Now we have a working '-cpu max', the linux-user-only
'any' CPU is pretty much the same thing, so implement it
that way.
For the moment we don't add any of the extra feature bits
to the system-emulation "max", because we don't set the
ID register bits we would need to to advertise those
features as present.
Backports commit a0032cc5427d0d396aa0a9383ad9980533448ea4 from qemu
Add support for "-cpu max" for ARM guests. This CPU type behaves
like "-cpu host" when KVM is enabled, and like a system CPU with
the maximum possible feature set otherwise. (Note that this means
it won't be migratable across versions, as we will likely add
features to it in future.)
Backports commit bab52d4bba3f22921a690a887b4bd0342f2754cd from qemu
The cortex A53 TRM specifies that bits 24 and 25 of the L2CTLR register
specify the number of cores in the processor, not the total number of
cores in the system. To report this correctly on machines with multiple
CPU clusters (ARM's big.LITTLE or Xilinx's ZynqMP) we need to allow
the machine to overwrite this value. To do this let's add an optional
property.
Backports commit f9a697112ee64180354f98309a5d6b691cc8699d from qemu
Using a local m68k floatx80_tentox()
[copied from previous:
Written by Andreas Grabher for Previous, NeXT Computer Emulator.]
Backports commit 6c25be6e30bda0e470f8f0b6b93d53a6efe469e8 from qemu
Using a local m68k floatx80_twotox()
[copied from previous:
Written by Andreas Grabher for Previous, NeXT Computer Emulator.]
Backports commit 068f161536d9a28a5bc482f3de9c387b2fe5908d from qemu
Using a local m68k floatx80_etox()
[copied from previous:
Written by Andreas Grabher for Previous, NeXT Computer Emulator.]
Backports commit 40ad087330bee5394c9e78c97f909f580be69b58 from qemu
Using a local m68k floatx80_log2()
[copied from previous:
Written by Andreas Grabher for Previous, NeXT Computer Emulator.]
Backports commit 67b453ed73fe65949c24e6ca2b43f6816a89a301 from qemu
Using a local m68k floatx80_log10()
[copied from previous:
Written by Andreas Grabher for Previous, NeXT Computer Emulator.]
Backports commit 248efb66fb88bc17c04a0d0f09a3539a43c80769 from qemu
Using a local m68k floatx80_logn()
[copied from previous:
Written by Andreas Grabher for Previous, NeXT Computer Emulator.]
Backports commit 50067bd16fead5d78a283130efbf3e3b026de450 from qemu
Using a local m68k floatx80_lognp1()
[copied from previous:
Written by Andreas Grabher for Previous, NeXT Computer Emulator.]
Backports commit 4b5c65b8f02a057bc1b77839b5012544f96fec80 from qemu
This functions is needed by upcoming m68k softfloat functions.
Source code copied for WinUAE (tag 3500)
(The WinUAE file has been copied from QEMU and has
the QEMU licensing notice)
Backports commit 9a069775a8087cbd6fa8c479b69be8d37bd90351 from qemu
The script used for converting from QEMUMachine had used one
DEFINE_MACHINE() per machine registered. In cases where multiple
machines are registered from one source file, avoid the excessive
generation of module init functions by reverting this unrolling.
Backports commit 8a661aea0e7f6e776c6ebc9abe339a85b34fea1d from qemu
Convert all machines to use DEFINE_MACHINE() instead of QEMUMachine
automatically using a script.
Backports commit e264d29de28c5b0be3d063307ce9fb613b427cc3 from qemu
Now that we have a DEFINE_PC_MACHINE helper macro that just requires an
initialization function, it is trivial to convert them to register a QOM
machine class directly, instead of using QEMUMachine.
Backports commit 865906f7fdadd2732441ab158787f81f6a212bfe from qemu
Clang 3.9 passes the CONFIG_AVX2_OPT configure test. However, the
supplied <cpuid.h> does not contain the bit_AVX2 define that we use
when detecting whether the routine can be enabled.
Introduce a qemu-specific header that uses the compiler's definition
of __cpuid et al, but supplies any missing bit_* definitions needed.
This avoids introducing any extra ifdefs to util/bufferiszero.c, and
allows quite a few to be removed from tcg/i386/tcg-target.inc.c.
