Now that aa64_va_parameters_both sets select based on the number
of ranges in the regime, the ttbr1_valid check is redundant.
Backports commit 03f27724dff15633911e68a3906c30f57938ea45 from qemu
The psuedocode in aarch64/functions/pac/auth/Auth and
aarch64/functions/pac/strip/Strip always uses bit 55 for
extfield and do not consider if the current regime has 2 ranges.
Backports commit 7eeb4c2ce8dc0a5655526f3f39bd5d6cc02efb39 from qemu
The ARMv8.1-VMID16 extension extends the VMID from 8 bits to 16 bits:
* the ID_AA64MMFR1_EL1.VMIDBits field specifies whether the VMID is
8 or 16 bits
* the VMID field in VTTBR_EL2 is extended to 16 bits
* VTCR_EL2.VS lets the guest specify whether to use the full 16 bits,
or use the backwards-compatible 8 bits
For QEMU implementing this is trivial:
* we do not track VMIDs in TLB entries, so we never use the VMID field
* we treat any write to VTTBR_EL2, not just a change to the VMID field
bits, as a "possible VMID change" that causes us to throw away TLB
entries, so that code doesn't need changing
* we allow the guest to read/write the VTCR_EL2.VS bit already
So all that's missing is the ID register part: report that we support
VMID16 in our 'max' CPU.
Backports commit dc7a88d0810ad272bdcd2e0869359af78fdd9114 from qemu
Add definitions for all of the fields, up to ARMv8.5.
Convert the existing RESERVED register to a full register.
Query KVM for the value of the register for the host.
Backports commit 64761e10af2742a916c08271828890274137b9e8 from qemu
This is a minor enhancement over ARMv8.1-PAN.
The *_PAN mmu_idx are used with the existing do_ats_write.
Backports commit 04b07d29722192926f467ea5fedf2c3b0996a2a5 from qemu
The PAN bit is preserved, or set as per SCTLR_ELx.SPAN,
plus several other conditions listed in the ARM ARM.
Backports commit 4a2696c0d4d80e14a192b28148c6167bc5056f94 from qemu
For aarch64, there's a dedicated msr (imm, reg) insn.
For aarch32, this is done via msr to cpsr. Writes from el0
are ignored, which is already handled by the CPSR_USER mask.
Backports commit 220f508f49c5f49fb771d5105f991c19ffede3f7 from qemu
The only remaining use was in op_helper.c. Use PSTATE_SS
directly, and move the commentary so that it is more obvious
what is going on.
Backports commit 70dae0d069c45250bbefd9424089383a8ac239de from qemu
Using ~0 as the mask on the aarch64->aarch32 exception return
was not even as correct as the CPSR_ERET_MASK that we had used
on the aarch32->aarch32 exception return.
Backports commit d203cabd1bd12f31c9df0b5737421ba67b96857b from qemu
CPSR_ERET_MASK was a useless renaming of CPSR_RESERVED.
The function also takes into account bits that the cpu
does not support.
Backports commit 437864216d63f052f3cd06ec8861d0e432496424 from qemu
The J bit signals Jazelle mode, and so of course is RES0
when the feature is not enabled.
Backports commit f062d1447f2a80e7a5f593b8cb5ac7cab5e16eb0 from qemu
Split this helper out of msr_mask in translate.c. At the same time,
transform the negative reductive logic to positive accumulative logic.
It will be usable along the exception paths.
While touching msr_mask, fix up formatting.
Backports commit 4f9584ed4bba8a57a3cb2fa48a682725005d530a from qemu
Include definitions for all of the bits in ID_MMFR3.
We already have a definition for ID_AA64MMFR1.PAN.
Backports commit 3d6ad6bb466f487bcc861f99e2c9054230df1076 from qemu
To implement PAN, we will want to swap, for short periods
of time, to a different privileged mmu_idx. In addition,
we cannot do this with flushing alone, because the AT*
instructions have both PAN and PAN-less versions.
Add the ARMMMUIdx*_PAN constants where necessary next to
the corresponding ARMMMUIdx* constant.
Backports commit 452ef8cb8c7b06f44a30a3c3a54d3be82c4aef59 from qemu
The fall through organization of this function meant that we
would raise an interrupt, then might overwrite that with another.
Since interrupt prioritization is IMPLEMENTATION DEFINED, we
can recognize these in any order we choose.
Unify the code to raise the interrupt in a block at the end.
