We have never has the concept of global TLB entries which would avoid
the flush so we never actually use this flag. Drop it and make clear
that tlb_flush is the sledge-hammer it has always been.
Backports commit d10eb08f5d8389c814b554d01aa2882ac58221bf from qemu
It is a common thing amongst the various cpu reset functions want to
flush the SoftMMU's TLB entries. This is done either by calling
tlb_flush directly or by way of a general memset of the CPU
structure (sometimes both).
This moves the tlb_flush call to the common reset function and
additionally ensures it is only done for the CONFIG_SOFTMMU case and
when tcg is enabled.
In some target cases we add an empty end_of_reset_fields structure to the
target vCPU structure so have a clear end point for any memset which
is resetting value in the structure before CPU_COMMON (where the TLB
structures are).
While this is a nice clean-up in general it is also a precursor for
changes coming to cputlb for MTTCG where the clearing of entries
can't be done arbitrarily across vCPUs. Currently the cpu_reset
function is usually called from the context of another vCPU as the
architectural power up sequence is run. By using the cputlb API
functions we can ensure the right behaviour in the future.
Backports commit 1f5c00cfdb8114c1e3a13426588ceb64f82c9ddb from qemu
Fixed issues in the MIPSDSP64 instructions dextp and dextpdp.
Shifting can go out of 32 bit range.
https://bugs.launchpad.net/qemu/+bug/1631625
Backports commit e6e2784cacd4cfec149a7690976b9ff15e541c4d from qemu
Needed to emit FPU exception on Loongson multimedia instructions
executing if Status:CU1 is clear. or FPR changes may be missed
on Linux.
Backports commit b5a587b613f6151c2ce164552579ae64f2ddfd1c from qemu
Probe for whether the specified guest write access is permitted.
If it is not permitted then an exception will be taken in the same
way as if this were a real write access (and we will not return).
Otherwise the function will return, and there will be a valid
entry in the TLB for this access.
Backports commit 3b4afc9e75ab1a95f33e41f462921093f8a109c4 from qemu
Define a new CPU definition supporting 24KEc cores, similar to
the existing 24Kc, but with added support for DSP instructions
and MIPS16e (and without FPU).
Backports commit e9deaad8a58c899dc32e9fdeff9e533070e79dca from qemu
The return address argument to the softmmu template helpers was
confused. In the legacy case, we wanted to indicate that there
is no return address, and so passed in NULL. However, we then
immediately subtracted GETPC_ADJ from NULL, resulting in a non-zero
value, indicating the presence of an (invalid) return address.
Push the GETPC_ADJ subtraction down to the only point it's required:
immediately before use within cpu_restore_state_from_tb, after all
NULL pointer checks have been completed.
This makes GETPC and GETRA identical. Remove GETRA as the lesser
used macro, replacing all uses with GETPC.
Backports commit 01ecaf438b1eb46abe23392c8ce5b7628b0c8cf5 from qemu
Instead of using -1 as end of chain, use 0, and link through the 0
entry as a fully circular double-linked list.
Backports commit dcb8e75870e2de199db853697f8839cb603beefe from qemu
While implementing TLB invalidation feature we forgot to modify
part of code responsible for updating EntryHi during TLB exception.
Consequently EntryHi.EHINV is unexpectedly cleared on the exception.
Backports commit 701074a6fc7470d0ed54e4a4bcd4d491ad8da22e from qemu
Most of them use guard symbols like CPU_$target_H, but we also have
__MIPS_CPU_H__ and __TRICORE_CPU_H__. They all upset
scripts/clean-header-guards.pl.
The script dislikes CPU_$target_H because they don't match their file
name (they should, to make guard collisions less likely). The others
are reserved identifiers.
Clean them all up: use guard symbol $target_CPU_H for
target-$target/cpu.h.
Backports commit 07f5a258750b3b9a6e10fd5ec3e29c9a943b650e from qemu
There are functions tlb_fill(), cpu_unaligned_access() and
do_unaligned_access() that are called with access type and mmu index
arguments. But these arguments are named 'is_write' and 'is_user' in their
declarations. The patches fix the arguments to avoid a confusion.