Backports commit 5dd8990841a9e331d9d4838a116291698208cbb6 from qemu
Since the commit af7a06bac7d3abb2da48ef3277d2a415772d2ae8:
`casa [..](10), .., ..` (and probably others alternate space instructions)
triggers a data access exception when the MMU is disabled.
When we enter get_asi(...) dc->mem_idx is set to MMU_PHYS_IDX when the MMU
is disabled. Just keep mem_idx unchanged in this case so we passthrough the
MMU when it is disabled.
Backports commit 6e10f37c86068e35151f982c976a85f1bec07ef2 from qemu
Using local m68k floatx80_getman(), floatx80_getexp(), floatx80_scale()
[copied from previous:
Written by Andreas Grabher for Previous, NeXT Computer Emulator.]
Backports commit 0d379c1709aa6b2d09dd3b493bfdf3a5fe6debcd from qemu
Using a local m68k floatx80_mod()
[copied from previous:
Written by Andreas Grabher for Previous, NeXT Computer Emulator.]
The quotient byte of the FPSR is updated with
the result of the operation.
Backports commit 591596b77a1872d0652e666271ca055e57ea1e21 from qemu
The integer size check was already outside of the opcode switch;
move the floating-point size check outside as well. Unify the
size vs index adjustment between fp and integer paths.
Backports commit 449f264b1749ac0e59c58bbc2eacdb3dc302c2bf from qemu
Add a Cortex-M33 definition. The M33 is an M profile CPU
which implements the ARM v8M architecture, including the
M profile Security Extension.
Backports commit c7b26382fee8b745c6e903c85281babf30c2cb7c from qemu
The Cortex-M33 allows the system to specify the reset value of the
secure Vector Table Offset Register (VTOR) by asserting config
signals. In particular, guest images for the MPS2 AN505 board rely
on the MPS2's initial VTOR being correct for that board.
Implement a QEMU property so board and SoC code can set the reset
value to the correct value.
Backports commit 38e2a77c9d6876e58f45cabb1dd9a6a60c22b39e from qemu
This includes FMOV, FABS, FNEG, FSQRT and FRINT[NPMZAXI]. We re-use
existing helpers to achieve this.
Backports commit c2c08713a6a5846bbe601d4d1b4f9708ba77efdc from qemu
This covers the encoding group:
Advanced SIMD scalar three same FP16
As all the helpers are already there it is simply a case of calling the
existing helpers in the scalar context.
Backports commit 7c93b7741b29b3ffda81a6e9525771b4409db99f from qemu
I only needed to do a little light re-factoring to support the
half-precision helpers.
Backports commit 5c36d89567cfd049a7c59ff219639f788225068f from qemu
Much like recpe the ARM ARM has simplified the pseudo code for the
calculation which is done on a fixed point 9 bit integer maths. So
while adding f16 we can also clean this up to be a little less heavy
on the floating point and just return the fractional part and leave
the calle's to do the final packing of the result.
Backports commit d719cbc7641991d16b891ffbbfc3a16a04e37b9a from qemu
Also removes a load of symbols that seem unnecessary from the header_gen script
It looks like the ARM ARM has simplified the pseudo code for the
calculation which is done on a fixed point 9 bit integer maths. So
while adding f16 we can also clean this up to be a little less heavy
on the floating point and just return the fractional part and leave
the calle's to do the final packing of the result.
Backports commit 5eb70735af1c0b607bf2671a53aff3710cc1672f from qemu
Neither of these operations alter the floating point status registers
so we can do a pure bitwise operation, either squashing any sign
bit (ABS) or inverting it (NEG).
Backports commit 15f8a233c8c023dbc77b6fe6cd7c79eac9bee263 from qemu
I re-use the existing handle_2misc_fcmp_zero handler and tweak it
slightly to deal with the half-precision case.
Backports commit 7d4dd1a73a023f75c893623710e43743501b318e from qemu
This adds the full range of half-precision floating point to integral
instructions.
