In arm_cpu_realizefn() we make several assertions about the values of
guest ID registers:
* if the CPU provides AArch32 v7VE or better it must advertise the
ARM_DIV feature
* if the CPU provides AArch32 A-profile v6 or better it must
advertise the Jazelle feature
These are essentially consistency checks that our ID register
specifications in cpu.c didn't accidentally miss out a feature,
because increasingly the TCG emulation gates features on the values
in ID registers rather than using old-style checks of ARM_FEATURE_FOO
bits.
Unfortunately, these asserts can cause problems if we're running KVM,
because in that case we don't control the values of the ID registers
-- we read them from the host kernel. In particular, if the host
kernel is older than 4.15 then it doesn't expose the ID registers via
the KVM_GET_ONE_REG ioctl, and we set up dummy values for some
registers and leave the rest at zero. (See the comment in
target/arm/kvm64.c kvm_arm_get_host_cpu_features().) This set of
dummy values is not sufficient to pass our assertions, and so on
those kernels running an AArch32 guest on AArch64 will assert.
We could provide a more sophisticated set of dummy ID registers in
this case, but that still leaves the possibility of a host CPU which
reports bogus ID register values that would cause us to assert. It's
more robust to only do these ID register checks if we're using TCG,
as that is the only case where this is truly a QEMU code bug.
Backports commit 8f4821d77e465bc2ef77302d47640d5a43d92b30 from qemu
Reported by GCC9 when building with -Wimplicit-fallthrough=2:
target/arm/helper.c: In function ‘arm_cpu_do_interrupt_aarch32_hyp’:
target/arm/helper.c:7958:14: error: this statement may fall through [-Werror=implicit-fallthrough=]
7958 | addr = 0x14;
| ~~~~~^~~~~~
target/arm/helper.c:7959:5: note: here
7959 | default:
| ^~~~~~~
cc1: all warnings being treated as errors
Backports commit 9bbb4ef991fa93323f87769a6e217c2b9273a128 from qemu
pconfig feature was added in 5131dc433df and removed in 712f807e196.
This patch mark this feature as known to QEMU and removed by
intentinally. This follows the convention of 9ccb9784b57 and f1a23522b03
dealing with 'osxsave' and 'ospke'.
Backports commit 2924ab02c28ce8d32da144a6ae8bfc5a8d7e072b from qemu
The memory region reference is increased when insert a range
into flatview range array, then decreased by destroy flatview.
If some flat range merged by flatview_simplify, the memory region
reference can not be decreased by destroy flatview any more.
In this case, start virtual machine by the command line:
qemu-system-x86_64
-name guest=ubuntu,debug-threads=on
-machine pc,accel=kvm,usb=off,dump-guest-core=off
-cpu host
-m 16384
-realtime mlock=off
-smp 8,sockets=2,cores=4,threads=1
-object memory-backend-file,id=ram-node0,prealloc=yes,mem-path=/dev/hugepages,share=yes,size=8589934592
-numa node,nodeid=0,cpus=0-3,memdev=ram-node0
-object memory-backend-file,id=ram-node1,prealloc=yes,mem-path=/dev/hugepages,share=yes,size=8589934592
-numa node,nodeid=1,cpus=4-7,memdev=ram-node1
-no-user-config
-nodefaults
-rtc base=utc
-no-shutdown
-boot strict=on
-device piix3-usb-uhci,id=usb,bus=pci.0,addr=0x1.0x2
-device virtio-scsi-pci,id=scsi0,bus=pci.0,addr=0x2
-device virtio-serial-pci,id=virtio-serial0,bus=pci.0,addr=0x3
-drive file=ubuntu.qcow2,format=qcow2,if=none,id=drive-virtio-disk0,cache=none,aio=native
-device virtio-blk-pci,scsi=off,bus=pci.0,addr=0x4,drive=drive-virtio-disk0,id=virtio-disk0,bootindex=1
-chardev pty,id=charserial0
-device isa-serial,chardev=charserial0,id=serial0
-device usb-tablet,id=input0,bus=usb.0,port=1
-vnc 0.0.0.0:0
-device VGA,id=video0,vgamem_mb=16,bus=pci.0,addr=0x5
-device virtio-balloon-pci,id=balloon0,bus=pci.0,addr=0x6
-msg timestamp=on
And run the script in guest OS:
while true
do
setpci -s 00:06.0 04.b=03
setpci -s 00:06.0 04.b=07
done
I found the reference of node0 HostMemoryBackendFile is a big one.
(gdb) p numa_info[0]->node_memdev->parent.ref
$6 = 1636278
(gdb)
Backports commit 838ec1177c45812ff177a35ff93990e9eb7f70c3 from qemu
In the M-profile architecture, when we do a vector table fetch and it
fails, we need to report a HardFault. Whether this is a Secure HF or
a NonSecure HF depends on several things. If AIRCR.BFHFNMINS is 0
then HF is always Secure, because there is no NonSecure HardFault.
Otherwise, the answer depends on whether the 'underlying exception'
(MemManage, BusFault, SecureFault) targets Secure or NonSecure. (In
the pseudocode, this is handled in the Vector() function: the final
exc.isSecure is calculated by looking at the exc.isSecure from the
exception returned from the memory access, not the isSecure input
argument.)
We weren't doing this correctly, because we were looking at
the target security domain of the exception we were trying to
load the vector table entry for. This produces errors of two kinds:
* a load from the NS vector table which hits the "NS access
to S memory" SecureFault should end up as a Secure HardFault,
but we were raising an NS HardFault
* a load from the S vector table which causes a BusFault
should raise an NS HardFault if BFHFNMINS == 1 (because
in that case all BusFaults are NonSecure), but we were raising
a Secure HardFault
Correct the logic.
