This is a preparation for the coming feature of creating dynamically an XML
description for the ARM sysregs.
A register has ARM_CP_NO_GDB enabled will not be shown in the dynamic XML.
This bit is enabled automatically when creating CP_ANY wildcard aliases.
This bit could be enabled manually for any register we want to remove from the
dynamic XML description.
Backports commit 1f16378718fa87d63f70d0797f4546a88d8e3dd7 from qemu
The ARM ARM specifies FZ16 is suppressed for conversions. Rather than
pushing this logic into the softfloat code we can simply save the FZ
state and temporarily disable it for the softfloat call.
Backports commit 0acb9e7cb341cd767e39ec0875c8706eb2f1c359 from qemu
Instead of passing env and leaving it up to the helper to get the
right fpstatus we pass it explicitly. There was already a get_fpstatus
helper for neon for the 32 bit code. We also add an get_ahp_flag() for
passing the state of the alternative FP16 format flag. This leaves
scope for later tracking the AHP state in translation flags.
Backports commit 486624fcd3eaca6165ab8401d73bbae6c0fb81c1 from qemu
The instruction "ucvtf v0.4h, v04h, #2", with input 0x8000u,
overflows the intermediate float16 to infinity before we have a
chance to scale the output. Use float64 as the intermediate type
so that no input argument (uint32_t in this case) can overflow
or round before scaling. Given the declared argument, the signed
int32_t function has the same problem.
When converting from float16 to integer, using u/int32_t instead
of u/int16_t means that the bounding is incorrect.
Backports commit 88808a022c06f98d81cd3f2d105a5734c5614839 from qemu
The duplication of id_tlbtr_reginfo was unintentionally added within
3281af8114c6b8ead02f08b58e3c36895c1ea047 which should have been
id_mpuir_reginfo.
The effect was that for OMAP and StrongARM CPUs we would
incorrectly UNDEF writes to MPUIR rather than NOPing them.
Backports commit 100061121c1f69a672ce7bb3e9e3781f8018f9f6 from qemu
This is a bug fix to ensure 64-bit reads of these registers don't read
adjacent data.
Backports commit e4e91a217c17fff4045dd4b423cdcb471b3d6a0e from qemu
Because the design of the PMU requires that the counter values be
converted between their delta and guest-visible forms for mode
filtering, an additional hook which occurs before the EL is changed is
necessary.
Backports commit b5c53d1b3886387874f8c8582b205aeb3e4c3df6 from qemu
In commit 95695effe8caa552b8f2 we changed the v7M/v8M stack
pop code to use a new v7m_stack_read() function that checks
whether the read should fail due to an MPU or bus abort.
We missed one call though, the one which reads the signature
word for the callee-saved register part of the frame.
Correct the omission.
Backports commit 4818bad98c8212fbbb0525d10761b6b65279ab92 from qemu
Remove a stale TODO comment -- we have now made the arm_ldl_ptw()
and arm_ldq_ptw() functions propagate physical memory read errors
out to their callers.
Backports commit 145772707fe80395b87c244ccf5699a756f1946b from qemu
Currently our PMSAv7 and ARMv7M MPU implementation cannot handle
MPU region sizes smaller than our TARGET_PAGE_SIZE. However we
report that in a slightly confusing way:
DRSR[3]: No support for MPU (sub)region alignment of 9 bits. Minimum is 10
The problem is not the alignment of the region, but its size;
tweak the error message to say so:
DRSR[3]: No support for MPU (sub)region size of 512 bytes. Minimum is 1024.
Backports commit 8aec759b45fa6986c0b159cb27353d6abb0d5d73 from qemu
Now that we have a helper function specifically for the BRK and
BKPT instructions, we can set the exception.fsr there rather
than in arm_cpu_do_interrupt_aarch32(). This allows us to
use our new arm_debug_exception_fsr() helper.
In particular this fixes a bug where we were hardcoding the
short-form IFSR value, which is wrong if the target exception
level has LPAE enabled.
Fixes: https://bugs.launchpad.net/qemu/+bug/1756927
Backports commit 62b94f31d0df75187bb00684fc29e8639eacc0c5 from qemu
Backports commits 2994fd96d986578a342f2342501b4ad30f6d0a85,
701e3c78ce45fa630ffc6826c4b9a4218954bc7f, and
d1853231c60d16af78cf4d1608d043614bfbac0b from qemuu
Much like recpe the ARM ARM has simplified the pseudo code for the
calculation which is done on a fixed point 9 bit integer maths. So
while adding f16 we can also clean this up to be a little less heavy
on the floating point and just return the fractional part and leave
the calle's to do the final packing of the result.
Backports commit d719cbc7641991d16b891ffbbfc3a16a04e37b9a from qemu
Also removes a load of symbols that seem unnecessary from the header_gen script
It looks like the ARM ARM has simplified the pseudo code for the
calculation which is done on a fixed point 9 bit integer maths. So
while adding f16 we can also clean this up to be a little less heavy
on the floating point and just return the fractional part and leave
the calle's to do the final packing of the result.
Backports commit 5eb70735af1c0b607bf2671a53aff3710cc1672f from qemu
As the rounding mode is now split between FP16 and the rest of
floating point we need to be explicit when tweaking it. Instead of
passing the CPU env we now pass the appropriate fpst pointer directly.
Backports commit 9b04991686785e18b18a36d193b68f08f7c91648 from qemu
Half-precision flush to zero behaviour is controlled by a separate
FZ16 bit in the FPCR. To handle this we pass a pointer to
fp_status_fp16 when working on half-precision operations. The value of
the presented FPCR is calculated from an amalgam of the two when read.
Backports commit d81ce0ef2c4f1052fcdef891a12499eca3084db7 from qemu
The register definitions for VMIDR and VMPIDR have separate
reginfo structs for the AArch32 and AArch64 registers. However
the 32-bit versions are wrong:
* they use offsetof instead of offsetoflow32 to mark where
the 32-bit value lives in the uint64_t CPU state field
* they don't mark themselves as ARM_CP_ALIAS
In particular this means that if you try to use an Arm guest CPU
which enables EL2 on a big-endian host it will assert at reset:
target/arm/cpu.c:114: cp_reg_check_reset: Assertion `oldvalue == newvalue' failed.
because the reset of the 32-bit register writes to the top
half of the uint64_t.
Correct the errors in the structures.
