Introduce ARMMMUFaultInfo to propagate MMU Fault information
across the MMU translation code path. This is in preparation for
adding Stage-2 translation.
No functional changes.
Backports commit e14b5a23d8c83304559f31397f95d22ada60a19a from qemu
The starting level for S2 pagetable walks is computed
differently from the S1 starting level. Implement the S2
variant.
Backports commit 1853d5a9dcac910322c6cc5b2fddec45fd052d25 from qemu
Rename granule_sz to stride to better match the reference manuals.
No functional change.
Backports commit 973a5434825c076995218868b5b3047e5de400c6 from qemu
Remove the tsz variable and introduce inputsize.
This simplifies the code a little and makes it easier to
compare with the reference manuals.
No functional change.
Backports commit 4ca6a051758edf625a17dfc4ce4ab72edabac170 from qemu
Add support for AArch32 S2 negative t0sz. In preparation for
using 40bit IPAs on AArch32.
Backports commit 4ee38098010240e0b390061fdd0151ff62d80279 from qemu
Move declaration of t0sz and t1sz to the top of the function
avoiding a mix of code and variable declarations.
No functional change.
Backports commit 1f4c8c18a5b6f4fad13e13b7e3828124c6c8f34d from qemu
Make t0sz and t1sz signed integers to match tsz and to make
it easier to implement support for AArch32 negative t0sz.
t1sz is changed for consistensy.
No functional change.
Backports commit 5c31a10d16c595d6a59e3e7fc1808c3b1d03e02f from qemu
Add the MDCR_EL2 register. We don't implement any of
the debug-related traps this register controls yet, so
currently it simply reads back as written.
Backports commit 14cc7b54372995a6ba72c7719372e4f710fc9b5a from qemu
Added oslar_write function to OSLAR_EL1 sysreg, using a status variable
in ARMCPUState.cp15 struct (oslsr_el1). This variable is also linked
to the newly added read-only OSLSR_EL1 register.
Linux reads from this register during its suspend/resume procedure.
Backports commit 1424ca8d4320427c3e93722b65e19077969808a2 from qemu
It is incorrect to call arm_el_is_aa64() function for unimplemented EL.
This patch fixes several attempts to do so.
Backports commit 2cde031f5a34996bab32571a26b1a6bcf3e5b5d9 from qemu
If any store instruction writes the code inside the same TB
after this store insn, the execution of the TB must be stopped
to execute new code correctly.
As described in ARMv8 manual D3.4.6 self-modifying code must do an
IC invalidation to be valid, and an ISB after it. So it's enough to end
the TB after ISB instruction on the code translation.
Also this TB break is necessary to take any pending interrupts immediately
after an ISB (as required by ARMv8 ARM D1.14.4).
Backports commit 6df99dec9e81838423d723996e96236693fa31fe from qemu
Break out mpidr_read_val() to allow future sharing of the
code that conditionally sets the M and U bits of MPIDR.
No functional changes.
Backports commit 06a7e6477c129ceaa72bd400cf281d44c456be43 from qemu
Stage-2 MMU translations do not have configurable TBI as
the top byte is always 0 (48-bit IPAs).
Backports commit 1edee4708a0e3163cbf20fac325be456abd960bb from qemu
This is set to true when the index is for an instruction fetch
translation.
The core get_page_addr_code() sets it, as do the SOFTMMU_CODE_ACCESS
acessors.
All targets ignore it for now, and all other callers pass "false".
This will allow targets who wish to split the mmu index between
instruction and data accesses to do so. A subsequent patch will
do just that for PowerPC.
Backports commit 97ed5ccdee95f0b98bedc601ff979e368583472c from qemu
There is an error in functions aarch64_sync_32_to_64() and
aarch64_sync_64_to_32() with mapping of registers between AArch32 and
AArch64. This commit fixes the mapping to match the v8 ARM ARM
section D1.20.1 (table D1-77).
Backports commit 3a9148d0bdcee990fbe86759b9b1f5723c1d7fbc from qemu
All of these hw_errors are fatal and indicate something wrong with
QEMU implementation.
Convert to g_assert_not_reached.
Backports commit 8f6fd322f6e25995629a1a07b56bc5b91fb947ca from qemu
Print semihosting debugging information before the
do_arm_semihosting() call so that angel_SWIreason_ReportException,
which causes the function to not return, gets the same debug prints as
other semihosting calls. Also print out the semihosting call number.
Backports commit 205ace55ffff77964e50af08c99639ec47db53f6 from qemu
Implement the AArch64 TLBI operations which take an intermediate
physical address and invalidate stage 2 translations.