We also fix a comment error where we claimed that we might
be escalating MemManage to HardFault, and forgot about SecureFault.
(Vector loads can never hit MPU access faults, because they're
always aligned and always use the default address map.)
Backports commit 51c9122e92b776a3f16af0b9282f1dc5012e2a19 from qemu
The ARMv5 architecture didn't specify detailed per-feature ID
registers. Now that we're using the MVFR0 register fields to
gate the existence of VFP instructions, we need to set up
the correct values in the cpu->isar structure so that we still
provide an FPU to the guest.
This fixes a regression in the arm926 and arm1026 CPUs, which
are the only ones that both have VFP and are ARMv5 or earlier.
This regression was introduced by the VFP refactoring, and more
specifically by commits 1120827fa182f0e76 and 266bd25c485597c,
which accidentally disabled VFP short-vector support and
double-precision support on these CPUs.
Backports commit cb7cef8b32033f6284a47d797edd5c19c5491698 from qemu
When we converted to using feature bits in 602f6e42cfbf we missed out
the fact (dp && arm_dc_feature(s, ARM_FEATURE_V8)) was supported for
-cpu max configurations. This caused a regression in the GCC test
suite. Fix this by setting the appropriate bits in mvfr1.FPHP to
report ARMv8-A with FP support (but not ARMv8.2-FP16).
Fixes: https://bugs.launchpad.net/qemu/+bug/1836078
Backports commit 45b1a243b81a7c9ae56235937280711dd9914ca7 from qemu
We have some potential race conditions vs our user-exec signal
handler that will be solved with this barrier.
Backports commit 359896dfa4e9707e1acea99129d324250fccab04 from qemu
This patch fixes two problems:
(1) The inputs to the EXTR insn were reversed,
(2) The input constraints use rZ, which means that we need to use
the REG0 macro in order to supply XZR for a constant 0 input.
Fixes: 464c2969d5d
Backports commit 1789d4274b851fb8fdf4a947ce5474c63e813d0d from qemu
On a 64-bit host, discard any replications of the 32-bit
sign bit when performing the shift and merge.
Backports commit 80f4d7c3ae216c191fb403e149bcba88d6aa40bb from qemu
This operation can always be emitted, even if we need to
fall back to xor. Adjust the assertions to match.
Backports commit 11978f6f58f1d3d66429f7ff897524f693d823ce from qemu
In commit e9d652824b0 we extracted the vfp_set_fpscr_to_host()
function but failed at calling it in the correct place, we call
it after xregs[ARM_VFP_FPSCR] is modified.
Fix by calling this function before we update FPSCR.
Backports commit 85795187f416326f87177cabc39fae1911f04c50 from qemu
Off by one error in the EL2 and EL3 tests. Remove the test
against EL3 entirely, since it must always be true.
Backports commit 6a02a73211c5bc634fccd652777230954b83ccba from qemu
Add new version of Cascadelake-Server CPU model, setting
stepping=5 and enabling the IA32_ARCH_CAPABILITIES MSR
with some flags.
The new feature will introduce a new host software requirement,
breaking our CPU model runnability promises. This means we can't
enable the new CPU model version by default in QEMU 4.1, because
management software isn't ready yet to resolve CPU model aliases.
This is why "pc-*-4.1" will keep returning Cascadelake-Server-v1
if "-cpu Cascadelake-Server" is specified.
Includes a test case to ensure the right combinations of
machine-type + CPU model + command-line feature flags will work
as expected.
Backports commit fd63c6d1a5f77d689ee06f6561677c012a988223 from qemu
The old CPU models will be just aliases for specific versions of
the original CPU models.
Backports commit 53db89d93bebe70a3e7f4c45933deffcf3e7cb62 from qemu
Add versions of CPU models that are equivalent to their -IBRS,
-noTSX and -IBRS variants.
The separate variants will eventually be removed and become
aliases for these CPU versions.
Backports commit d86a708815c3bec0b934760e6bdab7eb647087b8 from qemu
Add support for registration of multiple versions of CPU models.
The existing CPU models will be registered with a "-v1" suffix.
The -noTSX, -IBRS, and -IBPB CPU model variants will become
versions of the original models in a separate patch, so
make sure we register no versions for them.
Backports commit dcafd1ef0af227ef87f7a6dec8fc66d7d2e2442d from qemu
The CPUID.1F as Intel V2 Extended Topology Enumeration Leaf would be
exposed if guests want to emulate multiple software-visible die within
each package. Per Intel's SDM, the 0x1f is a superset of 0xb, thus they
can be generated by almost same code as 0xb except die_offset setting.
If the number of dies per package is greater than 1, the cpuid_min_level
would be adjusted to 0x1f regardless of whether the host supports CPUID.1F.
Likewise, the CPUID.1F wouldn't be exposed if env->nr_dies < 2.
Backports commit a94e1428991f741e2c6636e7c8df7f8d1905d983 from qemu
In new sockets/dies/cores/threads model, the apicid of logical cpu could
imply die level info of guest cpu topology thus x86_apicid_from_cpu_idx()
need to be refactored with #dies value, so does apicid_*_offset().
To keep semantic compatibility, the legacy pkg_offset which helps to
generate CPUIDs such as 0x3 for L3 cache should be mapping to die_offset.
Backports commit d65af288a84d8bf8c27e55d45545f52f016c08a7 from qemu
The field die_id (default as 0) and has_die_id are introduced to X86CPU.
Following the legacy smp check rules, the die_id validity is added to
the same contexts as leagcy smp variables such as hmp_hotpluggable_cpus(),
machine_set_cpu_numa_node(), cpu_slot_to_string() and pc_cpu_pre_plug().
