 04fc2f1c8fc030a11e08e81bb926392c0991282a from qemu
Use the new primitives for UBFX and SBFX.
Backports commits 59a71b4c5b4ef2ef6425b9e21c972dd5bf450275 and 86c9ab277615af4e0389eb80a83073873ff96c86 from qemu
Since we can no longer use matching constraints, this does
mean we must handle that data movement by hand.
Backports commit 752b1be94757de906b9c24ebc8f5e6aa54b96b23 from qemu
This lets us expose facilities to TCG_TARGET_HAS_* defines
directly, rather than hiding behind function calls.
Backports commit b2c98d9d392c87c9b9e975d30f79924719d9cbbe from qemu
This allows us to use this detection within the TCG_TARGET_HAS_*
macros, instead of requiring a function call into tcg-target.inc.c.
Backports commit 40b2ccb156534f5d5f1d110a6ce008d87ee10af1 from qemu
While we don't require a new opcode, it is handy to have an expander
that knows the first source is zero.
Backports commit 07cc68d52852bf47dea7c402b46ddd28248d4212 from qemu
Adds tcg_gen_extract_* and tcg_gen_sextract_* for extraction of
fixed position bitfields, much like we already have for deposit.
Backports commit 7ec8bab3deae643b1ce579c2d65a244f30708330 from qemu
This patch introduces a helper to query the iotlb entry for a
possible iova. This will be used by later device IOTLB API to enable
the capability for a dataplane (e.g vhost) to query the IOTLB.
Backports commit 052c8fa9983f553fdfa0d61034774070dd639c2b from qemu
gcc 5.3.0 diagnoses
translate-all.c: In function ‘alloc_code_gen_buffer’:
translate-all.c:756:17: error: switch condition has boolean value
switch (buf2 != MAP_FAILED) {
^
Backports commit f68808c7494b38764e1895a9852b994638b86536 from qemu