Backports commit b35399bb4e9968296a12303b00f9f2066470e987 from qemu
ASID currently has uint8_t type which is too small since some processors
support more than 8 bits ASID. Therefore change its type to uint16_t.
Backports commit 2d72e7b047d800c9f99262466f65a98684ecca14 from qemu
MIPS64R6-generic gradually gets closer to I6400 CPU, feature-wise. Rename
it to make it clear which MIPS processor it is supposed to emulate.
Backports commit 8f95ad1c79b4166350b982a6defe0e21faa04dac from qemu
Replace hardcoded 0xbfc00000 with exception_base which is initialized with
this default address so there is no functional change here.
However, it is now exposed and consequently it will be possible to modify
it from outside of the CPU.
Backports commit 89777fd10fc3dd573c3b4d1b2efdd10af823c001 from qemu
Add preprocessor definition of FCR31's FS bit, and update related
code for setting this bit.
Backports commit 77be419980114d75605811e1681115d0919cfa1a from qemu
This patch implements read and write access rules for Mips floating
point control and status register (FCR31). The change can be divided
into following parts:
- Add fields that will keep FCR31's R/W bitmask in procesor
definitions and processor float_status structure.
- Add appropriate value for FCR31's R/W bitmask for each supported
processor.
- Add function for setting snan_bit_is_one, and integrate it in
appropriate places.
- Modify handling of CTC1 (case 31) instruction to use FCR31's R/W
bitmask.
- Modify handling user mode executables for Mips, in relation to the
bit EF_MIPS_NAN2008 from ELF header, that is in turn related to
reading and writing to FCR31.
- Modify gdb behavior in relation to FCR31.
Backports commit 599bc5e89c46f95f86ccad0d747d041c89a28806 from qemu
New set of helpers for handling nan2008-syle versions of instructions
<CEIL|CVT|FLOOR|ROUND|TRUNC>.<L|W>.<S|D>, for Mips R6.
All involved instructions have float operand and integer result. Their
core functionality is implemented via invocations of appropriate SoftFloat
functions. The problematic cases are when the operand is a NaN, and also
when the operand (float) is out of the range of the result.
Here one can distinguish three cases:
CASE MIPS-A: (FCR31.NAN2008 == 1)
1. Operand is a NaN, result should be 0;
2. Operand is larger than INT_MAX, result should be INT_MAX;
3. Operand is smaller than INT_MIN, result should be INT_MIN.
CASE MIPS-B: (FCR31.NAN2008 == 0)
1. Operand is a NaN, result should be INT_MAX;
2. Operand is larger than INT_MAX, result should be INT_MAX;
3. Operand is smaller than INT_MIN, result should be INT_MAX.
CASE SoftFloat:
1. Operand is a NaN, result is INT_MAX;
2. Operand is larger than INT_MAX, result is INT_MAX;
3. Operand is smaller than INT_MIN, result is INT_MIN.
Current implementation of <CEIL|CVT|FLOOR|ROUND|TRUNC>.<L|W>.<S|D>
implements case MIPS-B. This patch relates to case MIPS-A. For case
MIPS-A, only return value for NaN-operands should be corrected after
appropriate SoftFloat library function is called.
Related MSA instructions FTRUNC_S and FTINT_S already handle well
all cases, in the fashion similar to the code from this patch.
Backports commit 87552089b62fa229d2ff86906e4e779177fb5835 from qemu
Updated handling of instructions <ABS|NEG>.<S|D>. Note that legacy
(pre-abs2008) ABS and NEG instructions are arithmetic (and, therefore,
any NaN operand causes signaling invalid operation), while abs2008
ones are non-arithmetic, always and only changing the sign bit, even
for NaN-like operands. Details on these instructions are documented
in [1] p. 35 and 359.
Implementation-wise, abs2008 versions are implemented without helpers,
for simplicity and performance sake.