Backports relevant bits from 176d2cda0dee9f4f78f604ad72d6a111e8e38f3b
from qemu
The die-level as the first PC-specific cpu topology is added to the leagcy
cpu topology model, which has one die per package implicitly and only the
numbers of sockets/cores/threads are configurable.
In the new model with die-level support, the total number of logical
processors (including offline) on board will be calculated as:
\#cpus = #sockets * #dies * #cores * #threads
and considering compatibility, the default value for #dies would be
initialized to one in x86_cpu_initfn() and pc_machine_initfn().
Backports commit c26ae610811e8d52f4fc73e3ae0a8bc4a24d6763 from qemu
Coverity points out (CID 1402195) that the loop in trans_VMOV_imm_dp()
that iterates over the destination registers in a short-vector VMOV
accidentally throws away the returned updated register number
from vfp_advance_dreg(). Add the missing assignment. (We got this
correct in trans_VMOV_imm_sp().)
Backports commit 89a11ff756410aecb87d2c774df6e45dbf4105c1 from qemu
Thumb instructions in an IT block are set up to be conditionally
executed depending on a set of condition bits encoded into the IT
bits of the CPSR/XPSR. The architecture specifies that if the
condition bits are 0b1111 this means "always execute" (like 0b1110),
not "never execute"; we were treating it as "never execute". (See
the ConditionHolds() pseudocode in both the A-profile and M-profile
Arm ARM.)
This is a bit of an obscure corner case, because the only legal
way to get to an 0b1111 set of condbits is to do an exception
return which sets the XPSR/CPSR up that way. An IT instruction
which encodes a condition sequence that would include an 0b1111 is
UNPREDICTABLE, and for v8A the CONSTRAINED UNPREDICTABLE choices
for such an IT insn are to NOP, UNDEF, or treat 0b1111 like 0b1110.
Add a comment noting that we take the latter option.
Backports commit 5529de1e5512c05276825fa8b922147663fd6eac from qemu
In the various helper functions for v7M/v8M instructions, use
the _ra versions of cpu_stl_data() and friends. Otherwise we
may get wrong behaviour or an assert() due to not being able
to locate the TB if there is an exception on the memory access
or if it performs an IO operation when in icount mode
Backports commit 2884fbb60412049ec92389039ae716b32057382e from qemu
In preparation for supporting TCG disablement on ARM, we move most
of TCG related v7m/v8m helpers and APIs into their own file.
Note: It is easier to review this commit using the 'histogram'
diff algorithm:
$ git diff --diff-algorithm=histogram ...
or
$ git diff --histogram ...
Backports commit 7aab5a8c8bb525ea390b4ebc17ab82c0835cfdb6 from qemu
Semihosting hooks either SVC or HLT instructions, and inside KVM
both of those go to EL1, ie to the guest, and can't be trapped to
KVM.
Let check_for_semihosting() return False when not running on TCG.
backports commit 91f78c58da9ba78c8ed00f5d822b701765be8499 from qemu
We make a few sub-directories recursively, in particular
$(TARGET_DIRS).
For goal "all", we do it the nice way: "all" has a prerequisite
subdir-T for each T in $(TARGET_DIRS), and T's recipe runs make
recursively. Behaves nicely with -j and -k.
For other goals such as "clean" and "install", the recipe runs make
recursively in a for loop. Ignores -j and -k.
The next commit will fix that for "clean" and "install". This commit
prepares the ground by renaming the targets we use for "all" to
include the goal for the sub-make. This will permit reusing them for
goals other than "all".
Targets subdir-T for T in $(TARGET_DIRS) run "make all" in T. Rename
to T/all, and declare phony.
Targets romsubdir-R for R in $(ROMS) run "make" in pc-bios/R. Default
goal is "all" for all R. Rename to pc-bios/R/all, and declare phony.
The remainder are renamed just for consistency.
Target subdir-dtc runs "make libbft/libfdt.a" in dtc. Rename to
dtc/all, and declare phony.
Target subdir-capstone runs make $(BUILD_DIR)/capstone/$(LIBCAPSTONE)
in $(SRC_PATH)/capstone. Rename to capstone/all, and declare phony.
Target subdir-slirp runs "make" in $(SRC_PATH)/slirp. Default goal is
all, which builds $(BUILD_DIR)/libslirp.a. Rename to slirp/all, and
declare phony.
Backports commit 3b8593eeaa5778ae118f0cc2837e615acd13baeb from qemu
When commit bdf523e6923 made configure generate config.status, it
added a fallback to Makefile to smooth the transition, with a TODO
"code can be removed after QEMU 1.7." It's been more than five years.
Remove it.
Backports commit cdb69b08f984b7cca2acb1989c8eae79390a23f3 from qemu
This prevents a load reservation from being placed in one context/process,
then being used in another, resulting in an SC succeeding incorrectly and
breaking atomics.
Backports commit c13b169f1a3dd158d6c75727cdc388f95988db39 from qemu
The various CSR instructions have been split out of the base ISA as part
of the ratification process. This patch adds a Zicsr argument, which
disables all the CSR instructions.
Backports commit 591bddea8d874e1500921de0353818e5586618f5 from qemu
fence.i has been split out of the base ISA as part of the ratification
process. This patch adds a Zifencei argument, which disables the
fence.i instruction.
Backports commit 50fba816cd226001bec3e495c39879deb2fa5432 from qemu
Set the priv spec version 1.11.0 as the default and allow selecting it
via the command line.
Backports commit e3147506b02edcdd7c14ebb41a10fcc3027dcc5c from qemu
1.11 defines mcountinhibit, which has the same numeric CSR value as
mucounteren from 1.09.1 but has different semantics. This patch enables
the CSR for 1.11-based targets, which is trivial to implement because
the counters in QEMU never tick (legal according to the spec).