Backports commit cea66e91212164e02ad1d245c2371f7e8eb59e7f from qemu
Now we have the ability to flush the TLB only for specific MMU indexes,
update the AArch64 TLB maintenance instruction implementations to only
flush the parts of the TLB they need to, rather than doing full flushes.
We take the opportunity to remove some duplicate functions (the per-asid
tlb ops work like the non-per-asid ones because we don't support
flushing a TLB only by ASID) and to bring the function names in line
with the architectural TLBI operation names.
Backports commit fd3ed969227f54f08f87d9eb6de2d4e48e99279b from qemu
Move the two regdefs for TLBI ALLE1 and TLBI ALLE1IS down so that the
whole set of AArch64 TLBI regdefs is arranged in numeric order.
Backports commit 83ddf975777cc23337b7ef92e83b1b9c949396f3 from qemu
Apply the correct conditions in the ats_access() function for
the ATS12NSO* address translation operations:
* succeed at EL2 or EL3
* normal UNDEF trap from NS EL1
* trap to EL3 from S EL1 (only possible if EL3 is AArch64)
(This change means they're now available in our EL3-supporting
CPUs when they would previously always UNDEF.)
Backports commit 87562e4f4a2bdd028eef3549ce9cb4e7c83cb0bf from qemu
Wire up the AArch64 EL2 and EL3 address translation operations
(AT S12E1*, AT S12E0*, AT S1E2*, AT S1E3*), and correct some
errors in the ats_write64() function in previously unused code
that would have done the wrong kind of lookup for accesses from
EL3 when SCR.NS==0.
Backports commit 2a47df953202e1f226aa045ea974427c4540a167 from qemu
For EL2 stage 1 translations, there is no TTBR1. We were already
handling this for 64-bit EL2; add the code to take the 'no TTBR1'
code path for 64-bit EL2 as well.
Backports commit d0a2cbceb2aa20d64d53e1c20c7d26a78ade8382 from qemu
We already implemented ACTLR_EL1; add the missing ACTLR_EL2 and
ACTLR_EL3, for consistency.
Since we don't currently have any CPUs that need the EL2/EL3
versions to reset to non-zero values, implement as RAZ/WI.
Backports commit 834a6c6920316d39aaf0e68ac936c0a3ad164815 from qemu
The AFSR registers are implementation dependent auxiliary fault
status registers. We already implemented a RAZ/WI AFSR0_EL1 and
AFSR_EL1; add the missing AFSR{0,1}_EL{2,3} for consistency.
Backports commit 37cd6c2478196623ca28526627ca8c69afe0d654 from qemu
The AMAIR registers are for providing auxiliary implementation
defined memory attributes. We already implemented a RAZ/WI
AMAIR_EL1; add the EL2 and EL3 versions for consistency.
Backports commit 2179ef958c81480b841ffa0aab5e265688ffd2b0 from qemu
Add the AArch64 registers MAIR_EL3 and TPIDR_EL3, which are the only
two which we had implemented the 32-bit Secure equivalents of but
not the 64-bit Secure versions.
Backports commit 4cfb8ad896a6f85953038bd913ce3d82d347013d from qemu
If EL3 is AArch32, then the secure physical timer is accessed via
banking of the registers used for the non-secure physical timer.
Implement this banking.
Note that the access controls for the AArch32 banked registers
remain the same as the physical-timer checks; they are not the
same as the controls on the AArch64 secure timer registers.
Backports commit 9ff9dd3c875956523bb4c19ca712e5d05aab3c65 from qemu
On CPUs with EL3, there are two physical timers, one for Secure and one
for Non-secure. Implement this extra timer and the AArch64 registers
which access it.
Backports commit b4d3978c2fdf944e428a46d2850dbd950b6fbe78 from qemu
It's easy to accidentally define two cpregs which both try
to reset the same underlying state field (for instance a
clash between an AArch64 EL3 definition and an AArch32
banked register definition). if the two definitions disagree
about the reset value then the result is dependent on which
one happened to be reached last in the hashtable enumeration.
Add a consistency check to detect and assert in these cases:
after reset, we run a second pass where we check that the
reset operation doesn't change the value of the register.
Backports commit 49a661910c1374858602a3002b67115893673c25 from qemu
Rename gt_cnt_reset to gt_timer_reset as the function really
resets the timers and not the counters. Move the registration
from counter regs to timer regs.