Backports commit 36476562d57a3b64bbe86db26e63677dd21907c5 from qemu
As cpu.h is another typically widely included file which doesn't need
full access to the softfloat API we can remove the includes from here
as well. Where they do need types it's typically for float_status and
the rounding modes so we move that to softfloat-types.h as well.
As a result of not having softfloat in every cpu.h call we now need to
add it to various helpers that do need the full softfloat.h
definitions.
Backports commit 24f91e81b65fcdd0552d1f0fcb0ea7cfe3829c19 from qemu
The v8M architecture includes hardware support for enforcing
stack pointer limits. We don't implement this behaviour yet,
but provide the MSPLIM and PSPLIM stack pointer limit registers
as reads-as-written, so that when we do implement the checks
in future this won't break guest migration.
Backports commit 57bb31568114023f67680d6fe478ceb13c51aa7d from qemu
In commit 50f11062d4c896 we added support for MSR/MRS access
to the NS banked special registers, but we forgot to implement
the support for writing to CONTROL_NS. Correct the omission.
Backports commit 6eb3a64e2a96f5ced1f7896042b01f002bf0a91f from qemu
Handle possible MPU faults, SAU faults or bus errors when
popping register state off the stack during exception return.
Backports commit 95695effe8caa552b8f243bceb3a08de4003c882 from qemu
Make the load of the exception vector from the vector table honour
the SAU and any bus error on the load (possibly provoking a derived
exception), rather than simply aborting if the load fails.
Backports commit 600c33f24752a00e81e9372261e35c2befea612b from qemu
Make v7m_push_callee_stack() honour the MPU by using the
new v7m_stack_write() function. We return a flag to indicate
whether the pushes failed, which we can then use in
v7m_exception_taken() to cause us to handle the derived
exception correctly.
Backports commit 65b4234ff73a4d4865438ce30bdfaaa499464efa from qemu
The memory writes done to push registers on the stack
on exception entry in M profile CPUs are supposed to
go via MPU permissions checks, which may cause us to
take a derived exception instead of the original one of
the MPU lookup fails. We were implementing these as
always-succeeds direct writes to physical memory.
Rewrite v7m_push_stack() to do the necessary checks.
Backports commit fd592d890ec40e3686760de84044230a8ebb1eb3 from qemu
In the v8M architecture, if the process of taking an exception
results in a further exception this is called a derived exception
(for example, an MPU exception when writing the exception frame to
memory). If the derived exception happens while pushing the initial
stack frame, we must ignore any subsequent possible exception
pushing the callee-saves registers.
In preparation for making the stack writes check for exceptions,
add a return value from v7m_push_stack() and a new parameter to
v7m_exception_taken(), so that the former can tell the latter that
it needs to ignore failures to write to the stack. We also plumb
the argument through to v7m_push_callee_stack(), which is where
the code to ignore the failures will be.
(Note that the v8M ARM pseudocode structures this slightly differently:
derived exceptions cause the attempt to process the original
exception to be abandoned; then at the top level it calls
DerivedLateArrival to prioritize the derived exception and call
TakeException from there. We choose to let the NVIC do the prioritization
and continue forward with a call to TakeException which will then
take either the original or the derived exception. The effect is
the same, but this structure works better for QEMU because we don't
have a convenient top level place to do the abandon-and-retry logic.)
Backports commit 0094ca70e165cfb69882fa2e100d935d45f1c983 from qemu
Currently armv7m_nvic_acknowledge_irq() does three things:
* make the current highest priority pending interrupt active
* return a bool indicating whether that interrupt is targeting
Secure or NonSecure state
* implicitly tell the caller which is the highest priority
pending interrupt by setting env->v7m.exception
We need to split these jobs, because v7m_exception_taken()
needs to know whether the pending interrupt targets Secure so
it can choose to stack callee-saves registers or not, but it
must not make the interrupt active until after it has done
that stacking, in case the stacking causes a derived exception.
Similarly, it needs to know the number of the pending interrupt
so it can read the correct vector table entry before the
interrupt is made active, because vector table reads might
also cause a derived exception.
Create a new armv7m_nvic_get_pending_irq_info() function which simply
returns information about the highest priority pending interrupt, and
use it to rearrange the v7m_exception_taken() code so we don't
acknowledge the exception until we've done all the things which could
possibly cause a derived exception.
Backports part of commit 6c9485188170e11ad31ce477c8ce200b8e8ce59d from qemu
Commit ("3b39d734141a target/arm: Handle page table walk load failures
correctly") modified both versions of the page table walking code (i.e.,
arm_ldl_ptw and arm_ldq_ptw) to record the result of the translation in
a temporary 'data' variable so that it can be inspected before being
returned. However, arm_ldq_ptw() returns an uint64_t, and using a
temporary uint32_t variable truncates the upper bits, corrupting the
result. This causes problems when using more than 4 GB of memory in
a TCG guest. So use a uint64_t instead.
Backports commit 9aea1ea31af25fe344a88da086ff913cca09c667 from qemu
Instead of ignoring the response from address_space_ld*()
(indicating an attempt to read a page table descriptor from
an invalid physical address), use it to report the failure
correctly.
Since this is another couple of locations where we need to
decide the value of the ARMMMUFaultInfo ea bit based on a
MemTxResult, we factor out that operation into a helper
function.
Backports commit 3b39d734141a71296d08af3d4c32f872fafd782e from qemu
For PMSAv7, the v7A/R Arm ARM defines that setting AP to 0b111
is an UNPREDICTABLE reserved combination. However, for v7M
this value is documented as having the same behaviour as 0b110:
read-only for both privileged and unprivileged. Accept this
value on an M profile core rather than treating it as a guest
error and a no-access page.
Backports commit 8638f1ad7403b63db880dadce38e6690b5d82b64 from qemu
Now that do_ats_write() is entirely in control of whether to
generate a 32-bit PAR or a 64-bit PAR, we can make it use the
correct (complicated) condition for doing so.
Backports commit 1313e2d7e2cd8b21741e0cf542eb09dfc4188f79 from qemu
All of the callers of get_phys_addr() and arm_tlb_fill() now ignore
the FSR values they return, so we can just remove the argument
entirely.
Backports commit bc52bfeb3be2052942b7dac8ba284f342ac9605b from qemu
In do_ats_write(), rather than using the FSR value from get_phys_addr(),
construct the PAR values using the information in the ARMMMUFaultInfo
struct. This allows us to create a PAR of the correct format regardless
of what the translation table format is.