Backports commit 747a43e818dc36bd50ef98c2b11a7c31ceb810fa from qemu
Restructure the deprecated CPUs to make it clear in the code that these
are depreated. They are already marked as deprecated in
qemu-deprecated.texi. There are no functional changes.
Backports commit c1fb65e63cfca4506a14b084afd0eca2dc464fe8 from qemu
The current implementation returns 1 (PMP check success) if the address is in
range even if the PMP entry is off. This is a bug.
For example, if there is a PMP check in S-Mode which is in range, but its PMP
entry is off, this will succeed, which it should not.
The patch fixes this bug by only checking the PMP permissions if the address is
in range and its corresponding PMP entry it not off. Otherwise, it will keep
the ret = -1 which will be checked and handled correctly at the end of the
function.
Backports commit f8162068f18f2f264a0355938784f54089234211 from qemu
The PMP should be checked when doing a page table walk, and report access
fault exception if the to-be-read PTE failed the PMP check.
Backports commit 1f447aec787bfbbd078afccae44fc4c92acb4fed from qemu
The current PMP check function checks for env->priv which is not the effective
memory privilege mode.
For example, mstatus.MPRV could be set while executing in M-Mode, and in that
case the privilege mode for the PMP check should be S-Mode rather than M-Mode
(in env->priv) if mstatus.MPP == PRV_S.
This patch passes the effective memory privilege mode to the PMP check.
Functions that call the PMP check should pass the correct memory privilege mode
after reading mstatus' MPRV/MPP or hstatus.SPRV (if Hypervisor mode exists).
Backports commit cc0fdb298517ce56c770803447f8b02a90271152 from qemu
Section 3.6 in RISC-V v1.10 privilege specification states that PMP violations
report "access exceptions." The current PMP implementation has
a bug which wrongly reports "page exceptions" on PMP violations.
This patch fixes this bug by reporting the correct PMP access exceptions
trap values.
Backports commit 635b0b0ea39a13d1a3df932452e5728aebbb3f6e from qemu
The current implementation unnecessarily checks for PMP even if MMU translation
failed. This may trigger a wrong PMP access exception instead of
a page exception.
For example, the very first instruction fetched after the first satp write in
S-Mode will trigger a PMP access fault instead of an instruction fetch page
fault.
This patch prioritises MMU exceptions over PMP exceptions and only checks for
PMP if MMU translation succeeds. This patch is required for future commits
that properly report PMP exception violations if PTW succeeds.
Backports commit e0f8fa72deba7ac7a7ae06ba25e6498aaad93ace from qemu
This patch adds support for the riscv_cpu_unassigned_access call
and will raise a load or store access fault.
Backports commit cbf5827693addaff4e4d2102afedbf078a204eb2 from qemu
A wrong address is passed to `pmp_is_in_range` while checking if a
memory access is within a PMP range.
Since the ending address of the pmp range (i.e., pmp_state.addr[i].ea)
is set to the last address in the range (i.e., pmp base + pmp size - 1),
memory accesses containg the last address in the range will always fail.
For example, assume that a PMP range is 4KB from 0x87654000 such that
the last address within the range is 0x87654fff.
1-byte access to 0x87654fff should be considered to be fully inside the
PMP range.
However the access now fails and complains partial inclusion because
pmp_is_in_range(env, i, addr + size) returns 0 whereas
pmp_is_in_range(env, i, addr) returns 1.
Backports commit 49db9fa1fd7c252596b53cf80876e06f407d09ed from qemu
In the next commit we will split the M-profile functions from this
file. Some function will be called out of helper.c. Declare them in
the "internals.h" header.
Backports commit 787a7e76c2e93a48c47b324fea592c9910a70483 from qemu
This code is specific to the SoftFloat floating-point
implementation, which is only used by TCG.
Backports commit 4a15527c9feecfd2fa2807d5e698abbc19feb35f from qemu
The vfp_set_fpscr() helper contains code specific to the host
floating point implementation (here the SoftFloat library).
Extract this code to vfp_set_fpscr_from_host().
Backports commit 0c6ad94809b37a1f0f1f75d3cd0e4a24fb77e65c from qemu
The vfp_set_fpscr() helper contains code specific to the host
floating point implementation (here the SoftFloat library).
Extract this code to vfp_set_fpscr_to_host().
Backports commit e9d652824b05845f143ef4797d707fae47d4b3ed from qemu
To ease the review of the next commit,
move the vfp_exceptbits_to_host() function directly after
vfp_exceptbits_from_host(). Amusingly the diff shows we
are moving vfp_get_fpscr().
Backports commit 20e62dd8c831c9065ed4a8e64813c93ad61c50d7 from qemu.
These routines are TCG specific.
The arm_deliver_fault() function is only used within the new
helper. Make it static.
Backports commit e21b551cb652663f2f2405a64d63ef6b4a1042b7 from qemu
In the next commit we will split the TLB related routines of
this file, and this function will also be called in the new
file. Declare it in the "internals.h" header.
Backports commit ebae861fc6c385a7bcac72dde4716be06e6776f1 from qemu
Those helpers are a software implementation of the ARM v8 memory zeroing
op code. They should be moved to the op helper file, which is going to
eventually be built only when TCG is enabled.
Backports commit 6cdca173ef81a9dbcee9e142f1a5a34ad9c44b75 from qemu
Since commit 8c06fbdf36b checkpatch.pl enforce a new multiline
comment syntax. Since we'll move this code around, fix its style
first.
Backports commit 9a223097e44d5320f5e0546710263f22d11f12fc from qemu
Group ARM objects together, TCG related ones at the bottom.
This will help when restricting TCG-only objects.
Backports commit 07774d584267488c8c2f104ae5b552791961908a from qemu
Group Aarch64 rules together, TCG related ones at the bottom.
