When capturing the current CPU state for the TB, extract the TBI0 and TBI1
values from the correct TCR for the current EL and then add them to the TB
flags field.
Then, at the start of code generation for the block, copy the TBI fields
into the DisasContext structure.
Backports commit 86fb3fa4ed5873b021a362ea26a021f4aeab1bb4 from qemu
The 'old' dispatch code returned a QERR_MISSING_PARAMETER for missing
parameters, but the qapi qmp_dispatch() code uses
QERR_INVALID_PARAMETER_TYPE.
Improve qapi code to return QERR_MISSING_PARAMETER where
appropriate.
Fix expected error message in iotests.
Backports commit 1382d4abdf9619985e4078e37e49e487cea9935e from qemu
Unlike the other visit methods, visit_type_any() and visit_type_null()
neglect to check whether qmp_input_get_object() succeeded. They crash
when it fails. Reproducer:
{ "execute": "qom-set",
"arguments": { "path": "/machine", "property": "rtc-time" } }
Will crash with:
qapi/qapi-visit-core.c:277: visit_type_any: Assertion `!err != !*obj'
failed
Broken in commit 5c678ee. Fix by adding the missing error checks.
Backports commit c489780203f9b22aca5539ec7589b7140bdc951f from qemu
Only very modern GCC's actually set this define when building with the
ThreadSanitizer so this little typo slipped though.
Backports commit 23ea7f57949f2f5934f4d5bbc29fe321b3a7067b from qemu
ThreadSanitizer picks up potential races although we already use
barriers to ensure things are in the correct order when processing exit
requests. For true C11 defined behaviour across threads we need to use
relaxed atomic_set/atomic_read semantics to reassure tsan.
Backports commit 027d9a7d2911e993cdcbd21c7c35d1dd058f05bb from qemu
The ThreadSanitizer rightly complains that something initialised with a
normal access is later updated and read atomically.
Backports commit ce7cf6a973f4b614162b9518954d441fa5e32fc6 from qemu
The idiom CPU_GET_CLASS(cpu) is fairly extensively used in various
threads and trips of ThreadSanitizer due to the fact it updates
obj->class->object_cast_cache behind the scenes. As this is just a
fast-path cache there is no need to lock updates.
However to ensure defined C11 behaviour across threads we need to use
the plain atomic_read/set primitives and keep the sanitizer happy.
Backports commit b6b3ccfda015dcd5ab50f70c189ee5cc6c622e91 from qemu
This is to appease sanitizer builds which complain that:
"error: control reaches end of non-void function"
Backports commit 550276ae0a88851edda2cb7fcdd64256dbb8e314 from qemu
Add some notes on the use of the relaxed atomic access helpers and their
importance for defined behaviour in C11's multi-threaded memory model.
Backports commit e653bc6b0ff645c25b8a2eb607c18a5c98b59db6 from qemu
In the ARM v6 architecture, 'sub pc, pc, 1' is not an interworking
branch, so the computed new value is written to r15 as a normal
value. The architecture says that in this case, bits [1:0] of
the value written must be ignored if we are in ARM mode (or
bit [0] ignored if in Thumb mode); this is a change from the
ARMv4/v5 specification that behaviour is UNPREDICTABLE.
Use the correct mask on the PC value when doing a non-interworking
store to PC.
A popular library used on RaspberryPi uses this instruction
as part of a trick to determine whether it is running on
ARMv6 or ARMv7, and we were mishandling the sequence.
Fixes bug: https://bugs.launchpad.net/bugs/1625295
Backports commit 9b6a3ea7a699594162ed3d11e4e04b98568dc5c0 from qemu
Fix the decoding of iss_sf in disas_ld_lit.
The SF (Sixty-Four) field in the ISS (Instruction Specific Syndrome)
is a bit that specifies the width of the register that the
instruction loads to.
If cleared it specifies 32 bits.
If set it specifies 64 bits.
Backports commit 173ff58580b383a7841b18fddb293038c9d40d1c from qemu
Current CPU definition for AMD Opteron third generation includes
features like SSE4a and LAHF_LM support in emulated CPUID. These
features are present in K8 rev.E or K10 CPUs and later. However,
current G3 family and model describe 2nd generation K8 cores instead.
This is incorrect but was considered harmless until our tests found a
problem with linux kernels >= 3.10 (and maybe earlier) which specifically
check for Opteron K8 model when parsing CPUID leaf 0x80000001:
http://lxr.free-electrons.com/source/arch/x86/kernel/cpu/amd.c?v=3.16#L552
This code will disable LAHF_LM feature in /proc/cpuinfo if model number
is inconsistent.
This change sets Opteron_G3 family/model/stepping to 16/2/3 which is
a proper Opteron 3rd generation 2350 CPU.
Backports commit 339892d758efb2d0954160d41736a0eac9875d67 from qemu
A regression was introduced by commit 96193c22a "target-i386:
Move xsave component mask to features array": all
CPUID[EAX=0xD,ECX=0]:EAX bits were being reported as unmigratable
because they don't have feature names defined. This broke
"-cpu host" because it enables only migratable features by
default.
This adds a new field to FeatureWordInfo: migratable_flags, which
will make those features be reported as migratable even if they
don't have a property name defined.
Backports commit 6fb2fff75dceed1716e757882a6dfbadd9042407 from qemu
CPUState is a fairly common pointer to pass to these helpers. This means
if you need other arguments for the async_run_on_cpu case you end up
having to do a g_malloc to stuff additional data into the routine. For
the current users this isn't a massive deal but for MTTCG this gets
cumbersome when the only other parameter is often an address.
This adds the typedef run_on_cpu_func for helper functions which has an
explicit CPUState * passed as the first parameter. All the users of
run_on_cpu and async_run_on_cpu have had their helpers updated to use
CPUState where available.
Backports commit e0eeb4a21a3ca4b296220ce4449d8acef9de9049 from qemu
As discussed on the list [1], having a comment stating that this file
is "public domain" is arguably wrong and not legally binding. This patch
replaces that comment with a clear GPLv2+ license as proposed in [2].
[1] http://lists.nongnu.org/archive/html/qemu-devel/2016-09/msg06151.html
[2] http://lists.nongnu.org/archive/html/qemu-devel/2016-09/msg06217.html
Worth noting, compiler.h was originally created on 5c026320 by splitting
qemu-common.h. At the time, qemu-common.h was already GPLv2+.
Backports commit cc9d8a3b2c41c22fb09f90f3085e6036c199c3ca from qemu
This will ensure all checks for features[FEAT_KVM] in the code
will be correct in case the KVM CPUID leaf is completely
disabled.
Backports commit aec661de86894e914d2d82431d9cefa9a9a40213 from qemu
This will reuse the existing check/enforce logic in
x86_cpu_filter_features() to check the xsave component bits
against GET_SUPPORTED_CPUID.
Backports commit 96193c22ab39ea24f81e386ad7883260ff24f5fd from qemu
Instead of doing complex calculations and calling
kvm_arch_get_supported_cpuid() inside cpu_x86_cpuid(), calculate
the set of required XSAVE components earlier, at realize time.
Backports commit 2ca8a8becc2eeb5262e478ce502f5daa53f3d0bc from qemu
Move the xsave area size calculation from cpu_x86_cpuid() inside
its own function. While doing it, change it to use the XSAVE area
struct sizes for the initial size, instead of the magic 0x240
number.
Backports commit 1fda6198e4126af9988754c8824cfc9928649890 from qemu
Instead of assigning individual bits in a loop, just copy the
values from ena_mask.
Backports commit 8057c621b1b17cbcb35fe67d1a09ada9055873a9 from qemu
Instead of checking both env->features and ena_mask at two
different places in the CPUID code, initialize ena_mask based on
the features that are enabled for the CPU, and then clear
unsupported bits based on kvm_arch_get_supported_cpuid().
The results should be exactly the same, but it will make it
easier to move the mask calculation elsewhare, and reuse
x86_cpu_filter_features() for the kvm_arch_get_supported_cpuid()
check.
Backports commit 4928cd6de6b4211a79f98c8dc39115be1e815c2b from qemu
The code that calculates the set of supported XSAVE components on
CPUID looks at ext_save_areas to find out which components should
be enabled. However, if there are zeroed entries in the
ext_save_areas array, the
((env->features[esa->feature] & esa->bits) == esa->bits)
check will always succeed and QEMU will unconditionally try to
enable the component.
Luckily this never caused any problems because the only missing
entry in ext_save_areas is the PT State component (bit 8), and
KVM currently doesn't support it (so it was cleared on ena_mask).
But the code was still incorrect and would break if KVM starts
returning CPUID[EAX=0xD,ECX=0].EAX[bit 8] as supported on
GET_SUPPORTED_CPUID.
Fix the problem by changing the code to not enable a XSAVE
component if ExtSaveArea::bits is zero.
Backports commit 9646f4927faf68e8690588c2fd6dc9834c440b58 from qemu
It makes it easier to guarantee the arrays are the right size,
and to find information when looking at the code.
Backports commit 2d5312da566e4424a807d078da05f92ee7be3eec from qemu
SVM needs CPUID[0x8000000A] to be available. So if SVM is enabled
in a CPU model or explicitly in the command-line, adjust CPUID
xlevel to expose the CPUID[0x8000000A] leaf.
Backports commit 0c3d7c0051576d220e6da0a8ac08f2d8482e2f0b from qemu
Instead of requiring users and management software to be aware of
required CPUID level/xlevel/xlevel2 values for each feature,
automatically increase those values when features need them.
This was already done for CPUID[7].EBX, and is now made generic
for all CPUID feature flags. Unit test included, to make sure we
don't break ABI on older machine-types and don't mess with the
CPUID level values if they are explicitly set by the user.
Backports commit c39c0edf9bb3b968ba95484465a50c7b19f4aa3a from qemu
Instead of using cpuid_level, use an empty struct as a marker
(like we already did with {start,end}_init_save). This will avoid
accidentaly resetting the wrong fields if we change the field
ordering on CPUX86State.
Backports commit 5e992a8e337e710ea2d02f35668ac55a80e15f99 from qemu
No CPU model in builtin_x86_defs has xlevel2 set, so it is always
zero. Delete the field.
Note that this is not an user-visible change. It doesn't remove
the ability to set xlevel2 on the command-line, it just removes
an unused field in builtin_x86_defs.
Backports commit 0456441b5eb6694a561ad5bb8dad52483e6a08d0 from qemu
Define a new CPU definition supporting 24KEc cores, similar to
the existing 24Kc, but with added support for DSP instructions
and MIPS16e (and without FPU).