Backports commit d63d0ec59d87a698de5ed843288f90a23470cf2e from qemu
Avoid redundant computation of cpu state by passing it in
from the caller, which has already computed it for itself.
Backports commit be87955687446be152f366af543c9234eab78a7c from qemu
This inline function has one user in cpu.c, and need not be exposed
otherwise. Code movement only, with fixups for checkpatch.
Backports commit 310cedf39dea240a89f90729fd99481ff6158e90 from qemu
When VHE is enabled, the exception level below EL2 is not EL1,
but EL0, and so to identify the entry vector offset for exceptions
targeting EL2 we need to look at the width of EL0, not of EL1.
Backports commit cb092fbbaeb7b4e91b3f9c53150c8160f91577c7 from qemu
The EL2&0 translation regime is affected by Load Register (unpriv).
The code structure used here will facilitate later changes in this
area for implementing UAO and NV.
Backports commit cc28fc30e333dc2f20ebfde54444697e26cd8f6d from qemu
Since we only support a single ASID, flush the tlb when it changes.
Note that TCR_EL2, like TCR_EL1, has the A1 bit that chooses between
the two TTBR* registers for the location of the ASID.
Backports commit d06dc93340825030b6297c61199a17c0067b0377 from qemu
Apart from the wholesale redirection that HCR_EL2.E2H performs
for EL2, there's a separate redirection specific to the timers
that happens for EL0 when running in the EL2&0 regime.
Backports commit bb5972e439dc0ac4d21329a9d97bad6760ec702d from qemu
Several of the EL1/0 registers are redirected to the EL2 version when in
EL2 and HCR_EL2.E2H is set. Many of these registers have side effects.
Link together the two ARMCPRegInfo structures after they have been
properly instantiated. Install common dispatch routines to all of the
relevant registers.
The same set of registers that are redirected also have additional
EL12/EL02 aliases created to access the original register that was
redirected.
Omit the generic timer registers from redirection here, because we'll
need multiple kinds of redirection from both EL0 and EL2.
Backports commit e2cce18f5c1d0d55328c585c8372cdb096bbf528 from qemu
The comment that we don't support EL2 is somewhat out of date.
Update to include checks against HCR_EL2.TDZ.
Backports commit 4351cb72fb65926136ab618c9e40c1f5a8813251 from qemu
Use the correct sctlr for EL2&0 regime. Due to header ordering,
and where arm_mmu_idx_el is declared, we need to move the function
out of line. Use the function in many more places in order to
select the correct control.
Backports commit aaec143212bb70ac9549cf73203d13100bd5c7c2 from qemu
Return the indexes for the EL2&0 regime when the appropriate bits
are set within HCR_EL2.
Backports commit 6003d9800ee38aa11eefb5cd64ae55abb64bef16 from qemu
Create a predicate to indicate whether the regime has
both positive and negative addresses.
Backports commit 339370b90d067345b69585ddf4b668fa01f41d67 from qemu
Prepare for, but do not yet implement, the EL2&0 regime.
This involves adding the new MMUIdx enumerators and adjusting
some of the MMUIdx related predicates to match.
Backports commit b9f6033c1a5fb7da55ed353794db8ec064f78bb2 from qemu.
Replace the magic numbers with the relevant ARM_MMU_IDX_M_* constants.
Keep the definitions short by referencing previous symbols.
Backports commit 25568316b2a7e73d68701042ba6ebdb217205e20 from qemu
Define via macro expansion, so that renumbering of the base ARMMMUIdx
symbols is automatically reflected in the bit definitions.
Backports commit 5f09a6dfbfbff4662f52cc3130a2e07044816497 from qemu
We are about to expand the number of mmuidx to 10, and so need 4 bits.
For the benefit of reading the number out of -d exec, align it to the
penultimate nibble.
Backports commit 506f149815c2168f16ade17893e117419d93f248 from qemu
We had completely run out of TBFLAG bits.
Split A- and M-profile bits into two overlapping buckets.
This results in 4 free bits.
We used to initialize all of the a32 and m32 fields in DisasContext
by assignment, in arm_tr_init_disas_context. Now we only initialize
either the a32 or m32 by assignment, because the bits overlap in
tbflags. So zero the entire structure in gen_intermediate_code.
Backports commit 79cabf1f473ca6e9fa0727f64ed9c2a84a36f0aa from qemu
This is part of a reorganization to the set of mmu_idx.