Backports commit d57b9ee84f6b2786f025712609edb259d0de086d from qemu
The SCTLR_EL3 cpreg definition was implicitly resetting the
register state to 0, which is both wrong and clashes with
the reset done via the SCTLR definition (since sctlr[3]
is unioned with sctlr_s). This went unnoticed until recently,
when an unrelated change (commit a903c449b41f105aa) happened to
perturb the order of enumeration through the cpregs hashtable for
reset such that the erroneous reset happened after the correct one
rather than before it. Fix this by marking SCTLR_EL3 as an alias,
so its reset is left up to the AArch32 view.
Backports commit e46e1a74ef482f1ef773e750df9654ef4442ca29 from qemu
TLBI ALLE1IS is an operation that does invalidate TLB entries on all PEs
in the same Inner Sharable domain, not just on the current CPU. So we
must use tlbiall_is_write() here.
Backports commit 2a6332d968297266dbabf9d33f959e3a5efdd0f9 from qemu
Unified MPU only. Uses ARM architecture major revision to switch
between PMSAv5 and v7 when ARM_FEATURE_MPU is set. PMSA v6 remains
unsupported and is asserted against.
Backports commit f6bda88ff839e2adefe4959b7def420b90703855 from qemu
Define the arm CP registers for PMSAv7 and their accessor functions.
RGNR serves as a shared index that indexes into arrays storing the
DRBAR, DRSR and DRACR registers. DRBAR and friends have to be VMSDd
separately from the CP interface using a new PMSA specific VMSD
subsection.
Backports commit 6cb0b013a1fa421cdfb83257cd33f855cc90649a from qemu
Define the MPUIR register for MPU supporting ARMv6 and onwards.
Currently we only support unified MPU.
The size of the unified MPU is defined via the number of "dregions".
So just a single config is added to specify this size. (When split MPU
is implemented we will add an extra iregions config).
Backports commit 3281af8114c6b8ead02f08b58e3c36895c1ea047 from qemu
cp_reg_reset() is called from g_hash_table_foreach() which does not
define a specific ordering of the hash table iteration. Thus doing reset
for registers marked as ALIAS would give an ambiguous result when
resetvalue is different for original and alias registers. Exit
cp_reg_reset() early when passed an alias register. Then clean up alias
register definitions from needless resetvalue and resetfn.
In particular, this fixes a bug in the handling of the PMCR register,
which had different resetvalues for its 32 and 64-bit views.
Backports commit b061a82b8afcc45ce09d770d9c0acdf429401054 from qemu
Add a boolean for indicating uniprocessors with MP extensions. This
drives the U bit in MPIDR. Prepares support for Cortex-R5.
Backports commit a8e81b319d1ae1224cc7059877dcdf04a5aad59d from qemu
Currently, the return code for get_phys_addr is overloaded for both
success/fail and FSR value return. This doesn't handle the case where
there is an error with a 0 FSR. This case exists in PMSAv7.
So rework get_phys_addr and friends to return a success/failure boolean
return code and populate the FSR via a caller provided uint32_t
pointer.
Backports commit b7cc4e82f04a1c5b218a657f677a2fdd1e1c2889 from qemu
V6+ PMSA and VMSA share some common registers that are currently
in the VMSA definition block. Split them out into a new def that can
be shared to PMSA.
Backports commit 8e5d75c950a1241f6e1243c37f28cd58f68fedc9 from qemu
These registers are VMSA specific so they should be conditional on
VMSA (i.e. !MPU).
Backports commit 5e5cf9e35f25f9f932a6ce25107c11b67b426a43 from qemu
If doing a PMSA (MPU) system do not define the VMSA specific TLBTR CP.
The def is done separately from VMSA registers group as it is affected
by both the OMAP/STRONGARM RW errata and the MIDR backgrounding.
Backports commit 8085ce63c5967d200f1241b6c0a189371993c5df from qemu
When we're using KVM, the kernel's internal idea of the MPIDR
affinity fields must match the values we tell it for the guest
vcpu cluster configuration in the device tree. Since at the moment
the kernel doesn't support letting userspace tell it the correct
affinity fields to use, we must read the kernel's view and
reflect that back in the device tree.
Backports commit eb5e1d3c85dffe677da2550d211f9304a7d5ba3b from qemu
According to ARMv8 ARM, there are additional aliases to MIDR system register in
AArch32 state. So add them to the list.
Backports commit ac00c79ff6635ae9fd732ff357ada0d05e795500 from qemu
According to ARM Cortex-A53/A57 TRM, REVIDR reset value should be zero. So let
REVIDR reset value be specified by CPU model and correct it for Cortex-A53/A57.
Backports commit 13b72b2b9aa7ab7ee129e38e9587acd6a1b9a932 from qemu
Since ARMv7 with LPAE support, a supersection short translation table
descriptor has had extended base address fields which hold bits 39:32 of
translated address. These fields are IMPDEF in ARMv6 and ARMv7 without
LPAE support.