Backports commit e9deaad8a58c899dc32e9fdeff9e533070e79dca from qemu
Add the "cortex-a7" CPU with features and registers matching the Cortex-A7
MPCore Technical Reference Manual and the Cortex-A7 Floating-Point Unit
Technical Reference Manual. The A7 is very similar to the A15.
Backports commit dcf578ed8cec89543158b103940e854ebd21a8cf from qemu
This avoids a double hand-full of magic numbers in the
xsave and xrstor helper functions.
Backports commit 3f32bd21df655e62eb271182a5c63280d631c7b3 from qemu
TARGET_PAGE_MASK, as defined, has type "int". We need to extend
that to the proper target width before oring in an "unsigned".
Backports commit ebb90a005da67147245cd38fb04a965a87a961b7 from qemu
This commit optimizes fence instructions. Two optimizations are
currently implemented: (1) unnecessary duplicate fence instructions,
and (2) merging weaker fences into a stronger fence.
[rth: Merge tcg_optimize_mb back into tcg_optimize, so that we only
loop over the opcode stream once. Merge "unrelated" weaker barriers
into one stronger barrier.]
Backports commit 34f939218ce78163171addd63750e1e0300376ab from qemu
Generate a 'lock orl $0,0(%esp)' instruction for ordering instead of
mfence which has similar ordering semantics.
Backports commit a7d00d4effb58889ac6df64f98ac50c9d1594149 from qemu
This commit introduces the TCGOpcode for memory barrier instruction.
This opcode takes an argument which is the type of memory barrier
which should be generated.
Backports commit f65e19bc2c9e8358e634d309606144ac2a3c2936 from qemu
The return address argument to the softmmu template helpers was
confused. In the legacy case, we wanted to indicate that there
is no return address, and so passed in NULL. However, we then
immediately subtracted GETPC_ADJ from NULL, resulting in a non-zero
value, indicating the presence of an (invalid) return address.
Push the GETPC_ADJ subtraction down to the only point it's required:
immediately before use within cpu_restore_state_from_tb, after all
NULL pointer checks have been completed.
This makes GETPC and GETRA identical. Remove GETRA as the lesser
used macro, replacing all uses with GETPC.
Backports commit 01ecaf438b1eb46abe23392c8ce5b7628b0c8cf5 from qemu
Previously we allowed fully unaligned operations, but not operations
that are aligned but with less alignment than the operation size.
In addition, arm32, ia64, mips, and sparc had been omitted from the
previous overalignment patch, which would have led to that alignment
being enforced.
Backports commit 85aa80813dd9f5c1f581c743e45678a3bee220f8 from qemu
In user-mode emulation env->idt.base memory is
allocated in linux-user/main.c with
size 8*512 = 4096 (for 64-bit).
When fake interrupt EXCP_SYSCALL is thrown
do_interrupt_user checks destination privilege level
for this fake exception, and tries to read 4 bytes
at address base + (256 * 2^4)=4096, that causes
segfault.
Privlege level was checked only for int's, so lets
read dpl from memory only for this case.
Backports commit 885b7c44e4f8b7a012a92770a0dba8b238662caa from qemu
Make sure reset zeroes TSC_AUX, XCR0, PKRU. Move XSTATE_BV from the
"vmstate only" section to the "KVM only" section.
Backports commit 7616f1c2da1c0f336a474a56ad6d32e15ccd666e from qemu
Unused function declarations were found using a simple gcc plugin and
manually verified by grepping the sources.
Backports commit d4b84d564ee3eb7a58e4585d671fb3c220b6c3b9 from qemu
All operations that take a floatx80 as an operand need to have their
inputs checked for malformed encodings. In all of these cases, use the
function floatx80_invalid_encoding to perform the check. If an invalid
operand is found, raise an invalid operation exception, and then return
either NaN (for fp-typed results) or the integer indefinite value (the
minimum representable signed integer value, for int-typed results).
For the non-quiet comparison operations, this touches adjacent code in
order to pass style checks.
Backports cast correction portion of commit d1eb8f2acba579830cf3798c3c15ce51be852c56m from qemu
Use the __atomic_*_n() primitives which take the value as argument. It
is not necessary to store the value locally before calling the
primitive, hence saving us a stack store and load.
Backports commit 89943de17c4e276f2c47f05b4604e8816a6a636c from qemu
For module build, .mo objects are passed to LINK and consumed in
process-archive-undefs. The reason behind that is documented in the
comment above process-archive-undefs.
Similarly, extract-libs should be called with .mo filtered out too.
Otherwise, the .mo-libs are added to the link command incorrectly,
spoiling the purpose of modularization.
Currently we don't have any .mo-libs usage, but it will be used soon
when we modularize more multi-source objects, like sdl and gtk.
Backports commit 5b1b6dbd94e2e2e98920f886cb32fcf4a1520b50 from qemu
In fact, this function does not exactly perform a lookup by physical
address as it is descibed for comment on get_page_addr_code(). Thus
it may be a bit confusing to have "physical" in it's name. So rename it
to tb_htable_lookup() to better reflect its actual functionality.
Backports commit b34de45fc40d01c14b31d3a682e284180a2ed8c5 from qemu
These functions are not too big and can be merged together. This makes
locking scheme more clear and easier to follow.
Backports commit bd2710d5da06ad7706d4864f65b3f0c9f7cb4d7f from qemu
Lock contention in the hot path of moving between existing patched
TranslationBlocks is the main drag in multithreaded performance. This
patch pushes the tb_lock() usage down to the two places that really need
it:
- code generation (tb_gen_code)
- jump patching (tb_add_jump)
The rest of the code doesn't really need to hold a lock as it is either
using per-CPU structures, atomically updated or designed to be used in
concurrent read situations (qht_lookup).
To keep things simple I removed the #ifdef CONFIG_USER_ONLY stuff as the
locks become NOPs anyway until the MTTCG work is completed.
Backports commit 518615c6503ad78d3bb67ddf1cd848c4a41de02e from qemu
This ensures that if we find the TB on the slow path that tb->page_addr
is correctly set before being tested.
Backports commit 2e1ae44a4f4a6149fbb9dc812243522f07284700 from qemu
When invalidating a translation block, set an invalid flag into the
TranslationBlock structure first. It is also necessary to check whether
the target TB is still valid after acquiring 'tb_lock' but before calling
tb_add_jump() since TB lookup is to be performed out of 'tb_lock' in
future. Note that we don't have to check 'last_tb'; an already invalidated
TB will not be executed anyway and it is thus safe to patch it.
Backports commit 6d21e4208f382dd8ca1f7995a6dd9ea7ca281163 from qemu
Ensure atomicity and ordering of CPU's 'tb_flushed' access for future
translation block lookup out of 'tb_lock'.
This field can only be touched from another thread by tb_flush() in user
mode emulation. So the only access to be sequential atomic is:
* a single write in tb_flush();
* reads/writes out of 'tb_lock'.
In future, before enabling MTTCG in system mode, tb_flush() must be safe
and this field becomes unnecessary.
Backports commit 118b07308a8cedc16ef63d7ab243a95f1701db40 from qemu
Ensure atomicity of CPU's 'tb_jmp_cache' access for future translation
block lookup out of 'tb_lock'.
Note that this patch does *not* make CPU's TLB invalidation safe if it
is done from some other thread while the CPU is in its execution loop.
Backports commit 89a16b1e4294e3664667a151c2f70c84dfac6fd9 from qemu
This is a small clean up. tb_find_fast() is a final consumer of this
variable so no need to pass it by reference. 'last_tb' is always updated
by subsequent cpu_loop_exec_tb() in cpu_exec().
This change also simplifies calling cpu_exec_nocache() in
cpu_handle_exception().
Backports commit 4b7e69509df2fcbfdab8c62c294dbfcfdab8a6e1 from qemu
val is assigned twice; the second one should be combined with "|".
Reported by Coverity.
Backports commit 5ce747cfac697f61668ab4fa4a71c1dba15cc272 from qemu
There is no need to make sure that the memory is zeroed after the
allocation if we also immediatly fill the whole buffer afterwards
with memcpy(). Thus g_new0 should be g_new instead. But since we
are also doing a memcpy() here, we can also simply replace both
with g_memdup() instead.
Backports commit a337f295defad7eb977da4d6317cf70f7f2fa4b4 from qemu
QEMU's code relies on left shifts of signed integers always
being defined behaviour with the obvious 2s-complement
semantics. The only way to tell the compiler (and any
associated undefined-behaviour sanitizer) that we require a
C dialect with these semantics is to use the -fwrapv option.
This is a bit of a heavy hammer for the job as it also gives
us guaranteed semantics on integer arithmetic overflow which
in theory we don't require.
In an ideal world this would allow us to drop the warning
flag -Wno-shift-negative-value, but we must retain this to
avoid spurious warnings on clang versions predating the
fix to https://llvm.org/bugs/show_bug.cgi?id=25552.
Backports commit 2d31515bc0880a1cea86ce638d2a109f4f4e6f7d from qemu
Some software algorithms are based on the hardware's cache info, for example,
for x86 linux kernel, when cpu1 want to wakeup a task on cpu2, cpu1 will trigger
a resched IPI and told cpu2 to do the wakeup if they don't share low level
cache. Oppositely, cpu1 will access cpu2's runqueue directly if they share llc.
The relevant linux-kernel code as bellow:
static void ttwu_queue(struct task_struct *p, int cpu)
{
struct rq *rq = cpu_rq(cpu);
......
if (... && !cpus_share_cache(smp_processor_id(), cpu)) {
......
ttwu_queue_remote(p, cpu); /* will trigger RES IPI */
return;
}
......
ttwu_do_activate(rq, p, 0); /* access target's rq directly */
......
}
In real hardware, the cpus on the same socket share L3 cache, so one won't
trigger a resched IPIs when wakeup a task on others. But QEMU doesn't present a
virtual L3 cache info for VM, then the linux guest will trigger lots of RES IPIs
under some workloads even if the virtual cpus belongs to the same virtual socket.
For KVM, there will be lots of vmexit due to guest send IPIs.
The workload is a SAP HANA's testsuite, we run it one round(about 40 minuates)
and observe the (Suse11sp3)Guest's amounts of RES IPIs which triggering during
the period:
No-L3 With-L3(applied this patch)
cpu0: 363890 44582
cpu1: 373405 43109
cpu2: 340783 43797
cpu3: 333854 43409
cpu4: 327170 40038
cpu5: 325491 39922
cpu6: 319129 42391
cpu7: 306480 41035
cpu8: 161139 32188
cpu9: 164649 31024
cpu10: 149823 30398
cpu11: 149823 32455
cpu12: 164830 35143
cpu13: 172269 35805
cpu14: 179979 33898
cpu15: 194505 32754
avg: 268963.6 40129.8
The VM's topology is "1*socket 8*cores 2*threads".