For the moment we leave the condition for "when should this be a
64 bit PAR" as it was previously; this will need to be fixed to
properly support AArch32 Hyp mode.
Backports commit 5efe9ed45dec775ebe91ce72bd805ee780d16064 from qemu
Make get_phys_addr_pmsav8() return a fault type in the ARMMMUFaultInfo
structure, which we convert to the FSC at the callsite.
Backports commit 3f551b5b7380ff131fe22944aa6f5b166aa13caf from qemu
Make get_phys_addr_pmsav7() return a fault type in the ARMMMUFaultInfo
structure, which we convert to the FSC at the callsite.
Backports commit 9375ad15338b24e06109071ac3a85df48a2cc2e6 from qemu
Make get_phys_addr_pmsav5() return a fault type in the ARMMMUFaultInfo
structure, which we convert to the FSC at the callsite.
Note that PMSAv5 does not define any guest-visible fault status
register, so the different "fsr" values we were previously
returning are entirely arbitrary. So we can just switch to using
the most appropriae fi->type values without worrying that we
need to special-case FaultInfo->FSC conversion for PMSAv5.
Backports commit 53a4e5c5b07b2f50c538511b74b0d3d4964695ea from qemu
Make get_phys_addr_v6() return a fault type in the ARMMMUFaultInfo
structure, which we convert to the FSC at the callsite.
Backports commit da909b2c23a68e57bbcb6be98229e40df606f0c8 from qemu
Make get_phys_addr_v6() return a fault type in the ARMMMUFaultInfo
structure, which we convert to the FSC at the callsite.
Backports commit f06cf243945ccb24cb9578304306ae7fcb4cf3fd from qemu
Make get_phys_addr_v5() return a fault type in the ARMMMUFaultInfo
structure, which we convert to the FSC at the callsite.
Backports commit f989983e8dc9be6bc3468c6dbe46fcb1501a740c from qemu
All the callers of arm_ldq_ptw() and arm_ldl_ptw() ignore the value
that those functions store in the fsr argument on failure: if they
return failure to their callers they will always overwrite the fsr
value with something else.
Remove the argument from these functions and S1_ptw_translate().
This will simplify removing fsr from the calling functions.
Backports commit 3795a6de9f7ec4a7e3dcb8bf02a88a014147b0b0 from qemu
Implement the TT instruction which queries the security
state and access permissions of a memory location.
Backports commit 5158de241b0fb344a6c948dfcbc4e611ab5fafbe from qemu
For the TT instruction we're going to need to do an MPU lookup that
also tells us which MPU region the access hit. This requires us
to do the MPU lookup without first doing the SAU security access
check, so pull the MPU lookup parts of get_phys_addr_pmsav8()
out into their own function.
The TT instruction also needs to know the MPU region number which
the lookup hit, so provide this information to the caller of the
MPU lookup code, even though get_phys_addr_pmsav8() doesn't
need to know it.
Backports commit 54317c0ff3a3c0f6b2c3a1d3c8b5d93686a86d24 from qemu
For M profile, we currently have an mmu index MNegPri for
"requested execution priority negative". This fails to
distinguish "requested execution priority negative, privileged"
from "requested execution priority negative, usermode", but
the two can return different results for MPU lookups. Fix this
by splitting MNegPri into MNegPriPriv and MNegPriUser, and
similarly for the Secure equivalent MSNegPri.
This takes us from 6 M profile MMU modes to 8, which means
we need to bump NB_MMU_MODES; this is OK since the point
where we are forced to reduce TLB sizes is 9 MMU modes.
(It would in theory be possible to stick with 6 MMU indexes:
{mpu-disabled,user,privileged} x {secure,nonsecure} since
in the MPU-disabled case the result of an MPU lookup is
always the same for both user and privileged code. However
we would then need to rework the TB flags handling to put
user/priv into the TB flags separately from the mmuidx.
Adding an extra couple of mmu indexes is simpler.)
Backports commit 62593718d77c06ad2b5e942727cead40775d2395 from qemu
When we added the ARMMMUIdx_MSUser MMU index we forgot to
add it to the case statement in regime_is_user(), so we
weren't treating it as unprivileged when doing MPU lookups.
Correct the omission.
Backports commit 871bec7c44a453d9cab972ce1b5d12e1af0545ab from qemu
In ARMv7M the CPU ignores explicit writes to CONTROL.SPSEL
in Handler mode. In v8M the behaviour is slightly different:
writes to the bit are permitted but will have no effect.
We've already done the hard work to handle the value in
CONTROL.SPSEL being out of sync with what stack pointer is
actually in use, so all we need to do to fix this last loose
end is to update the condition we use to guard whether we
call write_v7m_control_spsel() on the register write.
Backports commit 83d7f86d3d27473c0aac79c1baaa5c2ab01b02d9 from qemu
For v8M it is possible for the CONTROL.SPSEL bit value and the
current stack to be out of sync. This means we need to update
the checks used in reads and writes of the PSP and MSP special
registers to use v7m_using_psp() rather than directly checking
the SPSEL bit in the control register.
Backports commit 1169d3aa5b19adca9384d954d80e1f48da388284 from qemu
In do_ats_write(), rather than using extended_addresses_enabled() to
decide whether the value we get back from get_phys_addr() is a 64-bit
format PAR or a 32-bit one, use arm_s1_regime_using_lpae_format().
This is not really the correct answer, because the PAR format
depends on the AT instruction being used, not just on the
translation regime. However getting this correct requires a
significant refactoring, so that get_phys_addr() returns raw
information about the fault which the caller can then assemble
into a suitable FSR/PAR/syndrome for its purposes, rather than
get_phys_addr() returning a pre-formatted FSR.
However this change at least improves the situation by making
the PAR work correctly for address translation operations done
at AArch64 EL2 on the EL2 translation regime. In particular,
this is necessary for Xen to be able to run in our emulation,
so this seems like a safer interim fix given that we are in freeze.
Backports commit 50cd71b0d347c74517dcb7da447fe657fca57d9c from qemu
The CPU ID registers ID_AA64PFR0_EL1, ID_PFR1_EL1 and ID_PFR1
have a field for reporting presence of GICv3 system registers.
We need to report this field correctly in order for Xen to
work as a guest inside QEMU emulation. We mustn't incorrectly
claim the sysregs exist when they don't, though, or Linux will
crash.
