Expand out the sequences in the new decoder VLDR/VSTR/VLDM/VSTM trans
functions which perform the memory accesses by going via the TCG
globals cpu_F0s and cpu_F0d, to use local TCG temps instead.
Backports commit 3993d0407dff7233e42f2251db971e126a0497e9 from qemu
Convert the VFP load/store multiple insns to decodetree.
This includes tightening up the UNDEF checking for pre-VFPv3
CPUs which only have D0-D15 : they now UNDEF for any access
to D16-D31, not merely when the smallest register in the
transfer list is in D16-D31.
This conversion does not try to share code between the single
precision and the double precision versions; this looks a bit
duplicative of code, but it leaves the door open for a future
refactoring which gets rid of the use of the "F0" registers
by inlining the various functions like gen_vfp_ld() and
gen_mov_F0_reg() which are hiding "if (dp) { ... } else { ... }"
conditionalisation.
Backports commit fa288de272c5c8a66d5eb683b123706a52bc7ad6 from qemu
Convert the VFP two-register transfer instructions to decodetree
(in the v8 Arm ARM these are the "Advanced SIMD and floating-point
64-bit move" encoding group).
Again, we expand out the sequences involving gen_vfp_msr() and
gen_msr_vfp().
Backports commit 81f681106eabe21c55118a5a41999fb7387fb714 from qemu
Convert the "single-precision" register moves to decodetree:
* VMSR
* VMRS
* VMOV between general purpose register and single precision
Note that the VMSR/VMRS conversions make our handling of
the "should this UNDEF?" checks consistent between the two
instructions:
* VMSR to MVFR0, MVFR1, MVFR2 now UNDEF from EL0
(previously was a nop)
* VMSR to FPSID now UNDEFs from EL0 or if VFPv3 or better
(previously was a nop)
* VMSR to FPINST and FPINST2 now UNDEF if VFPv3 or better
(previously would write to the register, which had no
guest-visible effect because we always UNDEF reads)
We also tighten up the decode: we were previously underdecoding
some SBZ or SBO bits.
The conversion of VMOV_single includes the expansion out of the
gen_mov_F0_vreg()/gen_vfp_mrs() and gen_mov_vreg_F0()/gen_vfp_msr()
sequences into the simpler direct load/store of the TCG temp via
neon_{load,store}_reg32(): we know in the new function that we're
always single-precision, we don't need to use the old-and-deprecated
cpu_F0* TCG globals, and we don't happen to have the declaration of
gen_vfp_msr() and gen_vfp_mrs() at the point in the file where the
new function is.
Backports commit a9ab50011aeda2dd012da99069e078379315ea18 from qemu
Convert the "double-precision" register moves to decodetree:
this covers VMOV scalar-to-gpreg, VMOV gpreg-to-scalar and VDUP.
Note that the conversion process has tightened up a few of the
UNDEF encoding checks: we now correctly forbid:
* VMOV-to-gpr with U:opc1:opc2 == 10x00 or x0x10
* VMOV-from-gpr with opc1:opc2 == 0x10
* VDUP with B:E == 11
* VDUP with Q == 1 and Vn<0> == 1
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
---
The accesses of elements < 32 bits could be improved by doing
direct ld/st of the right size rather than 32-bit read-and-shift
or read-modify-write, but we leave this for later cleanup,
since this series is generally trying to stick to fixing
the decode.
Backports commit 9851ed9269d214c0c6feba960dd14ff09e6c34b4 from qemu
The current VFP code has two different idioms for
loading and storing from the VFP register file:
1 using the gen_mov_F0_vreg() and similar functions,
which load and store to a fixed set of TCG globals
cpu_F0s, CPU_F0d, etc
2 by direct calls to tcg_gen_ld_f64() and friends
We want to phase out idiom 1 (because the use of the
fixed globals is a relic of a much older version of TCG),
but idiom 2 is quite longwinded:
tcg_gen_ld_f64(tmp, cpu_env, vfp_reg_offset(true, reg))
requires us to specify the 64-bitness twice, once in
the function name and once by passing 'true' to
vfp_reg_offset(). There's no guard against accidentally
passing the wrong flag.