Backports commit 6109aea2d954891027acba64a13f1f1c7463cfac from qemu
This actually covers two different sections of the encoding table:
Advanced SIMD scalar two-register miscellaneous FP16
Advanced SIMD two-register miscellaneous (FP16)
The difference between the two is covered by a combination of Q (bit
30) and S (bit 28). Notably the FRINTx instructions are only
available in the vector form.
This is just the decode skeleton which will be filled out by later
patches.
Backports commit 5d432be6fd6efe37833ac82623c3abd35117b421 from qemu
A bunch of the vectorised bitwise operations just operate on larger
chunks at a time. We can do the same for the new half-precision
operations by introducing some TWOHALFOP helpers which work on each
half of a pair of half-precision operations at once.
Hopefully all this hoop jumping will get simpler once we have
generically vectorised helpers here.
Backports commit 6089030c7322d8f96b54fb9904e53b0f464bb8fe from qemu
The helpers use the new re-factored muladd support in SoftFloat for
the float16 work.
Backports commit 5d265064cf30daaacce5a4ce9945fc573015fb5f from qemu
As some of the constants here will also be needed
elsewhere (specifically for the upcoming SVE support) we move them out
to softfloat.h.
Backports commit 026e2d6ef74000afb9049f46add4b94f594c8fb3 from qemu
Backports commit 2deb992b767d28035fac3b374c7730494ff0b43d from qemu
Also backports the fp16 changes introduced in commit f566c0474a9b9bbd9ed248607e4007e24d3358c0
These use the generic float16_compare functionality which in turn uses
the common float_compare code from the softfloat re-factor.
Backports commit d32adeae1a71a8e71374fa48d3d6ab0ad4c23e94 from qemu
The fprintf is only there for debugging as the skeleton is added to,
it will be removed once the skeleton is complete.
Backports commit 372087348d561e7f4051d7b32609bda417092ddf from qemu
This is the initial decode skeleton for the Advanced SIMD three same
instruction group.
The fprintf is purely to aid debugging as the additional instructions
are added. It will be removed once the group is complete.
Backports commit 376e8d6cda985df31c8561db4b7ea365b6fe6f87 from qemu
This implements the half-precision variants of the across vector
reduction operations. This involves a re-factor of the reduction code
which more closely matches the ARM ARM order (and handles 8 element
reductions).
Backports commit 807cdd504283c11addcd7ea95ba594bbddc86fe4 from qemu
As the rounding mode is now split between FP16 and the rest of
floating point we need to be explicit when tweaking it. Instead of
passing the CPU env we now pass the appropriate fpst pointer directly.
Backports commit 9b04991686785e18b18a36d193b68f08f7c91648 from qemu
Half-precision flush to zero behaviour is controlled by a separate
FZ16 bit in the FPCR. To handle this we pass a pointer to
fp_status_fp16 when working on half-precision operations. The value of
the presented FPCR is calculated from an amalgam of the two when read.
Backports commit d81ce0ef2c4f1052fcdef891a12499eca3084db7 from qemu
The register definitions for VMIDR and VMPIDR have separate
reginfo structs for the AArch32 and AArch64 registers. However
the 32-bit versions are wrong:
* they use offsetof instead of offsetoflow32 to mark where
the 32-bit value lives in the uint64_t CPU state field
* they don't mark themselves as ARM_CP_ALIAS
In particular this means that if you try to use an Arm guest CPU
which enables EL2 on a big-endian host it will assert at reset:
target/arm/cpu.c:114: cp_reg_check_reset: Assertion `oldvalue == newvalue' failed.
because the reset of the 32-bit register writes to the top
half of the uint64_t.
Correct the errors in the structures.
Backports commit 36476562d57a3b64bbe86db26e63677dd21907c5 from qemu
As cpu.h is another typically widely included file which doesn't need
full access to the softfloat API we can remove the includes from here
as well. Where they do need types it's typically for float_status and
the rounding modes so we move that to softfloat-types.h as well.
As a result of not having softfloat in every cpu.h call we now need to
add it to various helpers that do need the full softfloat.h
definitions.
Backports commit 24f91e81b65fcdd0552d1f0fcb0ea7cfe3829c19 from qemu
The v8M architecture includes hardware support for enforcing
stack pointer limits. We don't implement this behaviour yet,
but provide the MSPLIM and PSPLIM stack pointer limit registers
as reads-as-written, so that when we do implement the checks
in future this won't break guest migration.