The non-secure EL2 regime only has a single stage translation;
there is no point in pointing out that the idx is for stage1.
Backports commit e013b7411339342aac8d986c5d5e329e1baee8e1 from qemu
This is part of a reorganization to the set of mmu_idx.
The EL3 regime only has a single stage translation, and
is always secure.
Backports commit 127b2b086303296289099a6fb10bbc51077f1d53 from qemu
This is part of a reorganization to the set of mmu_idx.
This emphasizes that they apply to the Secure EL1&0 regime.
Backports commit fba37aedecb82506c62a1f9e81d066b4fd04e443 from qemu
This is part of a reorganization to the set of mmu_idx.
The EL1&0 regime is the only one that uses 2-stage translation.
Spelling out Stage avoids confusion with Secure.
Backports commit 2859d7b590760283a7b5aef40b723e9dfd7c98ba from qemu
This is part of a reorganization to the set of mmu_idx.
This emphasizes that they apply to the EL1&0 regime.
The ultimate goal is
-- Non-secure regimes:
ARMMMUIdx_E10_0,
ARMMMUIdx_E20_0,
ARMMMUIdx_E10_1,
ARMMMUIdx_E2,
ARMMMUIdx_E20_2,
-- Secure regimes:
ARMMMUIdx_SE10_0,
ARMMMUIdx_SE10_1,
ARMMMUIdx_SE3,
-- Helper mmu_idx for non-secure EL1&0 stage1 and stage2
ARMMMUIdx_Stage2,
ARMMMUIdx_Stage1_E0,
ARMMMUIdx_Stage1_E1,
The 'S' prefix is reserved for "Secure". Unless otherwise specified,
each mmu_idx represents all stages of translation.
Backports commit 01b98b686460b3a0fb47125882e4f8d4268ac1b6 from qemu
At the same time, add writefn to TTBR0_EL2 and TCR_EL2.
A later patch will update any ASID therein.
Backports commit ed30da8eee6906032b38a84e4807e2142b09d8ec from qemu
Not all of the breakpoint types are supported, but those that
only examine contextidr are extended to support the new register.
Backports commit e2a1a4616c86159eb4c07659a02fff8bb25d3729 from qemu
When support for the AHP flag was added we inexplicably only freed the
new temps in one of the two legs. Move those tcg_temp_free to the same
level as the allocation to fix that leak.
Backports commit aeab8e5eb220cc5ff84b0b68b9afccc611bf0fcd from qemu
In the PAC computation, sbox was applied over wrong bits.
As this is a 4-bit sbox, bit index should be incremented by 4 instead of 16.
Test vector from QARMA paper (https://eprint.iacr.org/2016/444.pdf) was
used to verify one computation of the pauth_computepac() function which
uses sbox2.
Launchpad: https://bugs.launchpad.net/bugs/1859713
Backports commit de0b1bae6461f67243282555475f88b2384a1eb9 from qemu
The PMU is not optional on cortex-r5 and cortex-r5f (see
the "Features" chapter of the Technical Reference Manual).
Backports commit 90f671581ac601fcc1b840d9e9abe7e3c3e672db from qemu
During the conversion to decodetree, the setting of
ISSIs16Bit got lost. This causes the guest os to
incorrectly adjust trapping memory operations.
Backports commit 1a1fbc6cbb34c26d43d8360c66c1d21681af14a9 from qemu
The IL bit is set for 32-bit instructions, thus passing false
with the is_16bit parameter to syn_data_abort_with_iss() makes
a syn mask that always has the IL bit set.
Pass is_16bit as true to make the initial syn mask have IL=0,
so that the final IL value comes from or'ing template_syn.
Cc: qemu-stable@nongnu.org
Fixes: aaa1f954d4ca ("target-arm: A64: Create Instruction Syndromes for Data Aborts")
Backports commit 30d544839e278dc76017b9a42990c41e84a34377 from qemu
The wfi instruction can be configured to be trapped by a higher exception
level, such as the EL2 hypervisor. When the instruction is trapped, the
program counter should contain the address of the wfi instruction that
caused the exception. The program counter is adjusted for this in the wfi op
helper function.
However, this correction is done to env->pc, which only applies to AArch64
mode. For AArch32, the program counter is stored in env->regs[15]. This
adds an if-else statement to modify the correct program counter location
based on the the current CPU mode.