After present virtual L3 cache info for VM, the amounts of RES IPIs in guest
reduce 85%.
For KVM, vcpus send IPIs will cause vmexit which is expensive, so it can cause
severe performance degradation. We had tested the overall system performance if
vcpus actually run on sparate physical socket. With L3 cache, the performance
improves 7.2%~33.1%(avg:15.7%).
Backports commit 14c985cffa6cb177fc01a163d8bcf227c104718c from qemu
If an alignment fault occurred and target EL is using AArch32,
then DFSR/IFSR bit LPAE[9] must be set correctly.
Backports commit e0fe723c24562c8f909bb40f131bfdbe75650677 from qemu
With a vfio assigned device we lay down a base MemoryRegion registered
as an IO region, giving us read & write accessors. If the region
supports mmap, we lay down a higher priority sub-region MemoryRegion
on top of the base layer initialized as a RAM device pointer to the
mmap. Finally, if we have any quirks for the device (ie. address
ranges that need additional virtualization support), we put another IO
sub-region on top of the mmap MemoryRegion. When this is flattened,
we now potentially have sub-page mmap MemoryRegions exposed which
cannot be directly mapped through KVM.
This is as expected, but a subtle detail of this is that we end up
with two different access mechanisms through QEMU. If we disable the
mmap MemoryRegion, we make use of the IO MemoryRegion and service
accesses using pread and pwrite to the vfio device file descriptor.
If the mmap MemoryRegion is enabled and results in one of these
sub-page gaps, QEMU handles the access as RAM, using memcpy to the
mmap. Using either pread/pwrite or the mmap directly should be
correct, but using memcpy causes us problems. I expect that not only
does memcpy not necessarily honor the original width and alignment in
performing a copy, but it potentially also uses processor instructions
not intended for MMIO spaces. It turns out that this has been a
problem for Realtek NIC assignment, which has such a quirk that
creates a sub-page mmap MemoryRegion access.
To resolve this, we disable memory_access_is_direct() for ram_device
regions since QEMU assumes that it can use memcpy for those regions.
Instead we access through MemoryRegionOps, which replaces the memcpy
with simple de-references of standard sizes to the host memory.
With this patch we attempt to provide unrestricted access to the RAM
device, allowing byte through qword access as well as unaligned
access. The assumption here is that accesses initiated by the VM are
driven by a device specific driver, which knows the device
capabilities. If unaligned accesses are not supported by the device,
we don't want them to work in a VM by performing multiple aligned
accesses to compose the unaligned access. A down-side of this
philosophy is that the xp command from the monitor attempts to use
the largest available access weidth, unaware of the underlying
device. Using memcpy had this same restriction, but at least now an
operator can dump individual registers, even if blocks of device
memory may result in access widths beyond the capabilities of a
given device (RTL NICs only support up to dword).
Backports commit 1b16ded6a512809f99c133a97f19026fe612b2de from qemu
Setting skip_dump on a MemoryRegion allows us to modify one specific
code path, but the restriction we're trying to address encompasses
more than that. If we have a RAM MemoryRegion backed by a physical
device, it not only restricts our ability to dump that region, but
also affects how we should manipulate it. Here we recognize that
MemoryRegions do not change to sometimes allow dumps and other times
not, so we replace setting the skip_dump flag with a new initializer
so that we know exactly the type of region to which we're applying
this behavior.
Backports commit ca83f87a66d19fdaabf23d4f5ebb49396fe232c1 from qemu
Rather than rely on recursion during the middle of register allocation,
lower indirect registers to loads and stores off the indirect base into
plain temps.
For an x86_64 host, with sufficient registers, this results in identical
code, modulo the actual register assignments.
For an i686 host, with insufficient registers, this means that temps can
be (temporarily) spilled to the stack in order to satisfy an allocation.
This as opposed to the possibility of not being able to spill, to allocate
a register for the indirect base, in order to perform a spill.
Backports commit 5a18407f55ade924aa6397c9a043a9ffd59645fe from qemu
We only need two bits per temporary. Fold the two bytes into one,
and reduce the memory and cachelines required during compilation.
Backports commit c70fbf0a9938baf3b4f843355a77c17a7e945b98 from qemu
Reduce the size of other bitfields to make room.
This reduces the cache footprint of compilation.
Backports commit bee158cb4dde35c41632a3a129c869f14a32f8f0 from qemu
Instead of using -1 as end of chain, use 0, and link through the 0
entry as a fully circular double-linked list.
Backports commit dcb8e75870e2de199db853697f8839cb603beefe from qemu
This reduces both memory usage and per-insn cacheline usage
during code generation.
Backports commit a1b3c48d2b23d6eaeb4529d3e1183d2648731bf8 from qemu
Make it obvious which macros are safe in which situations.
Useful since QEMU_ALIGN_UP and ROUND_UP both purport to do
the same thing, but differ on whether the alignment must be
a power of 2.
While implementing TLB invalidation feature we forgot to modify
part of code responsible for updating EntryHi during TLB exception.
Consequently EntryHi.EHINV is unexpectedly cleared on the exception.
Backports commit 701074a6fc7470d0ed54e4a4bcd4d491ad8da22e from qemu
If device doesn't have parent assined before its realize
is called, device_set_realized() will implicitly set parent
to '/machine/unattached'.
However device_set_realized() may fail after that point at
several other points leaving not realized object dangling
in '/machine/unattached' and as result caller of
obj = object_new()
obj->ref == 1
object_property_set_bool(obj,..., true, "realized",...)
obj->ref == 2
if (fail)
object_unref(obj);
obj->ref == 1
will get object leak instead of expected object destruction.
Fix it by making device_set_realized() to cleanup after itself
in case of failure.
Backports commit 69382d8b3e8600b349c191394d761dcb480502cf from qemu
object_property_add_child() silently fails with error that it can't
create duplicate propery 'apic' as we already have 'apic' property
registered for 'apic' feature. As result generic device_realize puts
apic into unattached container.
As it's programming error, abort if name collision happens in future
and fix property name for apic_state to 'lapic', this way apic is
a child of cpu instance.
Backports commit 6816b1b3811e839540df22855d975b6d76ae438b from qemu
These are both stored in CPUID[EAX=7,EBX=0].ECX. KVM is going to
be able to emulate both (albeit with a performance loss in the case
of RDPID, which therefore will be in KVM_GET_EMULATED_CPUID rather
than KVM_GET_SUPPORTED_CPUID).
It's also possible to implement both in TCG, but this is for 2.8.
Backports commit c2f193b538032accb9db504998bf2ea7c0ef65af from qemu
These properties will be used by as address where to plug
CPU with help -device/device_add commands.
Backports commit d89c2b8b98e097b9cad5104b0f178bde1cfa011b from qemu
Custom apic-id setter/getter doesn't do any property specific
checks anymore, so clean it up and use more compact static
property DEFINE_PROP_UINT32 instead.
Backports commit 2da00e3176abac34ca7a6aab1f5bbb94a0d03fc5 from qemu
Machine code knows about all possible APIC IDs so use that
instead of hack which does O(n^2) complexity duplicate
checks, interating over global CPUs list.
As result duplicate check is done only once with O(log n) complexity.
Backports commit 4ec60c76d5ab513e375f17b043d2b9cb849adf6c from qemu
Add the host-phys-bits boolean property, if true, take phys-bits
from the hosts physical bits value, overriding either the default
or the user specified value.
We can also use the value we read from the host to check the users
explicitly set value and warn them if it doesn't match.
Note:
a) We only read the hosts value in KVM mode (because on non-x86
we get an abort if we try)
b) We don't warn about trying to use host-phys-bits in TCG mode,
we just fall back to the TCG default. This allows the machine
type to set the host-phys-bits flag if it wants and then to
work in both TCG and KVM.
Backports commit 11f6fee576680a2d482123535da920f8ceb33eb5 from qemu
It's reverse of apicid_from_topo_ids() and will be used in follow up
patches to fill in data structures for query-hotpluggable-cpus and
for user friendly error reporting.
Backports commit 9f3aab58539b4cc716e42e772be8116dc2e7d159 from qemu
Redo 9886e834 (target-i386: Require APIC ID to be explicitly set before
CPU realize) in another way that doesn't use int64_t to detect
if apic-id property has been set.
Use the fact that 0xFFFFFFFF is the broadcast
value that a CPU can't have and set default
uint32_t apic_id to it instead of using int64_t.
Later uint32_t apic_id will be used to drop custom
property setter/getter in favor of static property.
Backports commit d9c84f196970f78d4b55ab87e03cbcad7c65f86f from qemu
Fill the bits between 51..number-of-physical-address-bits in the
MTRR_PHYSMASKn variable range mtrr masks so that they're consistent
in the migration stream irrespective of the physical address space
of the source VM in a migration.
Backports commit fcc35e7ccaed771790940524f3b0eef7aebfc9b1 from qemu
Currently QEMU sets the x86 number of physical address bits to the
magic number 40. This is only correct on some small AMD systems;
Intel systems tend to have 36, 39, 46 bits, and large AMD systems
tend to have 48.
Having the value different from your actual hardware is detectable
by the guest and in principal can cause problems;
The current limit of 40 stops TB VMs being created by those lucky
enough to have that much.
This patch lets you set the physical bits by a cpu property but
defaults to the same 40bits which matches TCGs setup.
I've removed the ancient warning about the 42 bit limit in exec.c;
I can't find that limit in there and no one else seems to know where
it is.
We use a magic value of 0 as the property default so that we can
later distinguish between the default and a user set value.
Backports commit af45907a132857cfd47acc998bf5f7c26cd13071 from qemu
Turn on the ability to pass command and event arguments in
a single boxed parameter, which must name a non-empty type
(although the type can be a struct with all optional members).
For structs, it makes it possible to pass a single qapi type
instead of a breakout of all struct members (useful if the
arguments are already in a struct or if the number of members
is large); for other complex types, it is now possible to use
a union or alternate as the data for a command or event.