Backports commit 57bb31568114023f67680d6fe478ceb13c51aa7d from qemu
In commit 50f11062d4c896 we added support for MSR/MRS access
to the NS banked special registers, but we forgot to implement
the support for writing to CONTROL_NS. Correct the omission.
Backports commit 6eb3a64e2a96f5ced1f7896042b01f002bf0a91f from qemu
We were previously making the system control register (SCR)
just RAZ/WI. Although we don't implement the functionality
this register controls, we should at least provide the state,
including the banked state for v8M.
Backports register related changes in commit 24ac0fb129f9ce9dd96901b2377fc6271dc55b2b from qemu
M profile cores have a similar setup for cache ID registers
to A profile:
* Cache Level ID Register (CLIDR) is a fixed value
* Cache Type Register (CTR) is a fixed value
* Cache Size ID Registers (CCSIDR) are a bank of registers;
which one you see is selected by the Cache Size Selection
Register (CSSELR)
The only difference is that they're in the NVIC memory mapped
register space rather than being coprocessor registers.
Implement the M profile view of them.
Since neither Cortex-M3 nor Cortex-M4 implement caches,
we don't need to update their init functions and can leave
the ctr/clidr/ccsidr[] fields in their ARMCPU structs at zero.
Newer cores (like the Cortex-M33) will want to be able to
set these ID registers to non-zero values, though.
Backports commit 43bbce7fbef22adf687dd84934fd0b2f8df807a8 from qemu
Instead of hardcoding the values of M profile ID registers in the
NVIC, use the fields in the CPU struct. This will allow us to
give different M profile CPU types different ID register values.
This commit includes the addition of the missing ID_ISAR5,
which exists as RES0 in both v7M and v8M.
(The values of the ID registers might be wrong for the M4 --
this commit leaves the behaviour there unchanged.)
Backports commit 5a53e2c1dc939fea1af92cc126ee546d8211d412 from qemu
When storing to an AdvSIMD FP register, all of the high
bits of the SVE register are zeroed. Therefore, call it
more often with is_q as a parameter.
Backports commit 4ff55bcb0ee6452b768835f86d94bd727185f812 from qemu
This cleanup makes the number of objects depending on qapi/qmp/qdict.h
drop from 4550 (out of 4743) to 368 in my "build everything" tree.
For qapi/qmp/qobject.h, the number drops from 4552 to 390.
While there, separate #include from file comment with a blank line.
Backports commit 452fcdbc49c59884c8c284268d64baa24fea11e1 from qemu
SPARCCPU::env was initialized from previously set properties
(with help of sparc_cpu_parse_features) in cpu_sparc_register().
However there is not reason to keep it there as this task is
typically done at realize time. So move post properties
initialization into sparc_cpu_realizefn, which brings
cpu_sparc_init() closer to cpu_generic_init().
Backports commit 700549620b3ee15924f19b9eb79961655ce671c5 from qemu
Make CPUSPARCState::def embedded so it would be allocated as part
of cpu instance and we won't have to worry about cleaning def pointer
up mannualy on cpu destruction.
Backports commit 576e1c4c239621482474ba7b495a41bab2d16ae5 from qemu
This cleanup makes the number of objects depending on qapi/error.h
drop from 1910 (out of 4743) to 1612 in my "build everything" tree.
While there, separate #include from file comment with a blank line,
and drop a useless comment on why qemu/osdep.h is included first.
Backports commit e688df6bc4549f28534cdb001f168b8caae55b0c from qemu
This patch implements movep instruction. It moves data between a data register
and alternate bytes within the address space starting at the location
specified and incrementing by two.
It was designed for the original 68000 and used in firmwares for
interfacing the 8-bit peripherals through the 16-bit data bus.
Without this patch opcode for this instruction is recognized as some bitop.
Backports commit 1226e212292e271b8795265c9639d5c0553df199 from qemu
The code where we added the TT instruction was accidentally
missing a 'break', which meant that after generating the code
to execute the TT we would fall through to 'goto illegal_op'
and generate code to take an UNDEF insn.
Backports commit 384c6c03fb687bea239a5990a538c4bc50fdcecb from qemu