Instead, let's move to a convention of accessing 64-bit
registers via the existing neon_load_reg64() and
neon_store_reg64(), and provide new neon_load_reg32()
and neon_store_reg32() for the 32-bit equivalents.
Implement the new functions and use them in the code in
translate-vfp.inc.c. We will convert the rest of the VFP
code as we do the decodetree conversion in subsequent
commits.
Backports commit 160f3b64c5cc4c8a09a1859edc764882ce6ad6bf from qemu
Move the trans_*() functions we've just created from translate.c
to translate-vfp.inc.c. This is pure code motion with no textual
changes (this can be checked with 'git show --color-moved').
Backports commit f7bbb8f31f0761edbf0c64b7ab3c3f49c13612ea from qemu
Convert the VCVTA/VCVTN/VCVTP/VCVTM instructions to decodetree.
trans_VCVT() is temporarily left in translate.c.
Backports commit c2a46a914cd5c38fd0ee57ff0befc1c5bde27bcf from qemu
Convert the VRINTA/VRINTN/VRINTP/VRINTM instructions to decodetree.
Again, trans_VRINT() is temporarily left in translate.c.
Backports commit e3bb599d16e4678b228d80194cee328f894b1ceb from qemu
Convert the VMINNM and VMAXNM instructions to decodetree.
As with VSEL, we leave the trans_VMINMAXNM() function
in translate.c for the moment.
Backports commit f65988a1efdb42f9058db44297591491842e697c from qemu
Convert the VSEL instructions to decodetree.
We leave trans_VSEL() in translate.c for now as this allows
the patch to show just the changes from the old handle_vsel().
In the old code the check for "do D16-D31 exist" was hidden in
the VFP_DREG macro, and assumed that VFPv3 always implied that
D16-D31 exist. In the new code we do the correct ID register test.
This gives identical behaviour for most of our CPUs, and fixes
previously incorrect handling for Cortex-R5F, Cortex-M4 and
Cortex-M33, which all implement VFPv3 or better with only 16
double-precision registers.
Backports commit b3ff4b87b4ae08120a51fe12592725e1dca8a085 from qemu
At the moment our -cpu max for AArch32 supports VFP short-vectors
because we always implement them, even for CPUs which should
not have them. The following commits are going to switch to
using the correct ID-register-check to enable or disable short
vector support, so we need to turn it on explicitly for -cpu max,
because Cortex-A15 doesn't implement it.
We don't enable this for the AArch64 -cpu max, because the v8A
architecture never supports short-vectors.
Backports commit 973751fd798d41402d34f9f705c0c6d1633d0cda from qemu
The Cortex-R5F initfn was not correctly setting up the MVFR
ID register values. Fill these in, since some subsequent patches
will use ID register checks rather than CPU feature bit checks.
Backports commit 3de79d335c9aa7d726865e3933d9b21781032183 from qemu
Factor out the VFP access checking code so that we can use it in the
leaf functions of the decodetree decoder.
We call the function full_vfp_access_check() so we can keep
the more natural vfp_access_check() for a version which doesn't
have the 'ignore_vfp_enabled' flag -- that way almost all VFP
insns will be able to use vfp_access_check(s) and only the
special-register access function will have to use
full_vfp_access_check(s, ignore_vfp_enabled).
Backports commit 06db8196bba34776829020192ed623a0b22e6557 from qemu
Add the infrastructure for building and invoking a decodetree decoder
for the AArch32 VFP encodings. At the moment the new decoder covers
nothing, so we always fall back to the existing hand-written decode.
We need to have one decoder for the unconditional insns and one for
the conditional insns, as otherwise the patterns for conditional
insns would incorrectly match against the unconditional ones too.