Backports commit 855532912b0e1bf803ae393e5b0c7e80948cd6a4 from qemu
The SPSR register is named within the Unicorn headers, but the code
to access it is absent. This means that it will always read as 0 and
ignore writes. This makes it harder to work with changes in processor
mode, as the usual way to return from a CPU exception is a
`MOVS pc, lr` for undefined instructions or `SUBS pc, lr, #4`
for most other aborts - which implicitly restores the CPSR from SPSR.
This change adds the access to the SPSR so that it can be read and
written as the caller might expect.
Backports commit 99097cab4c39fb3fc50eea8f0006954f62a149b2 from unicorn.
Fixes:
target/arm/translate-a64.c: In function 'disas_crypto_three_reg_sha512':
target/arm/translate-a64.c:13625:9: error: 'genfn' may be used uninitialized in this function [-Werror=maybe-uninitialized]
genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr);
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
qemu/target/arm/translate-a64.c:13609:8: error: 'feature' may be used uninitialized in this function [-Werror=maybe-uninitialized]
if (!feature) {
Backports commit c7a5e7910517e2711215a9e869a733ffde696091 from qemu
Before we introduce blocking semihosting calls we need to ensure we
can restart the system on semi hosting exception. To be able to do
this the EXCP_SEMIHOST operation should be idempotent until it finally
completes. Practically this means ensureing we only update the pc
after the semihosting call has completed.
Backports commit 4ff5ef9e911c670ca10cdd36dd27c5395ec2c753 from qemu
All semihosting exceptions are dealt with earlier in the common code
so we should never get here.
Backports commit b906acbb3aceed5b1eca30d9d365d5bd7431400b from qemu
A write to the SCR can change the effective EL by droppping the system
from secure to non-secure mode. However if we use a cached current_el
from before the change we'll rebuild the flags incorrectly. To fix
this we introduce the ARM_CP_NEWEL CP flag to indicate the new EL
should be used when recomputing the flags.
Backports partof commit f80741d107673f162e3b097fc76a1590036cc9d1 from
qemu
ARMv8.2 introduced support for Data Cache Clean instructions
to PoP (point-of-persistence) - DC CVAP and PoDP (point-of-deep-persistence)
- DV CVADP. Both specify conceptual points in a memory system where all writes
that are to reach them are considered persistent.
The support provided considers both to be actually the same so there is no
distinction between the two. If none is available (there is no backing store
for given memory) both will result in Data Cache Clean up to the point of
coherency. Otherwise sync for the specified range shall be performed.
Backports commit 0d57b49992200a926c4436eead97ecfc8cc710be from qemu
This change ensures that the FPU can be accessed in Non-Secure mode
when the CPU core is reset using the arm_set_cpu_on() function call.
The NSACR.{CP11,CP10} bits define the exception level required to
access the FPU in Non-Secure mode. Without these bits set, the CPU
will give an undefined exception trap on the first FPU access for the
secondary cores under Linux.
This is necessary because in this power-control codepath QEMU
is effectively emulating a bit of EL3 firmware, and has to set
the CPU up as the EL3 firmware would.
Fixes: fc1120a7f5
Backports commit 0c7f8c43daf6556078e51de98aa13f069e505985 from qemu
QEMU lacks the minimum Jazelle implementation that is required
by the architecture (everything is RAZ or RAZ/WI). Add it
together with the HCR_EL2.TID0 trapping that goes with it.
Backports commit f96f3d5f09973ef40f164cf2d5fd98ce5498b82a from qemu
HSTR_EL2 offers a way to trap ranges of CP15 system register
accesses to EL2, and it looks like this register is completely
ignored by QEMU.
To avoid adding extra .accessfn filters all over the place (which
would have a direct performance impact), let's add a new TB flag
that gets set whenever HSTR_EL2 is non-zero and that QEMU translates
a context where this trap has a chance to apply, and only generate
the extra access check if the hypervisor is actively using this feature.
Tested with a hand-crafted KVM guest accessing CBAR.
Backports commit 5bb0a20b74ad17dee5dae38e3b8b70b383ee7c2d from qemu
HCR_EL2.TID3 requires that AArch32 reads of MVFR[012] are trapped to
EL2, and HCR_EL2.TID0 does the same for reads of FPSID.
In order to handle this, introduce a new TCG helper function that
checks for these control bits before executing the VMRC instruction.
Tested with a hacked-up version of KVM/arm64 that sets the control
bits for 32bit guests.