The empty type may be technically feasible if needed down the
road, but it's easier to forbid it now and relax things to allow
it later, than it is to allow it now and have to special case
how the generated 'q_empty' type is handled (see commit 7ce106a9
for reasons why nothing is generated for the empty type). An
alternate type is never considered empty, but now that a boxed
type can be either an object or an alternate, we have to provide
a trivial QAPISchemaAlternateType.is_empty(). The new call to
arg_type.is_empty() during QAPISchemaCommand.check() requires
that we first check the type in question; but there is no chance
of introducing a cycle since objects do not refer back to commands.
We still have a split in syntax checking between ad-hoc parsing
up front (merely validates that 'boxed' has a sane value) and
during .check() methods (if 'boxed' is set, then 'data' must name
a non-empty user-defined type).
Generated code is unchanged, as long as no client uses the
new feature.
Backports commit c818408e449ea55371253bd4def1c1dc87b7bb03 from qemu
The next patch will add support for passing a qapi union type
as the 'data' of a command. But to do that, the user function
for implementing the command, as called by the generated
marshal command, must take the corresponding C struct as a
single boxed pointer, rather than a breakdown into one
parameter per member. Even without a union, being able to use
a C struct rather than a list of parameters can make it much
easier to handle coding with QAPI.
This patch adds the internal plumbing of a 'boxed' flag
associated with each command and event. In several cases,
this means adding indentation, with one new dead branch and
the remaining branch being the original code more deeply
nested; this was done so that the new implementation in the
next patch is easier to review without also being mixed with
indentation changes.
For this patch, no behavior or generated output changes, other
than the testsuite outputting the value of the new flag
(always False for now).
Backports commit 48825ca419fd9c8140d4fecb24e982d68ebca74f from qemu
Commit 7ce106a9 documented why we don't generated a visit_type_FOO()
for implicit types; and therefore events with an anonymous type for
'data' have to open-code a visit. Note that the open-coded visit in
qapi-event.c is slightly different from what is done in
qapi-visit.c for normal types, in part because we don't have to
check for *obj being NULL or free things on error. But where the
type is not implicit, it is nicer to reuse the normal visit instead
of open-coding a duplicate.
At the moment, the only event with a non-implicit 'data' is in the
testsuite, where test-qapi-event.c changes as follows:
|@@ -155,6 +155,7 @@ void qapi_event_send___org_qemu_x_event(
| __org_qemu_x_Struct param = {
| __org_qemu_x_member1, (char *)__org_qemu_x_member2, has_q_wchar_t, q_wchar_t
| };
|+ __org_qemu_x_Struct *arg = ¶m;
|
| emit = qmp_event_get_func_emit();
| if (!emit) {
|@@ -164,16 +165,7 @@ void qapi_event_send___org_qemu_x_event(
| qmp = qmp_event_build_dict("__ORG.QEMU_X-EVENT");
|
| v = qmp_output_visitor_new(&obj);
|-
|- visit_start_struct(v, "__ORG.QEMU_X-EVENT", NULL, 0, &err);
|- if (err) {
|- goto out;
|- }
|- visit_type___org_qemu_x_Struct_members(v, ¶m, &err);
|- if (!err) {
|- if (!err) {
|- visit_check_struct(v, &err);
|- }
|- visit_end_struct(v, NULL);
|+ visit_type___org_qemu_x_Struct(v, "__ORG.QEMU_X-EVENT", &arg, &err);
| if (err) {
| goto out;
| }
Backports commit 4d0b268fdb17a1fed10fe980e77fd388e5427bfd from qemu
Ever since commit 12f254f removed the last parameterization
of gen_err_check(), it no longer makes sense to hide the three
lines of generated C code behind a macro call. Just inline it
into the remaining users.
No change to generated code.
Backports commit fa274ed6fb788866ed3a2cfd54a2ddf78f04f2c0 from qemu
In the near future, we want to lift our artificial restriction of
no variants at the top level of an event, at which point the
currently open-coded check for empty members will become
insufficient. Factor it out into a new helper method is_empty()
now, and future-proof it by checking variants, too, along with an
assert that it is not used prior to the completion of .check().
Update places that were checking for (non-)empty .members to use
the new helper.
All of the current callers assert that there are no variants (either
directly, or by qapi.py asserting that base types have no variants),
so this is not a semantic change.
No change to generated code.
Backports commit b6167706829c6e0d3572daa2b6769594ced276f7 from qemu
Clean up the only remaining external use of the tag_name field of
QAPISchemaObjectTypeVariants, by explicitly listing the generated
'type' tag for all variants in the testsuite (you can still tell
simple unions by the -wrapper types). Then we can mark the
tag_name field as private by adding a leading underscore to prevent
any further use.
Backports commit da9cb19385fc66b2cb2584bbbbcbf50246d057e2 from qemu
Commit 7ce106a rendered QAPISchemaObjectType.c_name() redundant,
since it now does nothing more than delegate to its superclass.
However, rather than deleting it, we can restore part of the
assertion that was removed in that commit, to prove that we never
emit the empty type directly in generated code, but rather
special-case it as a built-in that makes other aspects of code
generation easier to reason about.
Backports commit cd50a2564560986e865ff64fa73b59d2564076f0 from qemu
We were previously enforcing that all flat union branches were
found in the corresponding enum, but not that all enum values
were covered by branches. The resulting generated code would
abort() if the user passes the uncovered enum value.
We don't automatically treat non-present branches in a flat
union as empty types, for symmetry with simple unions (there,
the enum type is generated from the list of all branches, so
there is no way to omit a branch but still have it be part of
the union).
A later patch will add shorthand so that branches that are empty
in flat unions can be declared as 'branch':{} instead of
'branch':'Empty', to avoid the need for an otherwise useless
explicit empty type. [Such shorthand for simple unions is a bit
harder to justify, since we would still have to generate a
wrapper type that parses 'data':{}, rather than truly being an
empty branch with no additional siblings to the 'type' member.]
Backports commit d0b182392d0281ef780e3effcb82677a004f1f97 from qemu
This saves a lot of memory compared to a statically-sized array,
or at least 24kb could be considered a lot on an Atari ST.
It also makes the code more similar to QmpOutputVisitor.
This removes the limit on the depth of a QObject that can be processed
into a QAPI tree. This is not a problem because QObjects can be
considered trusted; the text received on the QMP wire is untrusted
input, but the JSON parser already takes pains to limit the QObject tree
it creates. We don't need the QMP input visitor to limit it again.
Backports commit 3d344c2aabb7bc9b414321e3c52872901edebdda from qemu
'HF_SOFTMMU_MASK' is only set when 'CONFIG_SOFTMMU' is defined. So
there's no need in this flag: test 'CONFIG_SOFTMMU' instead.
Backports commit da6d48e3348bbc266896cf8adf0c33f1eaf5b31f from qemu
Some PL2 related TLBI system registers are missed in AArch32
implementation. The patch fixes it.
Backports commit 541ef8c2e73fb99d173b125bef7c262fdd2fe33c from qemu
this is the first step in reducing the brk heap fragmentation
created by the map->nodes memory allocation. Since the introduction
of RCU the freeing of the PhysPageMaps is delayed so that sometimes
several hundred are allocated at the same time.
Even worse the memory for map->nodes is allocated and shortly
afterwards reallocated. Since the number of nodes it grows
to in the end is the same for all PhysPageMaps remember this value
and at least avoid the reallocation.
The large number of simultaneous allocations (about 450 x 70kB in
my configuration) has to be addressed later.
Backports commit 101420b886eec36990419bc9ed5b503622af8a0d from qemu
Assertions help both Coverity and the clang static analyzer avoid
false positives, but on the other hand both are confused when
the condition is compiled as (void)(x != FOO). Always expand
assertion macros when using Coverity or clang, through a new
QEMU_STATIC_ANALYSIS preprocessor symbol.
This fixes a couple false positives in TCG.
Backports commit 8bff06a0bbf257a2083223534c1607bf87d913e6 from qemu
Use Neon instructions to perform zero checking of
buffer. This is helps in reducing total migration time.
Use case: Idle VM live migration with 4 VCPUS and 8GB ram
running CentOS 7.
Without Neon, the Total migration time is 3.5 Sec
Migration status: completed
total time: 3560 milliseconds
downtime: 33 milliseconds
setup: 5 milliseconds
transferred ram: 297907 kbytes
throughput: 685.76 mbps
remaining ram: 0 kbytes
total ram: 8519872 kbytes
duplicate: 2062760 pages
skipped: 0 pages
normal: 69808 pages
normal bytes: 279232 kbytes
dirty sync count: 3
With Neon, the total migration time is 2.9 Sec
Migration status: completed
total time: 2960 milliseconds
downtime: 65 milliseconds
setup: 4 milliseconds
transferred ram: 299869 kbytes
throughput: 830.19 mbps
remaining ram: 0 kbytes
total ram: 8519872 kbytes
duplicate: 2064313 pages
skipped: 0 pages
normal: 70294 pages
normal bytes: 281176 kbytes
dirty sync count: 3
Backports commit 7069532e3b944c25707d4f69998e68a739eabff9 from qemu
By arranging for explicit writes to cpu_fsr after floating point
operations, we are able to mark the helpers as not writing to
tcg globals, which means that we don't need to invalidate the
integer register set across said calls.
Backports commit 7385aed20db5d83979f683b9d0048674411e963c from qemu
We've now implemented all fp asis inline, except for the no-fault
memory reads. The latter can be passed directly to helper_ld_asi.
Backports commit f2fe396f0fae6b389169f65abf294df9ae6cfee5 from qemu
Replace gen_get_asi, and use it for both 32-bit and 64-bit.
For v8, do supervisor and immediate checks here.
Also, move save_state and TB ending into the respective
subroutines, out of disas_sparc_insn.
Backports commit 7ec1e5ea4bd0700fa48da86bffa2fcc6146c410a from qemu
Knowing the value of %asi at translation time means that we
can handle the common settings without a function call.
The steady state appears to be %asi == ASI_P, so that sparcv9
code can use offset forms of lda/sta. The %asi register gets
pushed and popped on entry to certain functions, but it rarely
takes on values other than ASI_P or ASI_AIUP. Therefore we're
unlikely to be expanding the set of TBs created.
Backports commit a6d567e523ed7e928861f3caa5d49368af3f330d from qemu
We now have a single copy of gen_ld_asi, gen_st_asi,
gen_swap_asi, and everything uses gen_get_asi.
Backports commit 22e700607aeaff5f5e139d0fdc3d861e5502040c from qemu
Doing this instead of saving the raw PS_PRIV and TL. This means
that all nucleus mode TBs (TL > 0) can be shared. This fixes a
bug in that we didn't include HS_PRIV in the TB flags, and so could
produce incorrect TB matches for hypervisor state.