Since translate.c is over 14,000 lines long and we're going to be
touching pretty much every line of the VFP code as part of the
decodetree conversion, we create a new translate-vfp.inc.c to hold
the code which deals with VFP in the new scheme. It should be
possible to convert this into a standalone translation unit
eventually, but the conversion process will be much simpler if we
simply #include it midway through translate.c to start with.
Backports commit 78e138bc1f672c145ef6ace74617db00eebaa2ba from qemu
The ARM pseudocode installs the error_code into the original
pointer, not the encrypted pointer. The difference applies
within the 7 bits of pac data; the result should be the sign
extension of bit 55.
Add a testcase to that effect.
Backports commit d67ebada159148bfdfde84871338738e4465e985 from qemu
The NSACR register allows secure code to configure the FPU
to be inaccessible to non-secure code. If the NSACR.CP10
bit is set then:
* NS accesses to the FPU trap as UNDEF (ie to NS EL1 or EL2)
* CPACR.{CP10,CP11} behave as if RAZ/WI
* HCPTR.{TCP11,TCP10} behave as if RAO/WI
Note that we do not implement the NSACR.NSASEDIS bit which
gates only access to Advanced SIMD, in the same way that
we don't implement the equivalent CPACR.ASEDIS and HCPTR.TASE.
Backports commit fc1120a7f5f2d4b601003205c598077d3eb11ad2 from qemu
Nothing in there so far, but all of the plumbing done
within the target ArchCPU state.
Backports commit 5b146dc716cfd247f99556c04e6e46fbd67565a0 from qemu
Now that we have ArchCPU, we can define this generically,
in the one place that needs it.
Backports commit 677c4d69ac21961e76a386f9bfc892a44923acc0 from qemu
Cleanup in the boilerplate that each target must define.
Replace sparc_env_get_cpu with env_archcpu. The combination
CPU(sparc_env_get_cpu) should have used ENV_GET_CPU to begin;
use env_cpu now.
Backports commit 5a59fbce9141c40db0f0a5a6e17583ad9189b48b from qemu
Cleanup in the boilerplate that each target must define.
Replace riscv_env_get_cpu with env_archcpu. The combination
CPU(riscv_env_get_cpu) should have used ENV_GET_CPU to begin;
use env_cpu now.
Backports commit 3109cd98a6c0c618189b38a83a8aa29cb20acbce from qemu
Cleanup in the boilerplate that each target must define.
Replace mips_env_get_cpu with env_archcpu. The combination
CPU(mips_env_get_cpu) should have used ENV_GET_CPU to begin;
use env_cpu now.
Backports commit 5a7330b35cabc9e2fd3a8577b7004b63af8c57f3 from qemu
Cleanup in the boilerplate that each target must define.
The combination CPU(m68k_env_get_cpu) should have used
ENV_GET_CPU to begin; use env_cpu now.
Backports commit a8d92fd869c601f723b82d9736a2d78ae640b8a2 from qemu
Cleanup in the boilerplate that each target must define.
Replace x86_env_get_cpu with env_archcpu. The combination
CPU(x86_env_get_cpu) should have used ENV_GET_CPU to begin;
use env_cpu now.
Backports commit 6aa9e42f27331be34e06d4d66f92f2272868f96a from qemu
Cleanup in the boilerplate that each target must define.
Replace arm_env_get_cpu with env_archcpu. The combination
CPU(arm_env_get_cpu) should have used ENV_GET_CPU to begin;
use env_cpu now.
Backports commit 2fc0cc0e1e034582f4718b1a2d57691474ccb6aa from qemu
Now that we have both ArchCPU and CPUArchState, we can define
this generically instead of via macro in each target's cpu.h.
Backports commit 29a0af618ddd21f55df5753c3e16b0625f534b3c from qemu
For all targets, into this new file move TARGET_LONG_BITS,
TARGET_PAGE_BITS, TARGET_PHYS_ADDR_SPACE_BITS,
TARGET_VIRT_ADDR_SPACE_BITS, and NB_MMU_MODES.