This will help when restricting TCG-only objects.
Backports commit 87f4f183484dba7a460c59e99dac0dbb9f42ed87 from qemu
The configure script breaks when the qemu source directory is in a path
containing white spaces, in particular the list of targets is not
correctly generated when calling "./configure --help" because of how the
default_target_list variable is built.
In addition to that, *building* qemu from a directory with spaces breaks
some assumptions in the Makefiles, even if the original source path does
not contain spaces like in the case of an out-of-tree build, or when
symlinks are involved.
To avoid these issues, refuse to run the configure script and the
Makefile if there are spaces or colons in the source path or the build
path, taking as inspiration what the kbuild system in linux does.
Buglink: https://bugs.launchpad.net/qemu/+bug/1817345
Backports commit 4ace32e22713ffd79deb221ae0134652c7c15428 from qemu
Altering all comments in target/m68k to match Qemu coding styles so that future
patches wont fail due to style breaches.
Backports commit 808d77bc5f878a666035d478480b8ed229bd49fe from qemu
Fix emulation of ILVR.<B|H|W> on big endian host by applying
mapping of data element indexes from one endian to another.
Backports commit 14f5d874bcd533054648bb7cc767c7169eaf2f1c from qemu
Fix emulation of ILVL.<B|H|W> on big endian host by applying
mapping of data element indexes from one endian to another.
Backports commit 8e74bceb00120b23f0931e4e4478d1b10e0970d4 from qemu
Fix emulation of ILVOD.<B|H|W> on big endian host by applying
mapping of data element indexes from one endian to another.
Backports commit b000169e4ed44a3925b6fd22fa0dd6e22bb02b81 from qemu
Fix emulation of ILVEV.<B|H|W> on big endian host by applying
mapping of data element indexes from one endian to another.
Backports commit 98880cb5a669a35b5bc75432027f2b9fff566aea from qemu
MSR IA32_CORE_CAPABILITY is a feature-enumerating MSR, which only
enumerates the feature split lock detection (via bit 5) by now.
The existence of MSR IA32_CORE_CAPABILITY is enumerated by CPUID.7_0:EDX[30].
The latest kernel patches about them can be found here:
https://lkml.org/lkml/2019/4/24/1909
Backports commit 597360c0d8ebda9ca6f239db724a25bddec62b2f from qemu
In commit 1120827fa182f0e7622 we accidentally put the
"UNDEF unless FPU has double-precision support" check in
the single-precision VFM function. Put it in the dp
function where it belongs.
Backports commit 34bea4edb9bbe8edf4b8606276482acdff5ca58b from qemu
The architecture permits FPUs which have only single-precision
support, not double-precision; Cortex-M4 and Cortex-M33 are
both like that. Add the necessary checks on the MVFR0 FPDP
field so that we UNDEF any double-precision instructions on
CPUs like this.
Note that even if FPDP==0 the insns like VMOV-to/from-gpreg,
VLDM/VSTM, VLDR/VSTR which take double precision registers
still exist.
Backports commit 1120827fa182f0e76226df7ffe7a86598d1df54f from qemu
In several places cut and paste errors meant we were using the wrong
type for the 'arg' struct in trans_ functions called by the
decodetree decoder, because we were using the _sp version of the
struct in the _dp function. These were harmless, because the two
structs were identical and so decodetree made them typedefs of the
same underlying structure (and we'd have had a compile error if they
were not harmless), but we should clean them up anyway.
Backports commit 83655223ac6143a563e981906ce13fd6f2cfbefd from qemu
Remove the now unused TCG globals cpu_F0s, cpu_F0d, cpu_F1s, cpu_F1d.
cpu_M0 is still used by the iwmmxt code, and cpu_V0 and
cpu_V1 are used by both iwmmxt and Neon.
Backports commit d9eea52c67c04c58ecceba6ffe5a93d1d02051fa from qemu
Remove some old constructns from NEON_2RM_VCVT_F16_F32 code:
* don't use CPU_F0s
* don't use tcg_gen_st_f32
Backports commit b66f6b9981004bbf120b8d17c20f92785179bdf2 from qemu
Remove some old constructs from NEON_2RM_VCVT_F16_F32 code:
* don't use cpu_F0s
* don't use tcg_gen_ld_f32
Backports commit 58f2682eee738e8890f9cfe858e0f4f68b00d45d from qemu
Stop using cpu_F0s for the Neon f32/s32 VCVT operations.
Since this is the last user of cpu_F0s in the Neon 2rm-op
loop, we can remove the handling code for it too.
Backports commit 60737ed5785b9c1c6f1c85575dfdd1e9eec91878 from qemu
Where Neon instructions are floating point operations, we
mostly use the old VFP utility functions like gen_vfp_abs()
which work on the TCG globals cpu_F0s and cpu_F1s. The
Neon for-each-element loop conditionally loads the inputs
into either a plain old TCG temporary for most operations
or into cpu_F0s for float operations, and similarly stores
back either cpu_F0s or the temporary.
Switch NEON_2RM_VABS_F away from using cpu_F0s, and
update neon_2rm_is_float_op() accordingly.
Backports commit fd8a68cdcf81d70eebf866a132e9780d4108da9c from qemu
The AArch32 VMOV (immediate) instruction uses the same VFP encoded
immediate format we already handle in vfp_expand_imm(). Use that
function rather than hand-decoding it.
Backports commit 9bee50b498410ed6466018b26464d7384c7879e9 from qemu
We want to use vfp_expand_imm() in the AArch32 VFP decode;
move it from the a64-only header/source file to the
AArch32 one (which is always compiled even for AArch64).