Backports commit 4e42a6ca37e39e56725518851f4388e46bd91129 from qemu
The old ARMv5-style page table format includes a kind of second level
descriptor named the "extended small page" format, whose primary purpose
is to allow specification of the TEX memory attribute bits on a 4K page.
This exists on ARMv6 and also (as an implementation extension) on XScale
CPUs; it's UNPREDICTABLE on v5.
We were mishandling this in two ways:
(1) we weren't implementing it for v6 (probably never noticed because
Linux will use the new-style v6 page table format there)
(2) we were not correctly setting the page_size, which is 4K, not 1K
The latter bug went unnoticed for years because the only thing which
the page_size affects is which TLB entries get flushed when the guest
does a TLB invalidate on an address in the page, and prior to commit
2f0d8631b7 we were doing a full TLB flush very frequently due to Linux's
habit of writing the SCTLR pointlessly a lot.
(We can assume that after commit 2f0d8631b7 the bug went unnoticed
for a year because nobody's actually using the Zaurus/XScale emulation...)
Report the correct page size for these descriptors, and permit them
on ARMv6 CPUs. This fixes a problem where a kernel image for Zaurus
can boot the kernel OK but gets random segfaults when it tries to
run userspace programs.
Backports commit fc1891c74ae122a9dc7854f38bae7db03cd911e6 from qemu
The ARMCPRegInfo arrays v8_el3_no_el2_cp_reginfo and v8_el2_cp_reginfo
are actually used on non-v8 CPUs as well. Remove the incorrect v8_
prefix from their names.
Backports commit 4771cd01daaccb2a8929fa04c88c608e378cf814 from qemu
Adds CPTR_EL2/3 system registers definitions and access function.
Signed-off-by: Greg Bellows <greg.bellows@linaro.org>
[PMM: merge CPTR_EL2 and HCPTR definitions into a single
def using STATE_BOTH;
don't use readfn/writefn to implement RAZ/WI registers;
don't use accessfn for the no-EL2 CPTR_EL2;
fix cpacr_access logic to catch EL2 accesses to CPACR being
trapped to EL3;
use new CP_ACCESS_TRAP_EL[23] rather than setting
exception.target_el directly]
Backports commit c6f191642a4027909813b4e6e288411f8371e951 from qemu
Updated the interrupt handling to utilize and report through the target EL
exception field. This includes consolidating and cleaning up code where
needed. Target EL is now calculated once in arm_cpu_exec_interrupt() and
do_interrupt was updated to use the target_el exception field. The
necessary code from arm_excp_target_el() was merged in where needed and the
function removed.
Backports commit 012a906b19e99b126403ff4a257617dab9b34163 from qemu
Move the code which sets exception information out of
arm_cpu_handle_mmu_fault and into tlb_fill. tlb_fill
is the only caller which wants to raise_exception()
so it makes more sense for it to handle the whole of
the exception setup.
As part of this cleanup, move the user-mode-only
implementation function for the handle_mmu_fault CPU
method into cpu.c so we don't need to make it globally
visible, and rename the softmmu-only utility function
arm_cpu_handle_mmu_fault to arm_tlb_fill so it's clear
that it's not the same thing.
Backports commit 8c6084bf10fe721929ca94cf16acd6687e61d3ec from qemu
Updated get_phys_addr_lpae to check the appropriate TTBCR/TCR depending on the
current EL. Support includes using the different TCR format as well as checks to
insure TTBR1 is not used when in EL2 or EL3.
Backports commit 88e8add8b6656c349a96b447b074688d02dc5415 from qemu
Add a utility function for choosing the correct TTBR system register based on
the specified MMU index. Add use of function on physical address lookup.
Backports commit aef878be4e7ab1bdb30b408007320400b0a29c83 from qemu
Updated scr_write to always allow updates to the SCR.SMD bit on ARMv8
regardless of whether virtualization (EL2) is enabled or not.
Backports commit 4eb276408363aef5435a72a8e818f24220b5edd0 from qemu
Add a transaction attribute indicating that a memory access is being
done from user-mode (unprivileged). This corresponds to an equivalent
signal in ARM AMBA buses.
Backports commit 0995bf8cd91b81ec9c1078e37b808794080dc5c0 from qemu
Factor out the page table walk memory accesses into their own function,
so that we can specify the correct S/NS memory attributes for them.
This will also provide a place to use the correct endianness and
handle the need for a stage-2 translation when virtualization is
supported.