Include this new file from exec/cpu-defs.h.
This now removes the somewhat odd requirement that target/arch/cpu.h
defines TARGET_LONG_BITS before including exec/cpu-defs.h, so push the
bulk of the includes within target/arch/cpu.h to the top.
Backports commit 74433bf083b0766aba81534f92de13194f23ff3e from qemu
Outline places for future MSA helpers to follow the same organization
as in MSA tests.
Backports commit 7471df9f9eaca7c4495d77265864d56644a08b23 from qemu
The CPUID.01H:ECX[bit 3] ought to mirror the value of the MSR
IA32_MISC_ENABLE MWAIT bit and as userspace has control of them
both, it is userspace's job to configure both bits to match on
the initial setup.
Backports commit 4cfd7bab3f5564f6c1a23b06f73d5aa2f957cd16 from qemu
Add emulation of MMI instruction PCPYUD. The emulation is implemented
using TCG front end operations directly to achieve better performance.
Backports commit fd487f83ea92d790559813c5a0a719c30ca9ecde from qemu
Add emulation of MMI instruction PCPYLD. The emulation is implemented
using TCG front end operations directly to achieve better performance.
Backports commit b87eef31f2f8047077d79c3180e9c8e762d2a50f from qemu
Add emulation of MMI instruction PCPYH. The emulation is implemented
using TCG front end operations directly to achieve better performance.
Backports commit d3434d9f785ddaf40e0fd521ded400643ac4be09 from qemu
Realign comments to fix warnings issued by checkpatc.pl tool
"WARNING: Block comments use a leading /* on a separate line"
within "target/mips/cpu.h" file.
Backports commit 9e72f33d854b0a817c0d2fe4bca693b76f0fe776 from qemu
Add or remove space to fix errors issued by checkpatch.pl tool
"ERROR: spaces required around that..."
"ERROR: space required after that..."
"ERROR: space required before the open parenthesis"
"ERROR: space required after that..."
"ERROR: space prohibited between function name and open parenthesis"
"ERROR: code indent should never use tabs"
"ERROR: line over 90 characters"
within "target/mips/cpu.h" file.
Backports commit 8ebf2e1a68408068c0bcd0d02a783fd12f6a9cb5 from qemu
This commit addresses QEMU Bug #1825311:
mips_cpu_handle_mmu_fault renders all accessed pages executable
It allows finer-grained control over whether the accessed page should
be executable by moving the decision to the underlying map_address
function, which has more information for this.
As a result, pages that have the XI bit set in the TLB and are accessed
for read/write, don't suddenly end up being executable.
Fixes: https://bugs.launchpad.net/qemu/+bug/1825311
Fixes: 2fb58b73746e ('target-mips: add RI and XI fields to TLB entry')
Backports commit 7353113fa482e697a77575086a41f429a01f8dc0 from qemu
The old version of the helper for the INSERT.<B|H|W|D> MSA instructions
has been replaced with four helpers that don't use switch, and change
the endianness of the given index, when executed on a big endian host.
Backports commit c1c9a10fb1f7a6782711817c167a2c20b000fc12 from qemu
The old version of the helper for the COPY_U.<B|H|W> MSA instructions
has been replaced with four helpers that don't use switch, and change
the endianness of the given index, when executed on a big endian host.
Backports commit 41d288582782cf8d63241ecb6efa1e4160fe78f7 from qemu
The old version of the helper for the COPY_S.<B|H|W|D> MSA instructions
has been replaced with four helpers that don't use switch, and change
the endianness of the given index, when executed on a big endian host.
Backports commit 631c467461496dcf6d6a3e4c3d27a1433e96868e from qemu
Fix the case when the host is a big endian machine, and change
the approach toward ST.<B|H|W|D> instruction helpers.