The LSU and DMMU states were unused by the translator. Including
them in TB flags meant unnecessary mismatches from tb_find_fast.
Backports commit 99a230638a3674e921224dbe628159c867d734b1 from qemu
The global is only ever read for one insn; we can just as well
use a load from env instead and generate the same code. This
also allows us to indicate the the associated helpers do not
touch TCG globals.
Backports commit e86ceb0d652baa5738e05a59ee0e7989dafbeaa1 from qemu
Header guard symbols should match their file name to make guard
collisions less likely. Offenders found with
scripts/clean-header-guards.pl -vn.
Cleaned up with scripts/clean-header-guards.pl, followed by some
renaming of new guard symbols picked by the script to better ones.
Backports commit 121d07125bb6d7079c7ebafdd3efe8c3a01cc440 from qemu
These use guard symbols like TCG_TARGET_$target.
scripts/clean-header-guards.pl doesn't like them because they don't
match their file name (they should, to make guard collisions less
likely).
Clean them up: use guard symbol $target_TCG_TARGET_H for
tcg/$target/tcg-target.h.
Backports commit 14e54f8ecfe9c5e17348f456781344737ed10b3b from qemu
Most of them use guard symbols like CPU_$target_H, but we also have
__MIPS_CPU_H__ and __TRICORE_CPU_H__. They all upset
scripts/clean-header-guards.pl.
The script dislikes CPU_$target_H because they don't match their file
name (they should, to make guard collisions less likely). The others
are reserved identifiers.
Clean them all up: use guard symbol $target_CPU_H for
target-$target/cpu.h.
Backports commit 07f5a258750b3b9a6e10fd5ec3e29c9a943b650e from qemu
Tracked down with an ugly, brittle and probably buggy Perl script.
Also move includes converted to <...> up so they get included before
ours where that's obviously okay.
Backports commit a9c94277f07d19d3eb14f199c3e93491aa3eae0e from qemu
Add a documentation comment describing the functions for
converting between the cpu and little or bigendian formats.
Backports commit 7d820b766a2049f33ca7e078aa51018f2335f8c5 from qemu
Now that all uses of cpu_to_*w() and *_to_cpup() have been replaced
with either ld*_p()/st*_p() or by doing direct dereferences and
using the cpu_to_*()/*_to_cpu() byteswap functions, we can remove
the unused implementations.
Backports commit f76bde702916d0230bf359d478bcac8d7f3b30ae from qemu
There are functions tlb_fill(), cpu_unaligned_access() and
do_unaligned_access() that are called with access type and mmu index
arguments. But these arguments are named 'is_write' and 'is_user' in their
declarations. The patches fix the arguments to avoid a confusion.
Backports commit b35399bb4e9968296a12303b00f9f2066470e987 from qemu
ASID currently has uint8_t type which is too small since some processors
support more than 8 bits ASID. Therefore change its type to uint16_t.
Backports commit 2d72e7b047d800c9f99262466f65a98684ecca14 from qemu
MIPS64R6-generic gradually gets closer to I6400 CPU, feature-wise. Rename
it to make it clear which MIPS processor it is supposed to emulate.
Backports commit 8f95ad1c79b4166350b982a6defe0e21faa04dac from qemu
Replace hardcoded 0xbfc00000 with exception_base which is initialized with
this default address so there is no functional change here.
However, it is now exposed and consequently it will be possible to modify
it from outside of the CPU.
Backports commit 89777fd10fc3dd573c3b4d1b2efdd10af823c001 from qemu
In user-mode emulation Translation Block can consist of 2 guest pages.
In that case QEMU also mprotects 2 host pages that are dedicated for
guest memory, containing instructions. QEMU detects self-modifying code
with SEGFAULT signal processing.
In case if instruction in 1st page is modifying memory of 2nd
page (or vice versa) QEMU will mark 2nd page with PAGE_WRITE,
invalidate TB, generate new TB contatining 1 guest instruction and
exit to CPU loop. QEMU won't call mprotect, and new TB will cause
same SEGFAULT. Page will have both PAGE_WRITE_ORG and PAGE_WRITE
flags, so QEMU will handle the signal as guest binary problem,
and exit with guest SEGFAULT.
Solution is to do following: In case if current TB was invalidated
continue to invalidate TBs from remaining guest pages and mark pages
as PAGE_WRITE. After that disable host page protection with mprotect.
If current tb was invalidated longjmp to main loop. That is more
efficient, since we won't get SEGFAULT when executing new TB.
Backports commit 7399a337e4126f7c8c8af3336726f001378c4798 from qemu
As it currently stands, QEMU does not properly handle self-modifying code
when the write is unaligned and crosses a page boundary. The procedure
for handling a write to the current translation block is to write-protect
the current translation block, catch the write, split up the translation
block into the current instruction (which remains write-protected so that
the current instruction is not modified) and the remaining instructions
in the translation block, and then restore the CPU state to before the
write occurred so the write will be retried and successfully executed.
However, since unaligned writes across pages are split into one-byte
writes for simplicity, writes to the second page (which is not the
current TB) may succeed before a write to the current TB is attempted,
and since these writes are not invalidated before resuming state after
splitting the TB, these writes will be performed a second time, thus
corrupting the second page. Credit goes to Patrick Hulin for
discovering this.
In recent 64-bit versions of Windows running in emulated mode, this
results in either being very unstable (a BSOD after a couple minutes of
uptime), or being entirely unable to boot. Windows performs one or more
8-byte unaligned self-modifying writes (xors) which intersect the end
of the current TB and the beginning of the next TB, which runs into the
aforementioned issue. This commit fixes that issue by making the
unaligned write loop perform the writes in forwards order, instead of
reverse order. This way, QEMU immediately tries to write to the current
TB, and splits the TB before any write to the second page is executed.
The write then proceeds as intended. With this patch applied, I am able
to boot and use Windows 7 64-bit and Windows 10 64-bit in QEMU without
KVM.
Per Richard Henderson's input, this patch also ensures the second page
is in the TLB before executing the write loop, to ensure the second
page is mapped.
The original discussion of the issue is located at
http://lists.nongnu.org/archive/html/qemu-devel/2014-08/msg02161.html.
Backports commit 81daabaf7a572f138a8b88ba6eea556bdb0cce46 from qemu
There are currently 22 invocations of this function,
and we're about to increase that number.
Backports commit 7e9a7c50d9a400ef51242d661a261123c2cc9485 from qemu
It's a prerequisite that certain bits of MSR_IA32_FEATURE_CONTROL should
be set before some features (e.g. VMX and LMCE) can be used, which is
usually done by the firmware. This patch adds a fw_cfg file
"etc/msr_feature_control" which contains the advised value of
MSR_IA32_FEATURE_CONTROL and can be used by guest firmware (e.g. SeaBIOS).
Backports commit 217f1b4a72153cf8d556e9d45919e9222c38d25e from qemu
This patch adds the support to inject SRAR and SRAO as LMCE, i.e. they
are injected to only one VCPU rather than broadcast to all VCPUs. As KVM
reports LMCE support on Intel platforms, this features is only available
on Intel platforms.
LMCE is disabled by default and can be enabled/disabled by cpu option
'lmce=on/off'.
Backports commit 87f8b626041ceaea9adcfdbd549359f0ca7b871d from qemu
This change adds hyperv feature words report through qom rpc.
When VM is configured with hyperv features enabled
libvirt will check that required feature words are set
in cpuid leaf 40000003 through qom request.
Currently qemu does not report hyperv feature words
which prevents windows guests from starting with libvirt.
To avoid conflicting with current hyperv properties all added feature
words cannot be set directly with -cpu +feature yet.
Backports commit c35bd19a5c9140bce8b913cc5cefe6f071135bdb from qemu
x86_cpu_parse_featurestr has a "val = num;" assignment just before num
goes out of scope. Push num up to fix the issue.
Backports commit cf2887c9738451eb989c6c102af070dee2dc172a from qemu
ERMS just says "rep movsb" and "rep stosb" are fast. It does not
imply any new instruction, so we can support it easily.
Backports commit 7eb24386dbfb0b66464c7f856c1074c606efccda from qemu
Make SPARC target use sparc_cpu_parse_features() directly
so it won't get in the way of switching other propertified
targets to handling features as global properties.
Backports commit fb02d56e96d553088c5b4267a3c954a3e952a50a from qemu
Some architectures (e.g. ARMv8) need the address which is aligned
to a size more than the size of the memory access.
To support such check it's enough the current costless alignment
check implementation in QEMU, but we need to support
an alignment size specifying.
Backports commit 1f00b27f17518a1bcb4cedca49eaec96a4d560bd from qemu
While we can store constants via constrants on INDEX_op_st_i32 et al,
we weren't able to spill constants to backing store.
Add a new backend interface, tcg_out_sti, which may store the constant
(and is allowed to fail). Rearrange the temp_* helpers so that we only
attempt to directly store a constant when the temp is becoming dead/free.
Backports commit 59d7c14eeff8d2ad7f61aed86ce5a176113bc153 from qemu
We have a couple places in the code base that want to deep-clone
one QAPI object into another, and they were resorting to serializing
the struct out to QObject then reparsing it. A much more efficient
version can be done by adding a new clone visitor.
Since cloning is still relatively uncommon, expose the use of the
new visitor via a QAPI_CLONE() macro that takes care of type-punning
the underlying function pointer, rather than generating lots of
unused functions for types that won't be cloned. And yes, we're
relying on the compiler treating all pointers equally, even though
a strict C program cannot portably do so - but we're not the first
one in the qemu code base to expect it to work (hello, glib!).
The choice of adding a fourth visitor type deserves some explanation.
On the surface, the clone visitor is mostly an input visitor (it
takes arbitrary input - in this case, another QAPI object - and
creates a new QAPI object during the course of the visit). But
ever since commit da72ab0 consolidated enum visits based on the
visitor type, using VISITOR_INPUT would cause us to run
visit_type_str(), even though for cloning there is nothing to do
(we just copy the enum value across, without regards to its mapping
to strings). Also, since our input happens to be a QAPI object,
we can also satisfy the internal checks for VISITOR_OUTPUT. So in
the end, I settled with a new VISITOR_CLONE, and chose its value
such that many internal checks can use 'v->type & mask', sticking
to 'v->type == value' where the difference matters.
Note that we can only clone objects (including alternates) and lists,
not built-ins or enums. The visitor core hides integer width from
the actual visitor (since commit 04e070d), and as long as that's the
case, we can't clone top-level integers. Then again, those can
always be cloned by direct copy, since they are not objects with
deep pointers, so it's no real loss. And restricting cloning to
just objects and lists is cleaner than restricting it to non-integers.