Backports commit 9ca1d776cb49c09b09579d9edd0447542970c834 from qemu
HCR_EL2.TID1 mandates that access from EL1 to REVIDR_EL1, AIDR_EL1
(and their 32bit equivalents) as well as TCMTR, TLBTR are trapped
to EL2. QEMU ignores it, making it harder for a hypervisor to
virtualize the HW (though to be fair, no known hypervisor actually
cares).
Do the right thing by trapping to EL2 if HCR_EL2.TID1 is set.
Backports commit 93fbc983b29a2eb84e2f6065929caf14f99c3681 from qemu
HCR_EL2.TID2 mandates that access from EL1 to CTR_EL0, CCSIDR_EL1,
CCSIDR2_EL1, CLIDR_EL1, CSSELR_EL1 are trapped to EL2, and QEMU
completely ignores it, making it impossible for hypervisors to
virtualize the cache hierarchy.
Do the right thing by trapping to EL2 if HCR_EL2.TID2 is set.
Backports commit 630fcd4d2ba37050329e0adafdc552d656ebe2f3 from qemu
This is derived from cortex-m4 description, adding DP support and FPv5
instructions with the corresponding flags in isar and mvfr2.
Checked that it could successfully execute
vrinta.f32 s15, s15
while cortex-m4 emulation rejects it with "illegal instruction".
Backports commit cf7beda5072e106ddce875c1996446540c5fe239 from qemu
HCR_EL2.TID3 mandates that access from EL1 to a long list of id
registers traps to EL2, and QEMU has so far ignored this requirement.
This breaks (among other things) KVM guests that have PtrAuth enabled,
while the hypervisor doesn't want to expose the feature to its guest.
To achieve this, KVM traps the ID registers (ID_AA64ISAR1_EL1 in this
case), and masks out the unsupported feature.
QEMU not honoring the trap request means that the guest observes
that the feature is present in the HW, starts using it, and dies
a horrible death when KVM injects an UNDEF, because the feature
*really* isn't supported.
Do the right thing by trapping to EL2 if HCR_EL2.TID3 is set.
Note that this change does not include trapping of the MVFR
registers from AArch32 (they are accessed via the VMRS
instruction and need to be handled in a different way).
Backports commit 6a4ef4e5d1084ce41fafa7d470a644b0fd3d9317 from qemu
The ARMv8 ARM states when executing at EL2, EL3 or Secure EL1,
ISR_EL1 shows the pending status of the physical IRQ, FIQ, or
SError interrupts.
Unfortunately, QEMU's implementation only considers the HCR_EL2
bits, and ignores the current exception level. This means a hypervisor
trying to look at its own interrupt state actually sees the guest
state, which is unexpected and breaks KVM as of Linux 5.3.
Instead, check for the running EL and return the physical bits
if not running in a virtualized context.
Backports commit 7cf95aed53c8770a338617ef40d5f37d2c197853 from qemu
According to the PushStack() pseudocode in the armv7m RM,
bit 4 of the LR should be set to NOT(CONTROL.PFCA) when
an FPU is present. Current implementation is doing it for
armv8, but not for armv7. This patch makes the existing
logic applicable to both code paths.
Backports commit f900b1e5b087a02199fbb6de7038828008e9e419 from qemu
Simply moving the non-stub helper_v7m_mrs/msr outside of
!CONFIG_USER_ONLY is not an option, because of all of the
other system-mode helpers that are called.
But we can split out a few subroutines to handle the few
EL0 accessible registers without duplicating code.
Backports commit 04c9c81b8fa2ee33f59a26265700fae6fc646062 from qemu
There was too much cut and paste between ldrexd and strexd,
as ldrexd does prohibit two output registers the same.
Fixes: af288228995
Backports commit 655b02646dc175dc10666459b0a1e4346fc8d46a from qemu
Preparation for collapsing the two byte swaps, adjust_endianness and
handle_bswap, along the I/O path.
Target dependant attributes are conditionalized upon NEED_CPU_H.
Backports commit 14776ab5a12972ea439c7fb2203a4c15a09094b4 from qemu
There are only two remaining uses of gen_bx_im. In each case, we
know the destination mode -- not changing in the case of gen_jmp
or changing in the case of trans_BLX_i. Use this to simplify the
surrounding code.
For trans_BLX_i, use gen_jmp for the actual branch. For gen_jmp,
use gen_set_pc_im to set up the single-step.
Backports commit eac2f39602e0423adf56be410c9a22c31fec9a81 from qemu