Backports commit 6decc572dcedbf298ae30f8213b39c8b842a595a from qemu
Fix the case when the host is a big endian machine, and change
the approach toward LD.<B|H|W|D> instruction helpers.
Backports commit 83be6b54123a8f3c529554139f1d1e43356edf8d from qemu
MSA instructions MOD_<U|S>.<B|H|W|D> when dividing by zero,
didn't return the same value when executed on a referent hardware
(FPGA MIPS 64 r6, little endian) and when executed on QEMU, which
is not a real bug, because the result when dividing by zero is
UNPREDICTABLE [1] (page 255, 256).
[1] MIPS Architecture for Programmers
Volume IV-j: The MIPS64 SIMD
Architecture Module, Revision 1.12
Backports commit cf122bf8d2732d5d8647901ebaea596668aaaa3a from qemu
MSA instructions DIV_<U|S>.<B|H|W|D> when dividing by zero,
didn't return the same value when executed on a referent hardware
(FPGA MIPS 64 r6, little endian) and when executed on QEMU, which
is not a real bug, because the result when dividing by zero is
UNPREDICTABLE [1] (page 141, 142).
[1] MIPS Architecture for Programmers
Volume IV-j: The MIPS64 SIMD
Architecture Module, Revision 1.12
Backports commit d2a40a5f6938f30f44b536e997e1e89bb62b971c from qemu
According to the spec, "All bits besides SSIP, USIP, and UEIP in the sip
register are read-only." Further, if an interrupt is not delegated to mode x,
then "the corresponding bits in xip [...] should appear to be hardwired to
zero. This patch implements both of those requirements.
Backports commit 087b051a51a0c2a5bc1e8d435a484a8896b4176b from qemu
C.ADDI16SP, C.LWSP, C.JR, C.ADDIW, C.LDSP all have reserved
operands that were not diagnosed.
Backports commit 4cc16b3b9282e04fab8e84d136540757e82af019 from qemu
At the same time deprecate the ISA string CPUs.
It is dobtful anyone specifies the CPUs, but we are keeping them for the
Spike machine (which is about to be depreated) so we may as well just
mark them as deprecated.
Backports commit 8903bf6e6d73d03b988b4a8197132de2ad681ff5 from qemu
The tcg_gen_fooi_tl functions have some immediate constant
folding built in, which match up with some of the riscv asm
builtin macros, like mv and not.
Backports commit 598aa1160c3d17ab9271daf1f69d093ebada3f25 from qemu
This eliminates all functions in insn_trans/trans_rvc.inc.c,
so the entire file can be removed.
Backports commit 0e68e240a9bd3b44a91cd6012f0e2bf2a43b9fe2 from qemu
This eliminates about half of the complicated decode
bits within insn_trans/trans_rvc.inc.c.
Backports commit c2cfb97c01a3636867c1a4a24f8a99fd8c6bed28 from qemu
Special handling for IMM==0 is the only difference between
RVC shifti and RVI shifti. This can be handled with !function.
Backports commit 6cafec92f1c862a9754ef6a28be68ba7178a284d from qemu
In some cases this allows us to directly use the insn32
translator function. In some cases we still need a shim.
Backports commit e1d455dd91c935c714412dafeb24db947429a929 from qemu
The generated functions are only used within translate.c
and do not need to be global, or declared.
Backports commit 81770255581bd210c57b86a6e808628ab8d0c543 from qemu
This patch introduces wrappers around the tcg_gen_exit_tb() and
tcg_gen_lookup_and_goto_ptr() functions that handle single stepping,
i.e. call gen_exception_debug() when single stepping is enabled.
Theses functions are then used instead of the originals, bringing single
stepping handling in places where it was previously ignored such as jalr
and system branch instructions (ecall, mret, sret, etc.).
Backports commit 6e2716d8ca4edf3597307accef7af36e8ad966eb from qemu
The 'sfence.vma' instruction is privileged, and should only ever be allowed
when executing in supervisor mode or higher.