As such, I documented that the clone visitor is for direct use only
by code internal to QAPI, and should not be used on incomplete objects
(other than a hack to work around the fact that we allow NULL in place
of "" in visit_type_str() in other output visitors). Note that as
written, the clone visitor will never fail on a complete object.
Scalars (including enums) not at the root of the clone copy just fine
with no additional effort while visiting the scalar, by virtue of a
g_memdup() each time we push another struct onto the stack. Cloning
a string requires deduplication of a pointer, which means it can also
provide the guarantee of an input visitor of never producing NULL
even when still accepting NULL in place of "" the way the QMP output
visitor does.
Cloning an 'any' type could be possible by incrementing the QObject
refcnt, but it's not obvious whether that is better than implementing
a QObject deep clone. So for now, we document it as unsupported,
and intentionally omit the .type_any() callback to let a developer
know their usage needs implementation.
Add testsuite coverage for several different clone situations, to
ensure that the code is working. I also tested that valgrind was
happy with the test.
Backports commit a15fcc3cf69ee3d408f60d6cc316488d2b0249b4 from qemu
Making each output visitor provide its own output collection
function was the only remaining reason for exposing visitor
sub-types to the rest of the code base. Add a polymorphic
visit_complete() function which is a no-op for input visitors,
and which populates an opaque pointer for output visitors. For
maximum type-safety, also add a parameter to the output visitor
constructors with a type-correct version of the output pointer,
and assert that the two uses match.
This approach was considered superior to either passing the
output parameter only during construction (action at a distance
during visit_free() feels awkward) or only during visit_complete()
(defeating type safety makes it easier to use incorrectly).
Most callers were function-local, and therefore a mechanical
conversion; the testsuite was a bit trickier, but the previous
cleanup patch minimized the churn here.
The visit_complete() function may be called at most once; doing
so lets us use transfer semantics rather than duplication or
ref-count semantics to get the just-built output back to the
caller, even though it means our behavior is not idempotent.
Generated code is simplified as follows for events:
|@@ -26,7 +26,7 @@ void qapi_event_send_acpi_device_ost(ACP
| QDict *qmp;
| Error *err = NULL;
| QMPEventFuncEmit emit;
|- QmpOutputVisitor *qov;
|+ QObject *obj;
| Visitor *v;
| q_obj_ACPI_DEVICE_OST_arg param = {
| info
|@@ -39,8 +39,7 @@ void qapi_event_send_acpi_device_ost(ACP
|
| qmp = qmp_event_build_dict("ACPI_DEVICE_OST");
|
|- qov = qmp_output_visitor_new();
|- v = qmp_output_get_visitor(qov);
|+ v = qmp_output_visitor_new(&obj);
|
| visit_start_struct(v, "ACPI_DEVICE_OST", NULL, 0, &err);
| if (err) {
|@@ -55,7 +54,8 @@ void qapi_event_send_acpi_device_ost(ACP
| goto out;
| }
|
|- qdict_put_obj(qmp, "data", qmp_output_get_qobject(qov));
|+ visit_complete(v, &obj);
|+ qdict_put_obj(qmp, "data", obj);
| emit(QAPI_EVENT_ACPI_DEVICE_OST, qmp, &err);
and for commands:
| {
| Error *err = NULL;
|- QmpOutputVisitor *qov = qmp_output_visitor_new();
| Visitor *v;
|
|- v = qmp_output_get_visitor(qov);
|+ v = qmp_output_visitor_new(ret_out);
| visit_type_AddfdInfo(v, "unused", &ret_in, &err);
|- if (err) {
|- goto out;
|+ if (!err) {
|+ visit_complete(v, ret_out);
| }
|- *ret_out = qmp_output_get_qobject(qov);
|-
|-out:
| error_propagate(errp, err);
Backports commit 3b098d56979d2f7fd707c5be85555d114353a28d from qemu
Now that we have a polymorphic visit_free(), we no longer need
qmp_output_visitor_cleanup(); however, we still need to
expose the subtype for qmp_output_get_qobject().
Backports commit 1830f22a6777cedaccd67a08f675d30f7a85ebfd from qemu
Now that we have a polymorphic visit_free(), we no longer need
qmp_input_visitor_cleanup(); which in turn means we no longer
need to return a subtype from qmp_input_visitor_new() nor a
public upcast function.
Generated code changes to qmp-marshal.c look like:
|@@ -52,11 +52,10 @@ void qmp_marshal_add_fd(QDict *args, QOb
| {
| Error *err = NULL;
| AddfdInfo *retval;
|- QmpInputVisitor *qiv = qmp_input_visitor_new(QOBJECT(args), true);
| Visitor *v;
| q_obj_add_fd_arg arg = {0};
|
|- v = qmp_input_get_visitor(qiv);
|+ v = qmp_input_visitor_new(QOBJECT(args), true);
| visit_start_struct(v, NULL, NULL, 0, &err);
| if (err) {
| goto out;
Backports commit b70ce1018a251c0c33498d9c927a07cade655a5e from qemu
Now that we have a polymorphic visit_free(), we no longer need
string_input_visitor_cleanup(); which in turn means we no longer
need to return a subtype from string_input_visitor_new() nor a
public upcast function.
Backports commit 7a0525c7be6b38d32d586e3fd12e7377ded21faa from qemu
Making each visitor provide its own (awkwardly-named) FOO_cleanup()
is unusual, when we can instead have a polymorphic visit_free()
interface. Over the next few patches, we can use the polymorphic
functions to eliminate the need for a FOO_get_visitor() function
for accessing specific visitor functionality, once everything can
be accessed directly through the Visitor* interfaces.
The dealloc visitor is the first one converted to completely use
the new entry point, since qapi_dealloc_visitor_cleanup() was the
only reason that qapi_dealloc_get_visitor() existed, and only
generated and testsuite code was even using it. With the new
visit_free() entry point in place, we no longer need to expose
the QapiDeallocVisitor subtype through qapi_dealloc_visitor_new(),
and can get by with less generated code, with diffs that look like:
| void qapi_free_ACPIOSTInfo(ACPIOSTInfo *obj)
| {
|- QapiDeallocVisitor *qdv;
| Visitor *v;
|
| if (!obj) {
| return;
| }
|
|- qdv = qapi_dealloc_visitor_new();
|- v = qapi_dealloc_get_visitor(qdv);
|+ v = qapi_dealloc_visitor_new();
| visit_type_ACPIOSTInfo(v, NULL, &obj, NULL);
|- qapi_dealloc_visitor_cleanup(qdv);
|+ visit_free(v);
|}
Backports commit 2c0ef9f411ae6081efa9eca5b3eab2dbeee45a6c from qemu
Rather than making the dealloc visitor track of stack of pointers
remembered during visit_start_* in order to free them during
visit_end_*, it's a lot easier to just make all callers pass the
same pointer to visit_end_*. The generated code has access to the
same pointer, while all other users are doing virtual walks and
can pass NULL. The dealloc visitor is then greatly simplified.
All three visit_end_*() functions intentionally take a void**,
even though the visit_start_*() functions differ between void**,
GenericList**, and GenericAlternate**. This is done for several
reasons: when doing a virtual walk, passing NULL doesn't care
what the type is, but when doing a generated walk, we already
have to cast the caller's specific FOO* to call visit_start,
while using void** lets us use visit_end without a cast. Also,
an upcoming patch will add a clone visitor that wants to use
the same implementation for all three visit_end callbacks,
which is made easier if all three share the same signature.
For visitors with already track per-object state (the QMP visitors
via a stack, and the string visitors which do not allow nesting),
add an assertion that the caller is indeed passing the same
pointer to paired calls.
Backports commit 1158bb2a058fcdd0c8fc3e60dc77f7a57ddbb271 from qemu
Range represents a range as follows. Member @start is the inclusive
lower bound, member @end is the exclusive upper bound. Zero @end is
special: if @start is also zero, the range is empty, else @end is to
be interpreted as 2^64. No other empty ranges may occur.
The range [0,2^64-1] cannot be represented. If you try to create it
with range_set_bounds1(), you get the empty range instead. If you try
to create it with range_set_bounds() or range_extend(), assertions
fail. Before range_set_bounds() existed, the open-coded creation
usually got you the empty range instead. Open deathtrap.
Moreover, the code dealing with the janus-faced @end is too clever by
half.
Dumb this down to a more pedestrian representation: members @lob and
@upb are inclusive lower and upper bounds. The empty range is encoded
as @lob = 1, @upb = 0.
Backports commit 6dd726a2bf1b800289d90a84d5fcb5ce7b78a8e1 from qemu
Users of struct Range mess liberally with its members, which makes
refactoring hard. Create a set of methods, and convert all users to
call them instead of accessing members. The methods have carefully
worded contracts, and use assertions to check them.
Backports commit a0efbf16604770b9d805bcf210ec29942321134f from qemu
Add a macro that creates a 64bit value which has length number of ones
shifted across by the value of shift.
Backports commit ae2923b5c20a21c6457680330506a9c13873485c from qemu
It doesn't make sense to pass a NULL ops argument to
memory_region_init_rom_device(), because the effect will
be that if the guest tries to write to the memory region
then QEMU will segfault. Catch the bug earlier by sanity
checking the arguments to this function, and remove the
misleading documentation that suggests that passing NULL
might be sensible.
Backports commit 39e0b03dec518254fabd2acff29548d3f1d2b754 from qemu
Provide a new helper function memory_region_init_rom() for memory
regions which are read-only (and unlike those created by
memory_region_init_rom_device() don't have special behaviour
for writes). This has the same behaviour as calling
memory_region_init_ram() and then memory_region_set_readonly()
(which is what we do today in boards with pure ROMs) but is a
more easily discoverable API for the purpose.
Backports commit a1777f7f6462c66e1ee6e98f0d5c431bfe988aa5 from qemu
The IOMMU driver may change behavior depending on whether a notifier
client is present. In the case of POWER, this represents a change in
the visibility of the IOTLB, for other drivers such as intel-iommu and
future AMD-Vi emulation, notifier support is not yet enabled and this
provides the opportunity to flag that incompatibility.
Backports commit d22d8956b185c002b50a4d0883aff61f857347ef from qemu
Commit 7f8f9ef1 introduced the ability to store a list of
integers as a sorted list of ranges, but when merging ranges,
it leaks one or more ranges. It was also using range_get_last()
incorrectly within range_compare() (a range is a start/end pair,
but range_get_last() is for start/len pairs), and will also
mishandle a range ending in UINT64_MAX (remember, we document
that no range covers 2**64 bytes, but that ranges that end on
UINT64_MAX have end < begin).