Unfortunately the way we've designed the GICv3 emulation in QEMU
puts the system registers as part of the GICv3 device, which
may be created after the CPU proper has been realized. This
means that we don't know at the point when we define the ID
registers what the correct value is. Handle this by switching
them to calling a function at runtime to read the value, where
we can fill in the GIC field appropriately.
Backports commit 96a8b92ed8f02d5e86ad380d3299d9f41f99b072 from qemu
On a successful address translation instruction, PAR is supposed to
contain cacheability and shareability attributes determined by the
translation. We previously returned 0 for these bits (in line with the
general strategy of ignoring caches and memory attributes), but some
guest OSes may depend on them.
This patch collects the attribute bits in the page-table walk, and
updates PAR with the correct attributes for all LPAE translations.
Short descriptor formats still return 0 for these bits, as in the
prior implementation.
Backports commit 5b2d261d60caf9d988d91ca1e02392d6fc8ea104 from qemu
Secure function return happens when a non-secure function has been
called using BLXNS and so has a particular magic LR value (either
0xfefffffe or 0xfeffffff). The function return via BX behaves
specially when the new PC value is this magic value, in the same
way that exception returns are handled.
Adjust our BX excret guards so that they recognize the function
return magic number as well, and perform the function-return
unstacking in do_v7m_exception_exit().
Backports commit d02a8698d7ae2bfed3b11fe5b064cb0aa406863b from qemu
Implement the SG instruction, which we emulate 'by hand' in the
exception handling code path.
Backports commit 333e10c51ef5876ced26f77b61b69ce0f83161a9 from qemu
Implement the security attribute lookups for memory accesses
in the get_phys_addr() functions, causing these to generate
various kinds of SecureFault for bad accesses.
The major subtlety in this code relates to handling of the
case when the security attributes the SAU assigns to the
address don't match the current security state of the CPU.
In the ARM ARM pseudocode for validating instruction
accesses, the security attributes of the address determine
whether the Secure or NonSecure MPU state is used. At face
value, handling this would require us to encode the relevant
bits of state into mmu_idx for both S and NS at once, which
would result in our needing 16 mmu indexes. Fortunately we
don't actually need to do this because a mismatch between
address attributes and CPU state means either:
* some kind of fault (usually a SecureFault, but in theory
perhaps a UserFault for unaligned access to Device memory)
* execution of the SG instruction in NS state from a
Secure & NonSecure code region
The purpose of SG is simply to flip the CPU into Secure
state, so we can handle it by emulating execution of that
instruction directly in arm_v7m_cpu_do_interrupt(), which
means we can treat all the mismatch cases as "throw an
exception" and we don't need to encode the state of the
other MPU bank into our mmu_idx values.
This commit doesn't include the actual emulation of SG;
it also doesn't include implementation of the IDAU, which
is a per-board way to specify hard-coded memory attributes
for addresses, which override the CPU-internal SAU if they
specify a more secure setting than the SAU is programmed to.
Backports commit 35337cc391245f251bfb9134f181c33e6375d6c1 from qemu
Add support for v8M and in particular the security extension
to the exception entry code. This requires changes to:
* calculation of the exception-return magic LR value
* push the callee-saves registers in certain cases
* clear registers when taking non-secure exceptions to avoid
leaking information from the interrupted secure code
* switch to the correct security state on entry
* use the vector table for the security state we're targeting
Backports commit d3392718e1fcf0859fb7c0774a8e946bacb8419c from qemu
For v8M, exceptions from Secure to Non-Secure state will save
callee-saved registers to the exception frame as well as the
caller-saved registers. Add support for unstacking these
registers in exception exit when necessary.
Backports commit 907bedb3f3ce134c149599bd9cb61856d811b8ca from qemu
In v8M, more bits are defined in the exception-return magic
values; update the code that checks these so we accept
the v8M values when the CPU permits them.
Backports commit bfb2eb52788b9605ef2fc9bc72683d4299117fde from qemu
In the v8M architecture, return from an exception to a PC which
has bit 0 set is not UNPREDICTABLE; it is defined that bit 0
is discarded [R_HRJH]. Restrict our complaint about this to v7M.
Backports commit 4e4259d3c574a8e89c3af27bcb84bc19a442efb1 from qemu
Attempting to do an exception return with an exception frame that
is not 8-aligned is UNPREDICTABLE in v8M; warn about this.
(It is not UNPREDICTABLE in v7M, and our implementation can
handle the merely-4-aligned case fine, so we don't need to
do anything except warn.)
Backports commit cb484f9a6e790205e69d9a444c3e353a3a1cfd84 from qemu
ARM v8M specifies that the INVPC usage fault for mismatched
xPSR exception field and handler mode bit should be checked
before updating the PSR and SP, so that the fault is taken
with the existing stack frame rather than by pushing a new one.
Perform this check in the right place for v8M.
Since v7M specifies in its pseudocode that this usage fault
check should happen later, we have to retain the original
code for that check rather than being able to merge the two.
(The distinction is architecturally visible but only in
very obscure corner cases like attempting an invalid exception
return with an exception frame in read only memory.)
Backports commit 224e0c300a0098fb577a03bd29d774d0769f632a from qemu
On exception return for v8M, the SPSEL bit in the EXC_RETURN magic
value should be restored to the SPSEL bit in the CONTROL register
banked specified by the EXC_RETURN.ES bit.
Add write_v7m_control_spsel_for_secstate() which behaves like
write_v7m_control_spsel() but allows the caller to specify which
CONTROL bank to use, reimplement write_v7m_control_spsel() in
terms of it, and use it in exception return.
Backports commit 3f0cddeee1f266d43c956581f3050058360a810d from qemu
Now that we can handle the CONTROL.SPSEL bit not necessarily being
in sync with the current stack pointer, we can restore the correct
security state on exception return. This happens before we start
to read registers off the stack frame, but after we have taken
possible usage faults for bad exception return magic values and
updated CONTROL.SPSEL.
Backports commit 3919e60b6efd9a86a0e6ba637aa584222855ac3a from qemu
In the v7M architecture, there is an invariant that if the CPU is
in Handler mode then the CONTROL.SPSEL bit cannot be nonzero.
This in turn means that the current stack pointer is always
indicated by CONTROL.SPSEL, even though Handler mode always uses
the Main stack pointer.