Backports commit b86f4167630802128d94f3c89043d97d2f4c2546 from qemu
Commit 89e68b575 "target/arm: Use vector operations for saturation"
causes this abort() when booting QEMU ARM with a Cortex-A15:
0 0x00007ffff4c2382f in raise () at /usr/lib/libc.so.6
1 0x00007ffff4c0e672 in abort () at /usr/lib/libc.so.6
2 0x00005555559c1839 in disas_neon_data_insn (insn=<optimized out>, s=<optimized out>) at ./target/arm/translate.c:6673
3 0x00005555559c1839 in disas_neon_data_insn (s=<optimized out>, insn=<optimized out>) at ./target/arm/translate.c:6386
4 0x00005555559cd8a4 in disas_arm_insn (insn=4081107068, s=0x7fffe59a9510) at ./target/arm/translate.c:9289
5 0x00005555559cd8a4 in arm_tr_translate_insn (dcbase=0x7fffe59a9510, cpu=<optimized out>) at ./target/arm/translate.c:13612
6 0x00005555558d1d39 in translator_loop (ops=0x5555561cc580 <arm_translator_ops>, db=0x7fffe59a9510, cpu=0x55555686a2f0, tb=<optimized out>, max_insns=<optimized out>) at ./accel/tcg/translator.c:96
7 0x00005555559d10d4 in gen_intermediate_code (cpu=cpu@entry=0x55555686a2f0, tb=tb@entry=0x7fffd7840080 <code_gen_buffer+126091347>, max_insns=max_insns@entry=512) at ./target/arm/translate.c:13901
8 0x00005555558d06b9 in tb_gen_code (cpu=cpu@entry=0x55555686a2f0, pc=3067096216, cs_base=0, flags=192, cflags=-16252928, cflags@entry=524288) at ./accel/tcg/translate-all.c:1736
9 0x00005555558ce467 in tb_find (cf_mask=524288, tb_exit=1, last_tb=0x7fffd783e640 <code_gen_buffer+126084627>, cpu=0x1) at ./accel/tcg/cpu-exec.c:407
10 0x00005555558ce467 in cpu_exec (cpu=cpu@entry=0x55555686a2f0) at ./accel/tcg/cpu-exec.c:728
11 0x000055555588b0cf in tcg_cpu_exec (cpu=0x55555686a2f0) at ./cpus.c:1431
12 0x000055555588d223 in qemu_tcg_cpu_thread_fn (arg=0x55555686a2f0) at ./cpus.c:1735
13 0x000055555588d223 in qemu_tcg_cpu_thread_fn (arg=arg@entry=0x55555686a2f0) at ./cpus.c:1709
14 0x0000555555d2629a in qemu_thread_start (args=<optimized out>) at ./util/qemu-thread-posix.c:502
15 0x00007ffff4db8a92 in start_thread () at /usr/lib/libpthread.
This patch ensures that we don't hit the abort() in the second switch
case in disas_neon_data_insn() as we will return from the first case.
Backports commit 2f143d3ad1c05e91cf2cdf5de06d59a80a95e6c8 from qemu
The mask implied by the extract is redundant with the one
implied by the deposit. Also, fix spelling of BFXIL.
Backports commit 87eb65a3c45c788a309986d48170a54a0d1c0705 from qemu
We now have an interface for guest visible random numbers.
Backports commit 369fd5ca66810b2ddb16e23a497eabe59385eceb from qemu with
the actual RNG portion disabled for the time being.
Use the newly introduced infrastructure for guest random numbers.
Backports commit de390645675966cce113bf5394445bc1f8d07c85 from qemu
(with the actual RNG portion disabled to preserve determinism for the
time being).
Microarchitectural Data Sampling is a hardware vulnerability which allows
unprivileged speculative access to data which is available in various CPU
internal buffers.