Backports commit d6a092d479333b5f20a647a912a31b0102d37335 from qemu
For VFP short vectors, the VFP registers are divided into a
series of banks: for single-precision these are s0-s7, s8-s15,
s16-s23 and s24-s31; for double-precision they are d0-d3,
d4-d7, ... d28-d31. Some banks are "scalar" meaning that
use of a register within them triggers a pure-scalar or
mixed vector-scalar operation rather than a full vector
operation. The scalar banks are s0-s7, d0-d3 and d16-d19.
When using a bank as part of a vector operation, we
iterate through it, increasing the register number by
the specified stride each time, and wrapping around to
the beginning of the bank.
Unfortunately our calculation of the "increment" part of this
was incorrect:
vd = ((vd + delta_d) & (bank_mask - 1)) | (vd & bank_mask)
will only do the intended thing if bank_mask has exactly
one set high bit. For instance for doubles (bank_mask = 0xc),
if we start with vd = 6 and delta_d = 2 then vd is updated
to 12 rather than the intended 4.
This only causes problems in the unlikely case that the
starting register is not the first in its bank: if the
register number doesn't have to wrap around then the
expression happens to give the right answer.
Fix this bug by abstracting out the "check whether register
is in a scalar bank" and "advance register within bank"
operations to utility functions which use the right
bit masking operations
Backports commit 18cf951af9a27ae573a6fa17f9d0c103f7b7679b from qemu
Convert the float-to-integer VCVT instructions to decodetree.
Since these are the last unconverted instructions, we can
delete the old decoder structure entirely now.
Backports commit 3111bfc2da6ba0c8396dc97ca479942d711c6146 from qemu
Convert the VCVT (between floating-point and fixed-point) instructions
to decodetree.
Backports commit e3d6f4290c788e850c64815f0b3e331600a4bcc0 from qemu
Convert the VFP round-to-integer instructions VRINTR, VRINTZ and
VRINTX to decodetree.
These instructions were only introduced as part of the "VFP misc"
additions in v8A, so we check this. The old decoder's implementation
was incorrectly providing them even for v7A CPUs.
Backports commit e25155f55dc4abb427a88dfe58bbbc550fe7d643 from qemu
Convert the VCVTT and VCVTB instructions which convert from
f32 and f64 to f16 to decodetree.
Since we're no longer constrained to the old decoder's style
using cpu_F0s and cpu_F0d we can perform a direct 16 bit
store of the right half of the input single-precision register
rather than doing a load/modify/store sequence on the full
32 bits.
Backports commit cdfd14e86ab0b1ca29a702d13a8e4af2e902a9bf from qemu
Convert the VCVTT, VCVTB instructions that deal with conversion
from half-precision floats to f32 or 64 to decodetree.
Since we're no longer constrained to the old decoder's style
using cpu_F0s and cpu_F0d we can perform a direct 16 bit
load of the right half of the input single-precision register
rather than loading the full 32 bits and then doing a
separate shift or sign-extension.
Backports commit b623d803dda805f07aadcbf098961fde27315c19 from qemu
Convert the VFP comparison instructions to decodetree.
Note that comparison instructions should not honour the VFP
short-vector length and stride information: they are scalar-only
operations. This applies to all the 2-operand instructions except
for VMOV, VABS, VNEG and VSQRT. (In the old decoder this is
implemented via the "if (op == 15 && rn > 3) { veclen = 0; }" check.)
Backports commit 386bba2368842fc74388a3c1651c6c0c0c70adbd from qemu
Convert the VFP VABS instruction to decodetree.
Unlike the 3-op versions, we don't pass fpst to the VFPGen2OpSPFn or
VFPGen2OpDPFn because none of the operations which use this format
and support short vectors will need it.
Backports commit 90287e22c987e9840704345ed33d237cbe759dd9 from qemu
Convert the VFP fused multiply-add instructions (VFNMA, VFNMS,
VFMA, VFMS) to decodetree.
Note that in the old decode structure we were implementing
these to honour the VFP vector stride/length. These instructions
were introduced in VFPv4, and in the v7A architecture they
are UNPREDICTABLE if the vector stride or length are non-zero.
In v8A they must UNDEF if stride or length are non-zero, like
all VFP instructions; we choose to UNDEF always.
Backports commit d4893b01d23060845ee3855bc96626e16aad9ab5 from qemu
Convert the VFP VMLA instruction to decodetree.
This is the first of the VFP 3-operand data processing instructions,
so we include in this patch the code which loops over the elements
for an old-style VFP vector operation. The existing code to do this
looping uses the deprecated cpu_F0s/F0d/F1s/F1d TCG globals; since
we are going to be converting instructions one at a time anyway
we can take the opportunity to make the new loop use TCG temporaries,
which means we can do that conversion one operation at a time
rather than needing to do it all in one go.
We include an UNDEF check which was missing in the old code:
short-vector operations (with stride or length non-zero) were
deprecated in v7A and must UNDEF in v8A, so if the MVFR0 FPShVec
field does not indicate that support for short vectors is present
we UNDEF the operations that would use them. (This is a change
of behaviour for Cortex-A7, Cortex-A15 and the v8 CPUs, which
previously were all incorrectly allowing short-vector operations.)
Note that the conversion fixes a bug in the old code for the
case of VFP short-vector "mixed scalar/vector operations". These
happen where the destination register is in a vector bank but
but the second operand is in a scalar bank. For example
vmla.f64 d10, d1, d16 with length 2 stride 2
is equivalent to the pair of scalar operations
vmla.f64 d10, d1, d16
vmla.f64 d8, d3, d16
where the destination and first input register cycle through
their vector but the second input is scalar (d16). In the
old decoder the gen_vfp_F1_mul() operation uses cpu_F1{s,d}
as a temporary output for the multiply, which trashes the
second input operand. For the fully-scalar case (where we
never do a second iteration) and the fully-vector case
(where the loop loads the new second input operand) this
doesn't matter, but for the mixed scalar/vector case we
will end up using the wrong value for later loop iterations.