In v8M, this invariant is removed, and CONTROL.SPSEL may now
be nonzero in Handler mode (though Handler mode still always
uses the Main stack pointer). In preparation for this change,
change how we handle this bit: rename switch_v7m_sp() to
the now more accurate write_v7m_control_spsel(), and make it
check both the handler mode state and the SPSEL bit.
Note that this implicitly changes the point at which we switch
active SP on exception exit from before we pop the exception
frame to after it.
Backports commit de2db7ec894f11931932ca78cd14a8d2b1389d5b from qemu
Currently our M profile exception return code switches to the
target stack pointer relatively early in the process, before
it tries to pop the exception frame off the stack. This is
awkward for v8M for two reasons:
* in v8M the process vs main stack pointer is not selected
purely by the value of CONTROL.SPSEL, so updating SPSEL
and relying on that to switch to the right stack pointer
won't work
* the stack we should be reading the stack frame from and
the stack we will eventually switch to might not be the
same if the guest is doing strange things
Change our exception return code to use a 'frame pointer'
to read the exception frame rather than assuming that we
can switch the live stack pointer this early.
Backports commit 5b5223997c04b769bb362767cecb5f7ec382c5f0 from qemu
This properly forwards SMC events to EL2 when PSCI is provided by QEMU
itself and, thus, ARM_FEATURE_EL3 is off.
Found and tested with the Jailhouse hypervisor. Solution based on
suggestions by Peter Maydell.
Backports commit 77077a83006c3c9bdca496727f1735a3c5c5355d from qemu
In v8M the MSR and MRS instructions have extra register value
encodings to allow secure code to access the non-secure banked
version of various special registers.
(We don't implement the MSPLIM_NS or PSPLIM_NS aliases, because
we don't currently implement the stack limit registers at all.)
Backports commit 50f11062d4c896408731d6a286bcd116d1e08465 from qemu
In the v7M and v8M ARM ARM, the magic exception return values are
referred to as EXC_RETURN values, and in QEMU we use V7M_EXCRET_*
constants to define bits within them. Rename the 'type' variable
which holds the exception return value in do_v7m_exception_exit()
to excret, making it clearer that it does hold an EXC_RETURN value.
Backports commit 351e527a613147aa2a2e6910f92923deef27ee48 from qemu
The exception-return magic values get some new bits in v8M, which
makes some bit definitions for them worthwhile.
We don't use the bit definitions for the switch on the low bits
which checks the return type for v7M, because this is defined
in the v7M ARM ARM as a set of valid values rather than via
per-bit checks.
Backports commit 4d1e7a4745c050f7ccac49a1c01437526b5130b5 from qemu
In do_v7m_exception_exit(), there's no need to force the high 4
bits of 'type' to 1 when calling v7m_exception_taken(), because
we know that they're always 1 or we could not have got to this
"handle return to magic exception return address" code. Remove
the unnecessary ORs.
Backports commit 7115cdf5782922611bcc44c89eec5990db7f6466 from qemu
For a bus fault, the M profile BFSR bit PRECISERR means a bus
fault on a data access, and IBUSERR means a bus fault on an
instruction access. We had these the wrong way around; fix this.
Backports commit c6158878650c01b2c753b2ea7d0967c8fe5ca59e from qemu
For M profile we must clear the exclusive monitor on reset, exception
entry and exception exit. We weren't doing any of these things; fix
this bug.
Backports commit dc3c4c14f0f12854dbd967be3486f4db4e66d25b from qemu
Implement the BXNS v8M instruction, which is like BX but will do a
jump-and-switch-to-NonSecure if the branch target address has bit 0
clear.
This is the first piece of code which implements "switch to the
other security state", so the commit also includes the code to
switch the stack pointers around, which is the only complicated
part of switching security state.
BLXNS is more complicated than just "BXNS but set the link register",
so we leave it for a separate commit.
Backports commit fb602cb726b3ebdd01ef3b1732d74baf9fee7ec9 from qemu
Move the regime_is_secure() utility function to internals.h;
we are going to want to call it from translate.c.
Backports commit 61fcd69b0db268e7612b07fadc436b93def91768 from qemu
Make the CFSR register banked if v8M security extensions are enabled.
Not all the bits in this register are banked: the BFSR
bits [15:8] are shared between S and NS, and we store them
in the NS copy of the register.
Backports commit 334e8dad7a109d15cb20b090131374ae98682a50 from qemu
Make the CCR register banked if v8M security extensions are enabled.
This is slightly more complicated than the other "add banking"
patches because there is one bit in the register which is not
banked. We keep the live data in the NS copy of the register,
and adjust it on register reads and writes. (Since we don't
currently implement the behaviour that the bit controls, there
is nowhere else that needs to care.)
This patch includes the enforcement of the bits which are newly
RES1 in ARMv8M.
Backports commit 9d40cd8a68cfc7606f4548cc9e812bab15c6dc28 from qemu
Make the MPU registers MPU_MAIR0 and MPU_MAIR1 banked if v8M security
extensions are enabled.
We can freely add more items to vmstate_m_security without
breaking migration compatibility, because no CPU currently
has the ARM_FEATURE_M_SECURITY bit enabled and so this
subsection is not yet used by anything.
Backports commit 62c58ee0b24eafb44c06402fe059fbd7972eb409 from qemu
Make the FAULTMASK register banked if v8M security extensions are enabled.
Note that we do not yet implement the functionality of the new
AIRCR.PRIS bit (which allows the effect of the NS copy of FAULTMASK to
be restricted).
This patch includes the code to determine for v8M which copy
of FAULTMASK should be updated on exception exit; further
changes will be required to the exception exit code in general
to support v8M, so this is just a small piece of that.
The v8M ARM ARM introduces a notation where individual paragraphs
are labelled with R (for rule) or I (for information) followed
by a random group of subscript letters. In comments where we want
to refer to a particular part of the manual we use this convention,
which should be more stable across document revisions than using
section or page numbers.
Backports commit 42a6686b2f6199d086a58edd7731faeb2dbe7c14 from qemu
Make the PRIMASK register banked if v8M security extensions are enabled.
Note that we do not yet implement the functionality of the new
AIRCR.PRIS bit (which allows the effect of the NS copy of PRIMASK to
be restricted).
Backports commit 6d8048341995b31a77dc2e0dcaaf4e3df0e3121a from qemu
Make the BASEPRI register banked if v8M security extensions are enabled.
Note that we do not yet implement the functionality of the new
AIRCR.PRIS bit (which allows the effect of the NS copy of BASEPRI to
be restricted).