Some Intel processors use the ARCH_CAP_MDS_NO bit in the
IA32_ARCH_CAPABILITIES
MSR to report that they are not vulnerable, make it available to
guests.
Backports commit 20140a82c67467f53814ca197403d5e1b561a5e5 from qemu
md-clear is a new CPUID bit which is set when microcode provides the
mechanism to invoke a flush of various exploitable CPU buffers by invoking
the VERW instruction.
Backports commit b2ae52101fca7f9547ac2f388085dbc58f8fe1c0 from qemu
Optimize rotate_x() using tcg_gen_extract_i32(). We can now free the
'sz' tcg_temp earlier. Since it is allocated with tcg_const_i32(),
free it with tcg_temp_free_i32().
Backports commit 60d3d0cfeb1658d2827d6a4f0df27252bb36baba from qemu
The function gen_get_ccr() returns a tcg_temp created with
tcg_temp_new(). Free it with tcg_temp_free().
Backports commit 44c64e90950adf9efe7f4235a32eb868d1290ebb from qemu
Switch the m68k target from the old unassigned_access hook
to the transaction_failed hook.
The notable difference is that rather than it being called
for all physical memory accesses which fail (including
those made by DMA devices or by the gdbstub), it is only
called for those made by the CPU via its MMU. (In previous
commits we put in explicit checks for the direct physical
loads made by the target/m68k code which will no longer
be handled by calling the unassigned_access hook.)
Backports commit e1aaf3a88e95ab007445281e2b2f6e3c8da47f22 from qemu
In get_physical_address(), use address_space_ldl() and
address_space_stl() instead of ldl_phys() and stl_phys().
This allows us to check whether the memory access failed.
For the moment, we simply return -1 in this case;
add a TODO comment that we should ideally generate the
appropriate kind of fault.
Backports commit adcf0bf017351776510121e47b9226095836023c from qemu
Most of the existing users would continue around a loop which
would fault the tlb entry in via a normal load/store.
But for AArch64 SVE we have an existing emulation bug wherein we
would mark the first element of a no-fault vector load as faulted
(within the FFR, not via exception) just because we did not have
its address in the TLB. Now we can properly only mark it as faulted
if there really is no valid, readable translation, while still not
raising an exception. (Note that beyond the first element of the
vector, the hardware may report a fault for any reason whatsoever;
with at least one element loaded, forward progress is guaranteed.)
Backports commit 4811e9095c0491bc6f5450e5012c9c4796b9e59d from qemu
We can now use the CPUClass hook instead of a named function.
Create a static tlb_fill function to avoid other changes within
cputlb.c. This also isolates the asserts within. Remove the
named tlb_fill function from all of the targets.
Backports commit c319dc13579a92937bffe02ad2c9f1a550e73973 from qemu
Note that env->pc is removed from the qemu_log as that value is garbage.
The PC isn't recovered until cpu_restore_state, called from
cpu_loop_exit_restore, called from riscv_raise_exception.
Backports commit 8a4ca3c10a96be6ed7f023b685b688c4d409bbcb from qemu
Note that env->active_tc.PC is removed from the qemu_log as that value
is garbage. The PC isn't recovered until cpu_restore_state, called from
cpu_loop_exit_restore, called from do_raise_exception_err.
Backports commit 931d019f5b2e7bbacb162869497123be402ddd86 from qemu
Since the only non-negative TLBRET_* value is TLBRET_MATCH,
the subsequent test for ret < 0 is useless. Use early return
to allow subsequent blocks to be unindented.
Backports commit e38f4eb63020075432cb77bf48398187809cf4a3 from qemu
At present we give ret = 0, or TLBRET_MATCH. This gets matched
by the default case, which falls through to TLBRET_BADADDR.
However, it makes more sense to use a proper value. All of the
tlb-related exceptions are handled identically in cpu_loop.c,
so TLBRET_BADADDR is as good as any other. Retain it.
Backports commit 995ffde9622c01f5b307cab47f9bd7962ac09db2 from qemu