In the new code we use TCG temporaries and so avoid the bug.
This bug is present for all the multiply-accumulate insns
that operate on short vectors: VMLA, VMLS, VNMLA, VNMLS.
Note 2: the expression used to calculate the next register
number in the vector bank is not in fact correct; we leave
this behaviour unchanged from the old decoder and will
fix this bug later in the series.
Backports commit 266bd25c485597c94209bfdb3891c1d0c573c164 from qemu
Expand out the sequences in the new decoder VLDR/VSTR/VLDM/VSTM trans
functions which perform the memory accesses by going via the TCG
globals cpu_F0s and cpu_F0d, to use local TCG temps instead.
Backports commit 3993d0407dff7233e42f2251db971e126a0497e9 from qemu
Convert the VFP load/store multiple insns to decodetree.
This includes tightening up the UNDEF checking for pre-VFPv3
CPUs which only have D0-D15 : they now UNDEF for any access
to D16-D31, not merely when the smallest register in the
transfer list is in D16-D31.
This conversion does not try to share code between the single
precision and the double precision versions; this looks a bit
duplicative of code, but it leaves the door open for a future
refactoring which gets rid of the use of the "F0" registers
by inlining the various functions like gen_vfp_ld() and
gen_mov_F0_reg() which are hiding "if (dp) { ... } else { ... }"
conditionalisation.
Backports commit fa288de272c5c8a66d5eb683b123706a52bc7ad6 from qemu
Convert the VFP two-register transfer instructions to decodetree
(in the v8 Arm ARM these are the "Advanced SIMD and floating-point
64-bit move" encoding group).
Again, we expand out the sequences involving gen_vfp_msr() and
gen_msr_vfp().
Backports commit 81f681106eabe21c55118a5a41999fb7387fb714 from qemu
Convert the "single-precision" register moves to decodetree:
* VMSR
* VMRS
* VMOV between general purpose register and single precision
Note that the VMSR/VMRS conversions make our handling of
the "should this UNDEF?" checks consistent between the two
instructions:
* VMSR to MVFR0, MVFR1, MVFR2 now UNDEF from EL0
(previously was a nop)
* VMSR to FPSID now UNDEFs from EL0 or if VFPv3 or better
(previously was a nop)
* VMSR to FPINST and FPINST2 now UNDEF if VFPv3 or better
(previously would write to the register, which had no
guest-visible effect because we always UNDEF reads)
We also tighten up the decode: we were previously underdecoding
some SBZ or SBO bits.
The conversion of VMOV_single includes the expansion out of the
gen_mov_F0_vreg()/gen_vfp_mrs() and gen_mov_vreg_F0()/gen_vfp_msr()
sequences into the simpler direct load/store of the TCG temp via
neon_{load,store}_reg32(): we know in the new function that we're
always single-precision, we don't need to use the old-and-deprecated
cpu_F0* TCG globals, and we don't happen to have the declaration of
gen_vfp_msr() and gen_vfp_mrs() at the point in the file where the
new function is.
Backports commit a9ab50011aeda2dd012da99069e078379315ea18 from qemu
Convert the "double-precision" register moves to decodetree:
this covers VMOV scalar-to-gpreg, VMOV gpreg-to-scalar and VDUP.
Note that the conversion process has tightened up a few of the
UNDEF encoding checks: we now correctly forbid:
* VMOV-to-gpr with U:opc1:opc2 == 10x00 or x0x10
* VMOV-from-gpr with opc1:opc2 == 0x10
* VDUP with B:E == 11
* VDUP with Q == 1 and Vn<0> == 1
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
---
The accesses of elements < 32 bits could be improved by doing
direct ld/st of the right size rather than 32-bit read-and-shift
or read-modify-write, but we leave this for later cleanup,
since this series is generally trying to stick to fixing
the decode.
Backports commit 9851ed9269d214c0c6feba960dd14ff09e6c34b4 from qemu
The current VFP code has two different idioms for
loading and storing from the VFP register file:
1 using the gen_mov_F0_vreg() and similar functions,
which load and store to a fixed set of TCG globals
cpu_F0s, CPU_F0d, etc
2 by direct calls to tcg_gen_ld_f64() and friends
We want to phase out idiom 1 (because the use of the
fixed globals is a relic of a much older version of TCG),
but idiom 2 is quite longwinded:
tcg_gen_ld_f64(tmp, cpu_env, vfp_reg_offset(true, reg))
requires us to specify the 64-bitness twice, once in
the function name and once by passing 'true' to
vfp_reg_offset(). There's no guard against accidentally
passing the wrong flag.
Instead, let's move to a convention of accessing 64-bit
registers via the existing neon_load_reg64() and
neon_store_reg64(), and provide new neon_load_reg32()
and neon_store_reg32() for the 32-bit equivalents.
Implement the new functions and use them in the code in
translate-vfp.inc.c. We will convert the rest of the VFP
code as we do the decodetree conversion in subsequent
commits.
Backports commit 160f3b64c5cc4c8a09a1859edc764882ce6ad6bf from qemu
Move the trans_*() functions we've just created from translate.c
to translate-vfp.inc.c. This is pure code motion with no textual
changes (this can be checked with 'git show --color-moved').
Backports commit f7bbb8f31f0761edbf0c64b7ab3c3f49c13612ea from qemu
Convert the VCVTA/VCVTN/VCVTP/VCVTM instructions to decodetree.
trans_VCVT() is temporarily left in translate.c.
Backports commit c2a46a914cd5c38fd0ee57ff0befc1c5bde27bcf from qemu
Convert the VRINTA/VRINTN/VRINTP/VRINTM instructions to decodetree.