The whole merge algorithm was rather complex, and included
unnecessary passes over data within glib functions, and enough
indirection to make it hard to easily plug the data leaks.
Since we are already hard-coding things to a list of ranges,
just rewrite the thing to open-code the traversal and
comparisons, by making the range_compare() helper function give
us an answer that is easier to use, at which point we avoid the
need to pass any callbacks to g_list_*(). Then by reusing
range_extend() instead of duplicating effort with range_merge(),
we cover the corner cases correctly.
Drop the now-unused range_merge() and ranges_can_merge().
Doing this lets test-string-{input,output}-visitor pass under
valgrind without leaks.
Backports commit db486cc334aafd3dbdaf107388e37fc3d6d3e171 from qemu
Calling our function g_list_insert_sorted_merged is a misnomer,
since we are NOT writing a glib function. Furthermore, we are
making every caller pass the same comparator function of
range_merge(): any caller that would try otherwise would break
in weird ways since our internal call to ranges_can_merge() is
hard-coded to operate only on ranges, rather than paying
attention to the caller's comparator.
Better is to fix things so that callers don't have to care about
our internal comparator, by picking a function name and updating
the parameter type away from a gratuitous use of void*, to make
it obvious that we are operating specifically on a list of ranges
and not a generic list. Plus, refactoring the code here will
make it easier to plug a memory leak in the next patch.
range_compare() is now internal only, and moves to the .c file.
Backports commit 7c47959d0cb05db43014141a156ada0b6d53a750 from qemu
g_list_insert_sorted_merged() is rather large to be an inline
function; move it to its own file. range_merge() and
ranges_can_merge() can likewise move, as they are only used
internally. Also, it becomes obvious that the condition within
range_merge() is already satisfied by its caller, and that the
return value is not used.
The diffstat is misleading, because of the copyright boilerplate.
Backports commit fec0fc0a13ac7f1a1130433a6740cd850c3db34a from qemu
If a QAPI struct has a mandatory alternate member which is not
present on input, the input visitor reports an error for the
missing alternate without setting the discriminator, but the
cleanup code for the struct still tries to use the dealloc
visitor to clean up the alternate.
Commit dbf11922 changed visit_start_alternate to set *obj to NULL
when an error occurs, where it was previously left untouched.
Thus, before the patch, the dealloc visitor is blindly trying to
cleanup whatever branch corresponds to (*obj)->type == 0 (that is,
QTYPE_NONE, because *obj still pointed to zeroed memory), which
selects the default branch of the switch and sets an error, but
this second error is ignored by the way the dealloc visitor is
used; but after the patch, the attempt to switch dereferences NULL.
When cleaning up after a partial object parse, we specifically
check for !*obj after visit_start_struct() (see gen_visit_object());
doing the same for alternates fixes the crash. Enhance the testsuite
to give coverage for both missing struct and missing alternate
members.
Also add an abort - we expect visit_start_alternate() to either set an
error or to set (*obj)->type to a valid QType that corresponds to
actual user input, and QTYPE_NONE should never be reachable from valid
input. Had the abort() been in place earlier, we might have noticed
the dealloc visitor dereferencing bogus zeroed memory prior to when
commit dbf11922 forced our hand by setting *obj to NULL and causing a
fault.
Test case:
{'execute':'blockdev-add', 'arguments':{'options':{'driver':'raw'}}}
The choice of 'driver':'raw' selects a BlockdevOptionsGenericFormat
struct, which has a mandatory 'file':'BlockdevRef' in QAPI. Since
'file' is missing as a sibling of 'driver', this should report a
graceful error rather than fault. After this patch, we are back to:
{"error": {"class": "GenericError", "desc": "Parameter 'file' is missing"}}
Generated code in qapi-visit.c changes as:
|@@ -2444,6 +2444,9 @@ void visit_type_BlockdevRef(Visitor *v,
| if (err) {
| goto out;
| }
|+ if (!*obj) {
|+ goto out_obj;
|+ }
| switch ((*obj)->type) {
| case QTYPE_QDICT:
| visit_start_struct(v, name, NULL, 0, &err);
|@@ -2459,10 +2462,13 @@ void visit_type_BlockdevRef(Visitor *v,
| case QTYPE_QSTRING:
| visit_type_str(v, name, &(*obj)->u.reference, &err);
| break;
|+ case QTYPE_NONE:
|+ abort();
| default:
| error_setg(&err, QERR_INVALID_PARAMETER_TYPE, name ? name : "null",
| "BlockdevRef");
| }
|+out_obj:
| visit_end_alternate(v);
Backports commit 9b4e38fe6a35890bb1d995316d7be08de0b30ee5 from qemu
Add preprocessor definition of FCR31's FS bit, and update related
code for setting this bit.
Backports commit 77be419980114d75605811e1681115d0919cfa1a from qemu
This patch implements read and write access rules for Mips floating
point control and status register (FCR31). The change can be divided
into following parts:
- Add fields that will keep FCR31's R/W bitmask in procesor
definitions and processor float_status structure.
- Add appropriate value for FCR31's R/W bitmask for each supported
processor.
- Add function for setting snan_bit_is_one, and integrate it in
appropriate places.
- Modify handling of CTC1 (case 31) instruction to use FCR31's R/W
bitmask.
- Modify handling user mode executables for Mips, in relation to the
bit EF_MIPS_NAN2008 from ELF header, that is in turn related to
reading and writing to FCR31.
- Modify gdb behavior in relation to FCR31.
Backports commit 599bc5e89c46f95f86ccad0d747d041c89a28806 from qemu
New set of helpers for handling nan2008-syle versions of instructions
<CEIL|CVT|FLOOR|ROUND|TRUNC>.<L|W>.<S|D>, for Mips R6.
All involved instructions have float operand and integer result. Their
core functionality is implemented via invocations of appropriate SoftFloat
functions. The problematic cases are when the operand is a NaN, and also
when the operand (float) is out of the range of the result.
Here one can distinguish three cases:
CASE MIPS-A: (FCR31.NAN2008 == 1)
1. Operand is a NaN, result should be 0;
2. Operand is larger than INT_MAX, result should be INT_MAX;
3. Operand is smaller than INT_MIN, result should be INT_MIN.
CASE MIPS-B: (FCR31.NAN2008 == 0)
1. Operand is a NaN, result should be INT_MAX;
2. Operand is larger than INT_MAX, result should be INT_MAX;
3. Operand is smaller than INT_MIN, result should be INT_MAX.
CASE SoftFloat:
1. Operand is a NaN, result is INT_MAX;
2. Operand is larger than INT_MAX, result is INT_MAX;
3. Operand is smaller than INT_MIN, result is INT_MIN.
Current implementation of <CEIL|CVT|FLOOR|ROUND|TRUNC>.<L|W>.<S|D>
implements case MIPS-B. This patch relates to case MIPS-A. For case
MIPS-A, only return value for NaN-operands should be corrected after
appropriate SoftFloat library function is called.
Related MSA instructions FTRUNC_S and FTINT_S already handle well
all cases, in the fashion similar to the code from this patch.
Backports commit 87552089b62fa229d2ff86906e4e779177fb5835 from qemu
Updated handling of instructions <ABS|NEG>.<S|D>. Note that legacy
(pre-abs2008) ABS and NEG instructions are arithmetic (and, therefore,
any NaN operand causes signaling invalid operation), while abs2008
ones are non-arithmetic, always and only changing the sign bit, even
for NaN-like operands. Details on these instructions are documented
in [1] p. 35 and 359.
Implementation-wise, abs2008 versions are implemented without helpers,
for simplicity and performance sake.
[1] "MIPS Architecture For Programmers Volume II-A:
The MIPS64 Instruction Set Reference Manual",
Imagination Technologies LTD, Revision 6.04, November 13, 2015
Backports commit 6be77480052b1a71557081896e7080363a8a2f95 from qemu
Function msa_reset() is updated so that flag snan_bit_is_one is
properly set to 0.
By applying this patch, a number of incorrect MSA behaviors that
require IEEE 754-2008 compliance will be fixed. Those are behaviors
that (up to the moment of applying this patch) did not get the desired
functionality from SoftFloat library with respect to distinguishing
between quiet and signaling NaN, getting default NaN values (both
quiet and signaling), establishing if a floating point number is NaN
or not, etc.
Two examples:
* FMAX, FMIN will now correctly detect and propagate NaNs.
* FCLASS.D ans FCLASS.S will now correcty detect NaN flavors
Backports commit 40bd6dd456e61a36e454fb9dd2cc739b67c224cf from qemu
Only for Mips platform, and only for cases when snan_bit_is_one is 0,
correct the order of argument comparisons in pickNaNMulAdd().
For more info, see [1], page 53, section "3.5.3 NaN Propagation".
[1] "MIPS Architecture for Programmers Volume IV-j:
The MIPS32 SIMD Architecture Module",
Imagination Technologies LTD, Revision 1.12, February 3, 2016
Backports commit c27644f0e9659471e1c9355da5b667960d311937 from qemu
Only for Mips platform, and only for cases when snan_bit_is_one is 0,
correct default NaN values (in their 16-, 32-, and 64-bit flavors).
For more info, see [1], page 84, Table 6.3 "Value Supplied When a New
Quiet NaN Is Created", and [2], page 52, Table 3.7 "Default NaN
Encodings".
[1] "MIPS Architecture For Programmers Volume II-A:
The MIPS64 Instruction Set Reference Manual",
Imagination Technologies LTD, Revision 6.04, November 13, 2015
[2] "MIPS Architecture for Programmers Volume IV-j:
The MIPS32 SIMD Architecture Module",
Imagination Technologies LTD, Revision 1.12, February 3, 2016
Backports commit a7c04d545a97126c9df9d96623747d8613aaf7db from qemu
fpu/softfloat-specialize.h is the most critical file in SoftFloat
library, since it handles numerous differences between platforms in
relation to floating point arithmetics. This patch makes the code
in this file more consistent format-wise, and hopefully easier to
debug and maintain.
Backports commit a59eaea64686c8966b7653303660f8c26f285c77 from qemu
This patch modifies SoftFloat library so that it can be configured in
run-time in relation to the meaning of signaling NaN bit, while, at the
same time, strictly preserving its behavior on all existing platforms.