[1] "MIPS Architecture For Programmers Volume II-A:
The MIPS64 Instruction Set Reference Manual",
Imagination Technologies LTD, Revision 6.04, November 13, 2015
Backports commit 6be77480052b1a71557081896e7080363a8a2f95 from qemu
Function msa_reset() is updated so that flag snan_bit_is_one is
properly set to 0.
By applying this patch, a number of incorrect MSA behaviors that
require IEEE 754-2008 compliance will be fixed. Those are behaviors
that (up to the moment of applying this patch) did not get the desired
functionality from SoftFloat library with respect to distinguishing
between quiet and signaling NaN, getting default NaN values (both
quiet and signaling), establishing if a floating point number is NaN
or not, etc.
Two examples:
* FMAX, FMIN will now correctly detect and propagate NaNs.
* FCLASS.D ans FCLASS.S will now correcty detect NaN flavors
Backports commit 40bd6dd456e61a36e454fb9dd2cc739b67c224cf from qemu
This patch modifies SoftFloat library so that it can be configured in
run-time in relation to the meaning of signaling NaN bit, while, at the
same time, strictly preserving its behavior on all existing platforms.
Background:
In floating-point calculations, there is a need for denoting undefined or
unrepresentable values. This is achieved by defining certain floating-point
numerical values to be NaNs (which stands for "not a number"). For additional
reasons, virtually all modern floating-point unit implementations use two
kinds of NaNs: quiet and signaling. The binary representations of these two
kinds of NaNs, as a rule, differ only in one bit (that bit is, traditionally,
the first bit of mantissa).
Up to 2008, standards for floating-point did not specify all details about
binary representation of NaNs. More specifically, the meaning of the bit
that is used for distinguishing between signaling and quiet NaNs was not
strictly prescribed. (IEEE 754-2008 was the first floating-point standard
that defined that meaning clearly, see [1], p. 35) As a result, different
platforms took different approaches, and that presented considerable
challenge for multi-platform emulators like QEMU.
Mips platform represents the most complex case among QEMU-supported
platforms regarding signaling NaN bit. Up to the Release 6 of Mips
architecture, "1" in signaling NaN bit denoted signaling NaN, which is
opposite to IEEE 754-2008 standard. From Release 6 on, Mips architecture
adopted IEEE standard prescription, and "0" denotes signaling NaN. On top of
that, Mips architecture for SIMD (also known as MSA, or vector instructions)
also specifies signaling bit in accordance to IEEE standard. MSA unit can be
implemented with both pre-Release 6 and Release 6 main processor units.
QEMU uses SoftFloat library to implement various floating-point-related
instructions on all platforms. The current QEMU implementation allows for
defining meaning of signaling NaN bit during build time, and is implemented
via preprocessor macro called SNAN_BIT_IS_ONE.
On the other hand, the change in this patch enables SoftFloat library to be
configured in run-time. This configuration is meant to occur during CPU
initialization, at the moment when it is definitely known what desired
behavior for particular CPU (or any additional FPUs) is.
The change is implemented so that it is consistent with existing
implementation of similar cases. This means that structure float_status is
used for passing the information about desired signaling NaN bit on each
invocation of SoftFloat functions. The additional field in float_status is
called snan_bit_is_one, which supersedes macro SNAN_BIT_IS_ONE.
IMPORTANT:
This change is not meant to create any change in emulator behavior or
functionality on any platform. It just provides the means for SoftFloat
library to be used in a more flexible way - in other words, it will just
prepare SoftFloat library for usage related to Mips platform and its
specifics regarding signaling bit meaning, which is done in some of
subsequent patches from this series.
Further break down of changes:
1) Added field snan_bit_is_one to the structure float_status, and
correspondent setter function set_snan_bit_is_one().
2) Constants <float16|float32|float64|floatx80|float128>_default_nan
(used both internally and externally) converted to functions
<float16|float32|float64|floatx80|float128>_default_nan(float_status*).
This is necessary since they are dependent on signaling bit meaning.
At the same time, for the sake of code cleanup and simplicity, constants
<floatx80|float128>_default_nan_<low|high> (used only internally within
SoftFloat library) are removed, as not needed.