Again, trans_VRINT() is temporarily left in translate.c.
Backports commit e3bb599d16e4678b228d80194cee328f894b1ceb from qemu
Convert the VMINNM and VMAXNM instructions to decodetree.
As with VSEL, we leave the trans_VMINMAXNM() function
in translate.c for the moment.
Backports commit f65988a1efdb42f9058db44297591491842e697c from qemu
Convert the VSEL instructions to decodetree.
We leave trans_VSEL() in translate.c for now as this allows
the patch to show just the changes from the old handle_vsel().
In the old code the check for "do D16-D31 exist" was hidden in
the VFP_DREG macro, and assumed that VFPv3 always implied that
D16-D31 exist. In the new code we do the correct ID register test.
This gives identical behaviour for most of our CPUs, and fixes
previously incorrect handling for Cortex-R5F, Cortex-M4 and
Cortex-M33, which all implement VFPv3 or better with only 16
double-precision registers.
Backports commit b3ff4b87b4ae08120a51fe12592725e1dca8a085 from qemu
At the moment our -cpu max for AArch32 supports VFP short-vectors
because we always implement them, even for CPUs which should
not have them. The following commits are going to switch to
using the correct ID-register-check to enable or disable short
vector support, so we need to turn it on explicitly for -cpu max,
because Cortex-A15 doesn't implement it.
We don't enable this for the AArch64 -cpu max, because the v8A
architecture never supports short-vectors.
Backports commit 973751fd798d41402d34f9f705c0c6d1633d0cda from qemu
The Cortex-R5F initfn was not correctly setting up the MVFR
ID register values. Fill these in, since some subsequent patches
will use ID register checks rather than CPU feature bit checks.
Backports commit 3de79d335c9aa7d726865e3933d9b21781032183 from qemu
Factor out the VFP access checking code so that we can use it in the
leaf functions of the decodetree decoder.
We call the function full_vfp_access_check() so we can keep
the more natural vfp_access_check() for a version which doesn't
have the 'ignore_vfp_enabled' flag -- that way almost all VFP
insns will be able to use vfp_access_check(s) and only the
special-register access function will have to use
full_vfp_access_check(s, ignore_vfp_enabled).
Backports commit 06db8196bba34776829020192ed623a0b22e6557 from qemu
Add the infrastructure for building and invoking a decodetree decoder
for the AArch32 VFP encodings. At the moment the new decoder covers
nothing, so we always fall back to the existing hand-written decode.
We need to have one decoder for the unconditional insns and one for
the conditional insns, as otherwise the patterns for conditional
insns would incorrectly match against the unconditional ones too.
Since translate.c is over 14,000 lines long and we're going to be
touching pretty much every line of the VFP code as part of the
decodetree conversion, we create a new translate-vfp.inc.c to hold
the code which deals with VFP in the new scheme. It should be
possible to convert this into a standalone translation unit
eventually, but the conversion process will be much simpler if we
simply #include it midway through translate.c to start with.
Backports commit 78e138bc1f672c145ef6ace74617db00eebaa2ba from qemu
Typo comparing the sign of the field, twice, instead of also comparing
the mask of the field (which itself encodes both position and length).
Backports commit 2c7d442743854d2c1f5475446e088bd523f4bb20 from qemu
The ARM pseudocode installs the error_code into the original
pointer, not the encrypted pointer. The difference applies
within the 7 bits of pac data; the result should be the sign
extension of bit 55.
Add a testcase to that effect.
Backports commit d67ebada159148bfdfde84871338738e4465e985 from qemu
The NSACR register allows secure code to configure the FPU
to be inaccessible to non-secure code. If the NSACR.CP10
bit is set then:
* NS accesses to the FPU trap as UNDEF (ie to NS EL1 or EL2)
* CPACR.{CP10,CP11} behave as if RAZ/WI
* HCPTR.{TCP11,TCP10} behave as if RAO/WI
Note that we do not implement the NSACR.NSASEDIS bit which
gates only access to Advanced SIMD, in the same way that
we don't implement the equivalent CPACR.ASEDIS and HCPTR.TASE.
Backports commit fc1120a7f5f2d4b601003205c598077d3eb11ad2 from qemu
The loop is written with scalars, not vectors.
Use the correct type when incrementing.
Fixes: 5ee5c14cacd
Backports commit 899f08ad1d1231dbbfa67298413f05ed2679fb02 from qemu
While size_t is defined to happily access the biggest host object this
isn't the case when generating masks for 64 bit guests on 32 bit
hosts. Otherwise we end up truncating the address when we fall back to
our unaligned helper.
Fixes: https://bugs.launchpad.net/qemu/+bug/1831545
Backports commit ab7a2009df66241a3742cbdfe8f9a1f66c6af21f from qemu
When running on 32 bit TCG backends a wide unaligned load ends up
truncating data before returning to the guest. We specifically have
the return type as uint64_t to avoid any premature truncation so we
should use the same for the interim types.
Fixes: https://bugs.launchpad.net/qemu/+bug/1830872
Fixes: eed5664238e
Backports commit 8c79b288513587e960b6b7257a9d955d5592f209 from qemu
Amusingly, we had already ignored the comment to keep this value
at the end of CPUState. This restores the minimum negative offset
from TCG_AREG0 for code generation.
For the couple of uses within qom/cpu.c, without NEED_CPU_H, add
a pointer from the CPUState object to the IcountDecr object within
CPUNegativeOffsetState.
Backports commit 5e1401969b25f676fee6b1c564441759cf967a43 from qemu
Nothing in there so far, but all of the plumbing done
within the target ArchCPU state.
Backports commit 5b146dc716cfd247f99556c04e6e46fbd67565a0 from qemu