Backports commit acf949411ffb675edbfb707e235800b02e6a36f8 from qemu
Now that MPU lookups can return different results for v8M
when the CPU is in secure vs non-secure state, we need to
have separate MMU indexes; add the secure counterparts
to the existing three M profile MMU indexes.
Backports commit 66787c7868d05d29974e09201611b718c976f955 from qemu
Add a utility function for testing whether the CPU is in Handler
mode; this is just a check whether v7m.exception is non-zero, but
we do it in several places and it makes the code a bit easier
to read to not have to mentally figure out what the test is testing.
Backports commit 15b3f556bab4f961bf92141eb8521c8da3df5eb2 from qemu
For v7M, writes to the CONTROL register are only permitted for
privileged code. However even if the code is privileged, the
write must not affect the SPSEL bit in the CONTROL register
if the CPU is in Thread mode (as documented in the pseudocode
for the MSR instruction). Implement this, instead of permitting
SPSEL to be written in all cases.
This was causing mbed applications not to run, because the
RTX RTOS they use relies on this behaviour.
Backports commit 792dac309c8660306557ba058b8b5a6a75ab3c1f from qemu
Move the code in arm_v7m_cpu_do_interrupt() that calculates the
magic LR value down to when we're actually going to use it.
Having the calculation and use so far apart makes the code
a little harder to understand than it needs to be.
Backports commit bd70b29ba92e4446f9e4eb8b9acc19ef6ff4a4d5 from qemu
We currently store the M profile CPU register state PRIMASK and
FAULTMASK in the daif field of the CPU state in its I and F
bits. This is a legacy from the original implementation, which
tried to share the cpu_exec_interrupt code between A profile
and M profile. We've since separated out the two cases because
they are significantly different, so now there is no common
code between M and A profile which looks at env->daif: all the
uses are either in A-only or M-only code paths. Sharing the state
fields now is just confusing, and will make things awkward
when we implement v8M, where the PRIMASK and FAULTMASK
registers are banked between security states.
Switch M profile over to using v7m.faultmask and v7m.primask
fields for these registers.
Backports commit e6ae5981ea4b0f6feb223009a5108582e7644f8f from qemu
The M profile XPSR is almost the same format as the A profile CPSR,
but not quite. Define some XPSR_* macros and use them where we
definitely dealing with an XPSR rather than reusing the CPSR ones.
Backports commit 987ab45e108953c1c98126c338c2119c243c372b from qemu
When we switched our handling of exception exit to detect
the magic addresses at translate time rather than via
a do_unassigned_access hook, we forgot to update a
comment; correct the omission.
Backports commit 9d17da4b68a05fc78daa47f0f3d914eea5d802ea from qemu
Currently get_phys_addr() has PMSAv7 handling before the
"is translation disabled?" check, and then PMSAv5 after it.
Tidy this up by making the PMSAv5 code handle the "MPU disabled"
case itself, so that we have all the PMSA code in one place.
This will make adding the PMSAv8 code slightly cleaner, and
also means that pre-v7 PMSA cores benefit from the MPU lookup
logging that the PMSAv7 codepath had.
Backports commit 3279adb95e34dd3d67c66d729458f7784747cf8d from qemu
In the ARM get_phys_addr() code, switch to using the MMUAccessType
enum and its MMU_* values rather than int and literal 0/1/2.
Backports commit 03ae85f858fc46495258a5dd4551fff2c34bd495 from qemu
When the PMSAv7 implementation was originally added it was for R profile
CPUs only, and reset was handled using the cpreg .resetfn hooks.
Unfortunately for M profile cores this doesn't work, because they do
not register any cpregs. Move the reset handling into arm_cpu_reset(),
where it will work for both R profile and M profile cores.
Backports commit 69ceea64bf565559a2b865ffb2a097d2caab805b from qemu
Almost all of the PMSAv7 state is in the pmsav7 substruct of
the ARM CPU state structure. The exception is the region
number register, which is in cp15.c6_rgnr. This exception
is a bit odd for M profile, which otherwise generally does
not store state in the cp15 substruct.
Rename cp15.c6_rgnr to pmsav7.rnr accordingly.
Backports commit 8531eb4f614a60e6582d4832b15eee09f7d27874 from qemu
For an M profile v7PMSA, the system space (0xe0000000 - 0xffffffff) can
never be executable, even if the guest tries to set the MPU registers
up that way. Enforce this restriction.
Backports commit bf446a11dfb17ae7d8ed2b61a2444804eb458075 from qemu
The M profile PMSAv7 specification says that if the address being looked
up is in the PPB region (0xe0000000 - 0xe00fffff) then we do not use
the MPU regions but always use the default memory map. Implement this
(we were previously behaving like an R profile PMSAv7, which does not
special case this).
Backports commit 38aaa60ca464b48e6feef346709e97335d01b289 from qemu
Correct off-by-one bug in the PSMAv7 MPU tracing where it would print
a write access as "reading", an insn fetch as "writing", and a read
access as "execute".
Since we have an MMUAccessType enum now, we can make the code clearer
in the process by using that rather than the raw 0/1/2 values.
Backports commit 709e4407add7acacc593cb6cdac026558c9a8fb6 from qemu
M profile doesn't implement ARM, and the architecturally required
behaviour for attempts to execute with the Thumb bit clear is to
generate a UsageFault with the CFSR INVSTATE bit set. We were
incorrectly implementing this as generating an UNDEFINSTR UsageFault;
fix this.
Backports commit e13886e3a790b52f0b2e93cb5e84fdc2ada5471a from qemu
Implement the exception return consistency checks
described in the v7M pseudocode ExceptionReturn().
Inspired by a patch from Michael Davidsaver's series, but
this is a reimplementation from scratch based on the
ARM ARM pseudocode.
Backports commit aa488fe3bb5460c6675800ccd80f6dccbbd70159 from qemu
Extract the code from the tail end of arm_v7m_do_interrupt() which
enters the exception handler into a pair of utility functions
v7m_exception_taken() and v7m_push_stack(), which correspond roughly
to the pseudocode PushStack() and ExceptionTaken().
This also requires us to move the arm_v7m_load_vector() utility
routine up so we can call it.
Handling illegal exception returns has some cases where we want to
take a UsageFault either on an existing stack frame or with a new
stack frame but with a specific LR value, so we want to be able to
call these without having to go via arm_v7m_cpu_do_interrupt().