3) Added a float_status* argument to SoftFloat library functions
XXX_is_quiet_nan(XXX a_), XXX_is_signaling_nan(XXX a_),
XXX_maybe_silence_nan(XXX a_). This argument must be present in
order to enable correct invocation of new version of functions
XXX_default_nan(). (XXX is <float16|float32|float64|floatx80|float128>
here)
4) Updated code for all platforms to reflect changes in SoftFloat library.
This change is twofolds: it includes modifications of SoftFloat library
functions invocations, and an addition of invocation of function
set_snan_bit_is_one() during CPU initialization, with arguments that
are appropriate for each particular platform. It was established that
all platforms zero their main CPU data structures, so snan_bit_is_one(0)
in appropriate places is not added, as it is not needed.
[1] "IEEE Standard for Floating-Point Arithmetic",
IEEE Computer Society, August 29, 2008.
Backports commit af39bc8c49224771ec0d38f1b693ea78e221d7bc from qemu
Information is tracked inside the TCGContext structure, and later used
by tracing events with the 'tcg' and 'vcpu' properties.
The 'cpu' field is used to check tracing of translation-time
events ("*_trans"). The 'tcg_env' field is used to pass it to
execution-time events ("*_exec").
Backports commit 7c2550432abe62f53e6df878ceba6ceaf71f0e7e from qemu
exec-all.h contains TCG-specific definitions. It is not needed outside
TCG-specific files such as translate.c, exec.c or *helper.c.
One generic function had snuck into include/exec/exec-all.h; move it to
include/qom/cpu.h.
Backports commit 63c915526d6a54a95919ebece83fa9ca631b2508 from qemu
These are here for historical reasons: they are needed from both gdbstub.c
and op_helper.c, and the latter was compiled with fixed AREG0. It is
not needed anymore, so uninline them.
Backports commit e6623d88f44aae9e9c78276c0cb7bd352283d50a from qemu
Make MIPSCPU an opaque type within cpu-qom.h, and move all definitions of
private methods, as well as all type definitions that require knowledge
of the layout to cpu.h. This helps making files independent of NEED_CPU_H
if they only need to pass around CPU pointers.
Backports commit 416bf936864f16caad6993b9ebd452fb34f801bd from qemu
In user mode, there's only a static address translation, TBs are always
invalidated properly and direct jumps are reset when mapping change.
Thus the destination address is always valid for direct jumps and
there's no need to restrict it to the pages the TB resides in.
Backports commit 90aa39a1cc4837360889f0e033ca25cc82100308 from qemu
We are inconsistent with the type of tb->flags: usage varies loosely
between int and uint64_t. Settle to uint32_t everywhere, which is
superior to both: at least one target (aarch64) uses the most significant
bit in the u32, and uint64_t is wasteful.
Compile-tested for all targets.
Backports commit 89fee74a0f066dfd73830a7b5fa137e87888c870 from qemu
Recent versions of GCC report the following error when compiling
target-mips/helper.c:
qemu/target-mips/helper.c:542:9: warning: ‘memset’ used with length
equal to number of elements without multiplication by element size
[-Wmemset-elt-size]
Backports commit a525decfaa3449f1458ea2d7a06320cf46aebf3f from qemu
Commit b00c72180c36 ("target-mips: add PC, XNP reg numbers to RDHWR")
changed the rdhwr helpers to use check_hwrena() to check the register
being accessed is enabled in CP0_HWREna when used from user mode. If
that check fails an EXCP_RI exception is raised at the host PC
calculated with GETPC().
However check_hwrena() may not be fully inlined as the
do_raise_exception() part of it is common regardless of the arguments.
This causes GETPC() to calculate the address in the call in the helper
instead of the generated code calling the helper. No TB will be found
and the EPC reported with the resulting guest RI exception points to the
beginning of the TB instead of the RDHWR instruction.
We can't reliably force check_hwrena() to be inlined, and converting it
to a macro would be ugly, so instead pass the host PC in as an argument,
with each rdhwr helper passing GETPC(). This should avoid any dependence
on compiler behaviour, and in practice seems to ensure the full inlining
of check_hwrena() on x86_64.