Backports commit ebca90e4c3aaaae5ed1ee7c569dea00d5d6ed476 from qemu
Honour the NS bit in ARM page tables:
* when adding entries to the TLB, include the Secure/NonSecure
transaction attribute
* set the NS bit in the PAR when doing ATS operations
Note that we don't yet correctly use the NSTable bit to
cause the page table walk itself to use the right attributes.
Backports commit 8bf5b6a9c1911d2c8473385fc0cebfaaeef42dbc from qem
This patch makes the following changes to the determination of
whether an address is executable, when translating addresses
using LPAE.
1. No longer assumes that PL0 can't execute when it can't read.
It can in AArch64, a difference from AArch32.
2. Use va_size == 64 to determine we're in AArch64, rather than
arm_feature(env, ARM_FEATURE_V8), which is insufficient.
3. Add additional XN determinants
- NS && is_secure && (SCR & SCR_SIF)
- WXN && (prot & PAGE_WRITE)
- AArch64: (prot_PL0 & PAGE_WRITE)
- AArch32: UWXN && (prot_PL0 & PAGE_WRITE)
- XN determination should also work in secure mode (untested)
- XN may even work in EL2 (currently impossible to test)
4. Cleans up the bloated PAGE_EXEC condition - by removing it.
The helper get_S1prot is introduced. It may even work in EL2,
when support for that comes, but, as the function name implies,
it only works for stage 1 translations.
Backports commit d8e052b387635639a6ba4a09a7874fd2f113b218 from qemu
Introduce simple_ap_to_rw_prot(), which has the same behavior as
ap_to_rw_prot(), but takes the 2-bit simple AP[2:1] instead of
the 3-bit AP[2:0]. Use this in get_phys_addr_v6 when SCTLR_AFE
is set, as that bit indicates we should be using the simple AP
format.
It's unlikely this path is getting used. I don't see CR_AFE
getting used by Linux, so possibly not. If it had been, then
the check would have been wrong for all but AP[2:1] = 0b11.
Anyway, this should fix it up, in case it ever does get used.
Backports commit d76951b65dfb1be4e41cfae6abebf8db7a1243a3 from qemu
Instead of mixing access permission checking with access permissions
to page protection flags translation, just do the translation, and
leave it to the caller to check the protection flags against the access
type. Also rename to ap_to_rw_prot to better describe the new behavior.
Backports commit 0fbf5238203041f734c51b49778223686f14366b from qemu
The AArch64 SPSR_EL1 register is architecturally mandated to
be mapped to the AArch32 SPSR_svc register. This means its
state should live in QEMU's env->banked_spsr[1] field.
Correct the various places in the code that incorrectly
put it in banked_spsr[0].
Backports commit 7847f9ea9fce15a9ecfb62ab72c1e84ff516b0db from qemu
For the ARM M-profile cores, exception return pops various registers
including the PC from the stack. The architecture defines that if the
lowest bit in the new PC value is set (ie the PC is not halfword
aligned) then behaviour is UNPREDICTABLE. In practice hardware
implementations seem to simply ignore the low bit, and some buggy
RTOSes incorrectly rely on this. QEMU's behaviour was architecturally
permitted, but bringing QEMU into line with the hardware behaviour
allows more guest code to run. We log the situation as a guest error.
This was reported as LP:1428657.
Backports commit fcf83ab103dce6d2951f24f48e30820e7dbb3622 from qemu
Add AArch32 to AArch64 register sychronization functions.
Replace manual register synchronization with new functions in
aarch64_cpu_do_interrupt() and HELPER(exception_return)().
Backports commit ce02049dbf1828b4bc77d921b108a9d84246e5aa from qemu
f64 exponent in HELPER(recpe_f64) should be compared to 2045 rather than 1023
(FPRecipEstimate in ARMV8 spec). This fixes incorrect underflow handling when
flushing denormals to zero in the FRECPE instructions operating on 64-bit
values.
Backports commit fc1792e9aa36227ee9994757974f9397684e1a48 from qemu
A few of the oldest parts of the page-table-walk code have broken indent
(either hardcoded tabs or two-spaces). Reindent these sections.
For ease of review, this patch does not touch the brace style and
so is a whitespace-only change.
Backports commit 554b0b09aec4579c8164f363b18a263150e91a2c from qemu
Now we have the mmu_idx in get_phys_addr(), use it correctly to
determine the behaviour of virtual to physical address translations,
rather than using just an is_user flag and the current CPU state.
Some TODO comments have been added to indicate where changes will
need to be made to add EL2 and 64-bit EL3 support.
Backports commit 0480f69abf849ca0d48928cc6c669c1c7264239b from qemu