Backports commit 39ae2474e337247e5930e8be783b689adc9f6215 from qemu
All the places in armv7m_cpu_do_interrupt() which pend an
exception in the NVIC are doing so for synchronous
exceptions. We know that we will always take some
exception in this case, so we can just acknowledge it
immediately, rather than returning and then immediately
being called again because the NVIC has raised its outbound
IRQ line.
Backports commit a25dc805e2e63a55029e787a52335e12dabf07dc from qemu
Implement HFNMIENA support for the M profile MPU. This bit controls
whether the MPU is treated as enabled when executing at execution
priorities of less than zero (in NMI, HardFault or with the FAULTMASK
bit set).
Doing this requires us to use a different MMU index for "running
at execution priority < 0", because we will have different
access permissions for that case versus the normal case.
Backports commit 3bef7012560a7f0ea27b265105de5090ba117514 from qemu
The M series MPU is almost the same as the already implemented R
profile MPU (v7 PMSA). So all we need to implement here is the MPU
register interface in the system register space.
This implementation has the same restriction as the R profile MPU
that it doesn't permit regions to be sized down smaller than 1K.
We also do not yet implement support for MPU_CTRL.HFNMIENA; this
bit should if zero disable use of the MPU when running HardFault,
NMI or with FAULTMASK set to 1 (ie at an execution priority of
less than zero) -- if the MPU is enabled we don't treat these
cases any differently.
Backports commit 29c483a506070e8f554c77d22686f405e30b9114 from qemu
General logic is that operations stopped by the MPU are MemManage,
and those which go through the MPU and are caught by the unassigned
handle are BusFault. Distinguish these by looking at the
exception.fsr values, and set the CFSR bits and (if appropriate)
fill in the BFAR or MMFAR with the exception address.
Backports commit 5dd0641d234e355597be62e5279d8a519c831625 from qemu
Add support for the M profile default memory map which is used
if the MPU is not present or disabled.
The main differences in behaviour from implementing this
correctly are that we set the PAGE_EXEC attribute on
the right regions of memory, such that device regions
are not executable.
Backports commit 3a00d560bcfca7ad04327062c1986a016c104b1f from qemu
Improve the "-d mmu" tracing for the PMSAv7 MPU translation
process as an aid in debugging guest MPU configurations:
* fix a missing newline for a guest-error log
* report the region number with guest-error or unimp
logs of bad region register values
* add a log message for the overall result of the lookup
* print "0x" prefix for hex values
Backports commit c9f9f1246d630960bce45881e9c0d27b55be71e2 from qemu
Now that we enforce both:
* pmsav7_dregion == 0 implies has_mpu == false
* PMSA with has_mpu == false means SCTLR.M cannot be set
we can remove a check on pmsav7_dregion from get_phys_addr_pmsav7(),
because we can only reach this code path if the MPU is enabled
(and so region_translation_disabled() returned false).
Backports commit e9235c6983b261e04e897e8ff900b2b7a391e644 from qemu
If the CPU is a PMSA config with no MPU implemented, then the
SCTLR.M bit should be RAZ/WI, so that the guest can never
turn on the non-existent MPU.
Backports commit 06312febfb2d35367006ef23608ddd6a131214d4 from qemu
ARM CPUs come in two flavours:
* proper MMU ("VMSA")
* only an MPU ("PMSA")
For PMSA, the MPU may be implemented, or not (in which case there
is default "always acts the same" behaviour, but it isn't guest
programmable).
QEMU is a bit confused about how we indicate this: we have an
ARM_FEATURE_MPU, but it's not clear whether this indicates
"PMSA, not VMSA" or "PMSA and MPU present" , and sometimes we
use it for one purpose and sometimes the other.
Currently trying to implement a PMSA-without-MPU core won't
work correctly because we turn off the ARM_FEATURE_MPU bit
and then a lot of things which should still exist get
turned off too.
As the first step in cleaning this up, rename the feature
bit to ARM_FEATURE_PMSA, which indicates a PMSA CPU (with
or without MPU).
Backports commit 452a095526a0537f16c271516a2200877a272ea8 from qemu
Make M profile use completely separate ARMMMUIdx values from
those that A profile CPUs use. This is a prelude to adding
support for the MPU and for v8M, which together will require
6 MMU indexes which don't map cleanly onto the A profile
uses:
non secure User
non secure Privileged
non secure Privileged, execution priority < 0
secure User
secure Privileged
secure Privileged, execution priority < 0
Backports commit e7b921c2d9efc249f99b9feb0e7dca82c96aa5c4 from qemu
The v7M exception architecture requires that if a synchronous
exception cannot be taken immediately (because it is disabled
or at too low a priority) then it should be escalated to
HardFault (and the HardFault exception is then taken).
Implement this escalation logic.
Backports commit a73c98e159d18155445d29b6044be6ad49fd802f from qemu
The M profile CPU's MPU has an awkward corner case which we
would like to implement with a different MMU index.
We can avoid having to bump the number of MMU modes ARM
uses, because some of our existing MMU indexes are only
used by non-M-profile CPUs, so we can borrow one.
To avoid that getting too confusing, clean up the code
to try to keep the two meanings of the index separate.
Instead of ARMMMUIdx enum values being identical to core QEMU
MMU index values, they are now the core index values with some
high bits set. Any particular CPU always uses the same high
bits (so eventually A profile cores and M profile cores will
use different bits). New functions arm_to_core_mmu_idx()
and core_to_arm_mmu_idx() convert between the two.
In general core index values are stored in 'int' types, and
ARM values are stored in ARMMMUIdx types.
Backports commit 8bd5c82030b2cb09d3eef6b444f1620911cc9fc5 from qemu
The excnames[] array is defined in internals.h because we used
to use it from two different source files for handling logging
of AArch32 and AArch64 exception entry. Refactoring means that
it's now used only in arm_log_exception() in helper.c, so move
the array into that function.
Backports commit 2c4a7cc5afb1bfc1728a39abd951ddd7714c476e from qemu
Our implementation of writes to the APSR for M-profile via the MSR
instruction was badly broken.
First and worst, we had the sense wrong on the test of bit 2 of the
SYSm field -- this is supposed to request an APSR write if bit 2 is 0
but we were doing it if bit 2 was 1. This bug was introduced in
commit 58117c9bb429cd, so hasn't been in a QEMU release.