This issue causes failures when running a MIPS KVM (trap & emulate)
guest in a MIPS QEMU TCG guest, as the inner guest kernel will do a
RDHWR of counter, which is disabled in the outer guest's CP0_HWREna by
KVM so it can emulate the inner guest's counter. The emulation fails and
the RI exception is passed to the inner guest.
Backports commit d96391c1ffeb30a0afa695c86579517c69d9a889 from qemu
MIPS Release 6 and MIPS SIMD Architecture make it mandatory to have IEEE
754-2008 FPU which is indicated by CP1 FIR.HAS2008, FCSR.ABS2008 and
FCSR.NAN2008 bits set to 1.
In QEMU we still keep these bits cleared as there is no 2008-NaN support.
However, this now causes problems preventing from running R6 Linux with
the v4.5 kernel. Kernel refuses to execute 2008-NaN ELFs on a CPU
whose FPU does not support 2008-NaN encoding:
(...)
VFS: Mounted root (ext4 filesystem) readonly on device 8:0.
devtmpfs: mounted
Freeing unused kernel memory: 256K (ffffffff806f0000 - ffffffff80730000)
request_module: runaway loop modprobe binfmt-464c
Starting init: /sbin/init exists but couldn't execute it (error -8)
request_module: runaway loop modprobe binfmt-464c
Starting init: /bin/sh exists but couldn't execute it (error -8)
Kernel panic - not syncing: No working init found. Try passing init= option to kernel. See Linux Documentation/init.txt for guidance.
Therefore always indicate presence of 2008-NaN support in R6 as well as in
R5+MSA CPUs, even though this feature is not yet supported by MIPS in QEMU.
Backports commit ba5c79f26221c0fd7139c883a34a4e75d993f732 from qemu
The MAAR register is a read/write register included in Release 5
of the architecture that defines the accessibility attributes of
physical address regions. In particular, MAAR defines whether an
instruction fetch or data load can speculatively access a memory
region within the physical address bounds specified by MAAR.
As QEMU doesn't do speculative access, hence this patch only
provides ability to access the registers.
Backports commit f6d4dd810983fdf3d1c9fb81838167efef63d1c8 from qemu
Indicate that in the MIPS64R6-generic CPU the memory-mapped
Global Configuration Register Space is implemented.
Backports commit a9a95061715ca09abff56a3f239f704c410912c2 from qemu
Physical base address for the memory-mapped Coherency Manager Global
Configuration Register space.
The MIPS default location for the GCR_BASE address is 0x1FBF_8.
This register only exists if Config3 CMGCR is set to one.
Backports commit c870e3f52cac0c8a4a1377398327c4ff20d49d41 from qemu
Commit 57cb38b included qapi/error.h into qemu/osdep.h to get the
Error typedef. Since then, we've moved to include qemu/osdep.h
everywhere. Its file comment explains: "To avoid getting into
possible circular include dependencies, this file should not include
any other QEMU headers, with the exceptions of config-host.h,
compiler.h, os-posix.h and os-win32.h, all of which are doing a
similar job to this file and are under similar constraints."
qapi/error.h doesn't do a similar job, and it doesn't adhere to
similar constraints: it includes qapi-types.h. That's in excess of
100KiB of crap most .c files don't actually need.
Add the typedef to qemu/typedefs.h, and include that instead of
qapi/error.h. Include qapi/error.h in .c files that need it and don't
get it now. Include qapi-types.h in qom/object.h for uint16List.
Update scripts/clean-includes accordingly. Update it further to match
reality: replace config.h by config-target.h, add sysemu/os-posix.h,
sysemu/os-win32.h. Update the list of includes in the qemu/osdep.h
comment quoted above similarly.
This reduces the number of objects depending on qapi/error.h from "all
of them" to less than a third. Unfortunately, the number depending on
qapi-types.h shrinks only a little. More work is needed for that one.
Backports commit da34e65cb4025728566d6504a99916f6e7e1dd6a from qemu