Secondly, the choice of exactly which parts of APSR should be written
is defined by bits in the 'mask' field. We were not passing these
through from instruction decode, making it impossible to check them
in the helper.
Pass the mask bits through from the instruction decode to the helper
function and process them appropriately; fix the wrong sense of the
SYSm bit 2 check.
Invalid mask values and invalid combinations of mask and register
number are UNPREDICTABLE; we choose to treat them as if the mask
values were valid.
Backports commit b28b3377d7e9ba35611d454d5a63ef50cab1f8c5 from qemu
For v7M attempts to access a nonexistent coprocessor are reported
differently from plain undefined instructions (as UsageFaults of type
NOCP rather than type UNDEFINSTR). Split them out into a new
EXCP_NOCP so we can report the FSR value correctly.
Backports commit 7517748e3f71a3099e57915fba95c4c308e6d842 from qemu
When we take an exception for an undefined instruction, set the
appropriate CFSR bit.
Backports commit 81dd9648c69bb89afdd6f4bb3ed6f3efdac96524 from qemu
The CCR.STACKALIGN bit controls whether the CPU is supposed to force
8-alignment of the stack pointer on entry to the exception handler.
Backports commit dc858c6633a9af8b80c1509cf6f825e4390d3ad1 from qemu
Give an explicit error and abort when a load
from the vector table fails. Architecturally this
should HardFault (which will then immediately
fail to load the HardFault vector and go into Lockup).
Since we don't model Lockup, just report this guest
error via cpu_abort(). This is more helpful than the
previous behaviour of reading a zero, which is the
address of the reset stack pointer and not a sensible
location to jump to.
Backports commit 1b9ea408fca1ce8caae67b792355b023c69c5ac5 from qemu
The MRS and MSR instruction handling has a number of flaws:
* unprivileged accesses should only be able to read
CONTROL and the xPSR subfields, and only write APSR
(others RAZ/WI)
* privileged access should not be able to write xPSR
subfields other than APSR
* accesses to unimplemented registers should log as
guest errors, not abort QEMU
Backports commit 58117c9bb429cd9552d998687aa99088eb1d8528 from qemu
The v7m CONTROL register bit 1 is SPSEL, which indicates
the stack being used. We were storing this information
not in v7m.control but in the separate v7m.other_sp
structure field. Unfortunately, the code handling reads
of the CONTROL register didn't take account of this, and
so if SPSEL was updated by an exception entry or exit then
a subsequent guest read of CONTROL would get the wrong value.
Using a separate structure field doesn't really gain us
anything in efficiency, so drop this unnecessary complexity
in favour of simply storing all the bits in v7m.control.
This is a migration compatibility break for M profile
CPUs only.
Backports commit abc24d86cc0364f402e438fae3acb14289b40734 from qemu
In armv8, this register implements more than a single bit, with
fine-grained enables for read access to event counters, cycles
counters, and write access to the software increment. This change
implements those checks using custom access functions for the relevant
registers.
Backports commit 6ecd0b6ba0591ef280ed984103924d4bdca5ac32 from qemu
..just like the rest of the displayed ESR register. Otherwise people
might scratch their heads if a not obviously hex number is displayed
for the EC field.
Backports commit 6568da459b611845ef55526cd23afc9fa9f4647f from qemu
While the vargs approach was flexible the original MTTCG ended up
having munge the bits to a bitmap so the data could be used in
deferred work helpers. Instead of hiding that in cputlb we push the
change to the API to make it take a bitmap of MMU indexes instead.
For ARM some the resulting flushes end up being quite long so to aid
readability I've tended to move the index shifting to a new line so
all the bits being or-ed together line up nicely, for example:
tlb_flush_page_by_mmuidx(other_cs, pageaddr,
(1 << ARMMMUIdx_S1SE1) |
(1 << ARMMMUIdx_S1SE0));
Backports commit 0336cbf8532935d8e23c2aabf3e2ce2c0697b6ac from qemu
This patch contains several fixes to enable vPMU under TCG mode. It
first removes the checking of kvm_enabled() while unsetting
ARM_FEATURE_PMU. With it, the .pmu option can be used to turn on/off vPMU
under TCG mode. Secondly the PMU node of DT table is now created under TCG.
The last fix is to disable the masking of PMUver field of ID_AA64DFR0_EL1.
Backports commit d6f02ce3b8a43ddd8f83553fe754a34b26fb273f from qemu
In order to support Linux perf, which uses PMXEVTYPER register,
this patch adds read/write access support for PMXEVTYPER. The access
is CONSTRAINED UNPREDICTABLE when PMSELR is not 0x1f. Additionally
this patch adds support for PMXEVTYPER_EL0.
Backports commit fdb8665672ded05f650d18f8b62d5c8524b4385b from qemu
This patch adds support for AArch64 register PMSELR_EL0. The existing
PMSELR definition is revised accordingly.
Backports commit 6b0407805d46bbeba70f4be426285d0a0e669750 from qemu
We only use the IS_M() macro in two places, and it's a bit of a
namespace grab to put in cpu.h. Drop it in favour of just explicitly
calling arm_feature() in the places where it was used.
Backports commit 531c60a97ab51618b4b9ccef1c5fe00607079706 from qemu
The DBGVCR_EL2 system register is needed to run a 32-bit
EL1 guest under a Linux EL2 64-bit hypervisor. Its only
purpose is to provide AArch64 with access to the state of
the DBGVCR AArch32 register. Since we only have a dummy
DBGVCR, implement a corresponding dummy DBGVCR32_EL2.
Backports commit 4d2ec4da1c2d60c9fd8bad137506870c2f980410 from qemu
To run a VM in 32-bit EL1 our AArch32 interrupt handling code
needs to be able to cope with VIRQ and VFIQ exceptions.
These behave like IRQ and FIQ except that we don't need to try
to route them to Monitor mode.
Backports commit 87a4b270348c69a446ebcddc039bfae31b1675cb from qemu
We've currently got 18 architectures in QEMU, and thus 18 target-xxx
folders in the root folder of the QEMU source tree. More architectures
(e.g. RISC-V, AVR) are likely to be included soon, too, so the main
folder of the QEMU sources slowly gets quite overcrowded with the
target-xxx folders.
To disburden the main folder a little bit, let's move the target-xxx
folders into a dedicated target/ folder, so that target-xxx/ simply
becomes target/xxx/ instead.
Backports commit fcf5ef2ab52c621a4617ebbef36bf43b4003f4c0 from qemu