Background:
In floating-point calculations, there is a need for denoting undefined or
unrepresentable values. This is achieved by defining certain floating-point
numerical values to be NaNs (which stands for "not a number"). For additional
reasons, virtually all modern floating-point unit implementations use two
kinds of NaNs: quiet and signaling. The binary representations of these two
kinds of NaNs, as a rule, differ only in one bit (that bit is, traditionally,
the first bit of mantissa).
Up to 2008, standards for floating-point did not specify all details about
binary representation of NaNs. More specifically, the meaning of the bit
that is used for distinguishing between signaling and quiet NaNs was not
strictly prescribed. (IEEE 754-2008 was the first floating-point standard
that defined that meaning clearly, see [1], p. 35) As a result, different
platforms took different approaches, and that presented considerable
challenge for multi-platform emulators like QEMU.
Mips platform represents the most complex case among QEMU-supported
platforms regarding signaling NaN bit. Up to the Release 6 of Mips
architecture, "1" in signaling NaN bit denoted signaling NaN, which is
opposite to IEEE 754-2008 standard. From Release 6 on, Mips architecture
adopted IEEE standard prescription, and "0" denotes signaling NaN. On top of
that, Mips architecture for SIMD (also known as MSA, or vector instructions)
also specifies signaling bit in accordance to IEEE standard. MSA unit can be
implemented with both pre-Release 6 and Release 6 main processor units.
QEMU uses SoftFloat library to implement various floating-point-related
instructions on all platforms. The current QEMU implementation allows for
defining meaning of signaling NaN bit during build time, and is implemented
via preprocessor macro called SNAN_BIT_IS_ONE.
On the other hand, the change in this patch enables SoftFloat library to be
configured in run-time. This configuration is meant to occur during CPU
initialization, at the moment when it is definitely known what desired
behavior for particular CPU (or any additional FPUs) is.
The change is implemented so that it is consistent with existing
implementation of similar cases. This means that structure float_status is
used for passing the information about desired signaling NaN bit on each
invocation of SoftFloat functions. The additional field in float_status is
called snan_bit_is_one, which supersedes macro SNAN_BIT_IS_ONE.
IMPORTANT:
This change is not meant to create any change in emulator behavior or
functionality on any platform. It just provides the means for SoftFloat
library to be used in a more flexible way - in other words, it will just
prepare SoftFloat library for usage related to Mips platform and its
specifics regarding signaling bit meaning, which is done in some of
subsequent patches from this series.
Further break down of changes:
1) Added field snan_bit_is_one to the structure float_status, and
correspondent setter function set_snan_bit_is_one().
2) Constants <float16|float32|float64|floatx80|float128>_default_nan
(used both internally and externally) converted to functions
<float16|float32|float64|floatx80|float128>_default_nan(float_status*).
This is necessary since they are dependent on signaling bit meaning.
At the same time, for the sake of code cleanup and simplicity, constants
<floatx80|float128>_default_nan_<low|high> (used only internally within
SoftFloat library) are removed, as not needed.
3) Added a float_status* argument to SoftFloat library functions
XXX_is_quiet_nan(XXX a_), XXX_is_signaling_nan(XXX a_),
XXX_maybe_silence_nan(XXX a_). This argument must be present in
order to enable correct invocation of new version of functions
XXX_default_nan(). (XXX is <float16|float32|float64|floatx80|float128>
here)
4) Updated code for all platforms to reflect changes in SoftFloat library.
This change is twofolds: it includes modifications of SoftFloat library
functions invocations, and an addition of invocation of function
set_snan_bit_is_one() during CPU initialization, with arguments that
are appropriate for each particular platform. It was established that
all platforms zero their main CPU data structures, so snan_bit_is_one(0)
in appropriate places is not added, as it is not needed.
[1] "IEEE Standard for Floating-Point Arithmetic",
IEEE Computer Society, August 29, 2008.
Backports commit af39bc8c49224771ec0d38f1b693ea78e221d7bc from qemu
Every IOMMU has some granularity which MemoryRegionIOMMUOps::translate
uses when translating, however this information is not available outside
the translate context for various checks.
This adds a get_min_page_size callback to MemoryRegionIOMMUOps and
a wrapper for it so IOMMU users (such as VFIO) can know the minimum
actual page size supported by an IOMMU.
As IOMMU MR represents a guest IOMMU, this uses TARGET_PAGE_SIZE
as fallback.
This removes vfio_container_granularity() and uses new helper in
memory_region_iommu_replay() when replaying IOMMU mappings on added
IOMMU memory region.
Backports the relevant parts of commit f682e9c244af7166225f4a50cc18ff296bb9d43e from qemu
Information is tracked inside the TCGContext structure, and later used
by tracing events with the 'tcg' and 'vcpu' properties.
The 'cpu' field is used to check tracing of translation-time
events ("*_trans"). The 'tcg_env' field is used to pass it to
execution-time events ("*_exec").
Backports commit 7c2550432abe62f53e6df878ceba6ceaf71f0e7e from qemu
This patch simplifies code that uses a local_err variable just to
immediately use it for an error_propagate() call.
Coccinelle patch used to perform the changes added to
scripts/coccinelle/remove_local_err.cocci.
Backports commit 6b62d961373e0327f2af8fb77d6d5d6308864180 from qemu
The GICv3 CPU interface needs to know when the CPU it is attached
to makes an exception level or mode transition that changes the
security state, because whether it is asserting IRQ or FIQ can change
depending on these things. Provide a mechanism for letting the GICv3
device register a hook to be called on such changes.
Backports commit bd7d00fc50c9960876dd194ebf0c88889b53e765 from qemu
The GICv3 system registers need to know if the CPU is AArch64
in EL3 or AArch32 in Monitor mode. This happens to be the first
part of the check for arm_is_secure(), so factor it out into a
new arm_is_el3_or_mon() function that the GIC can also use.
Backports commit 712058764da29b2908f6fbf56760ca4f15980709 from qemu
A half-shuffle operation takes a word with zeros in the high half:
0000 0000 0000 0000 ABCD EFGH IJKL MNOP
and spreads the bits out so they are in every other bit of the word:
0A0B 0C0D 0E0F 0G0H 0I0J 0K0L 0M0N 0O0P
A half-unshuffle performs the reverse operation.
Provide functions in bitops.h which implement these operations
for 32-bit and 64-bit inputs, and add tests for them.
Backports commit b355438de52d0782983bf4bdc47936189a0c988b from qemu
Add an API object_type_get_size(const char *typename) that returns the
instance_size of the give typename.
Backports commit 3f97b53a682d2595747c926c00d78b9d406f1be0 from qemu
MinGW seems to compile currently without warnings, so it should
be safe to enable -Werror now for this environment, too.
Backports commit e4650c81b3d15ba67236815defbb475c4bdf8690 from qemu
Making x86_cpu_parse_featurestr() a pure convertor
of legacy feature string into global properties, needs
it to be called before a CPU instance is created so
parser shouldn't modify CPUState directly or access
it at all. Hence move current hack that directly pokes
into CPUState, to set/unset +-feats, from parser to
CPU's realize method.
Backports commit dc15c0517b010a9444a2c05794dae980f2a2cbd9 from qemu
The "fixup will be removed in future versions" warnings are
present since QEMU 1.7.0, at least, so users should have fixed
their scripts and configurations, already.
In the case of libvirt users, libvirt doesn't use the "xlevel"
option, and already rejects HyperV spinlock retry count < 0xFFF.
Backports commit c19b85216b5d47d922ac010931d4c7b2d79b2f68 from qemu
I looked at a dozen Intel CPU that have this CPUID and all of them
always had Core offset as 1 (a wasted bit when hyperthreading is
disabled) and Package offset at least 4 (wasted bits at <= 4 cores).
QEMU uses more compact IDs and it doesn't make much sense to change it
now. I keep the SMT and Core sub-leaves even if there is just one
thread/core; it makes the code simpler and there should be no harm.
Backports commit 5232d00a041c8f3628b3532ef35d703a1f0dac19 from qemu
Introduce Skylake-Client cpu mode which inherits the features from
Broadwell and supports some additional features that are: MPX,
XSAVEC, and XGETBV1.
Backports commit f6f949e9295889fb272698aea763dcea77d616ce from qemu
The Neon instructions VCVTA, VCVTM, VCVTN, VCVTP, VRINTA, VRINTM,
VRINTN, VRINTP, VRINTX, and VRINTZ were only introduced with ARMv8,
so they need a guard to make them UNDEF if the CPU only supports ARMv7.
(We got this right for all the other new-in-v8 insns, but forgot
it for these Neon 2-reg-misc ops.)
Backports commit fe8fcf3d642b4de1369841bf6acac13e0ec8770d from qemu
Commit 6459b94c26dd666badb3 broke reset and migration of the AArch32
TTBCR(S) register if the guest used non-LPAE page tables. This is
because the AArch32 TTBCR register definition is marked as ARM_CP_ALIAS,
meaning that the AArch64 variant has to handle migration and reset.
Although AArch64 TCR_EL3 doesn't need to care about the mask and
base_mask fields, AArch32 may do so, and so we must use the special
TTBCR reset and raw write functions to ensure they are set correctly.
This doesn't affect TCR_EL2, because the AArch32 equivalent of that
is HTCR, which never uses the non-LPAE page table variant.
Backports commit 811595a2d4ab8c6354857a50ffd29fafce52a892 from qemu
Check if kvm supports guest PMUv3. If so, set the corresponding feature
bit for vcpu.
Backports commit 5c0a3819f009639f67ce0453dff6ec7211bfee54 from qemu
For some workloads such as arm bootup, tb_phys_hash is performance-critical.
The is due to the high frequency of accesses to the hash table, originated
by (frequent) TLB flushes that wipe out the cpu-private tb_jmp_cache's.
More info:
https://lists.nongnu.org/archive/html/qemu-devel/2016-03/msg05098.html
To dig further into this I modified an arm image booting debian jessie to
immediately shut down after boot. Analysis revealed that quite a bit of time
is unnecessarily spent in tb_phys_hash: the cause is poor hashing that
results in very uneven loading of chains in the hash table's buckets;
the longest observed chain had ~550 elements.
The appended addresses this with two changes:
1) Use xxhash as the hash table's hash function. xxhash is a fast,
high-quality hashing function.
2) Feed the hashing function with not just tb_phys, but also pc and flags.
This improves performance over using just tb_phys for hashing, since that
resulted in some hash buckets having many TB's, while others getting very few;
with these changes, the longest observed chain on a single hash bucket is
brought down from ~550 to ~40.
Tests show that the other element checked for in tb_find_physical,
cs_base, is always a match when tb_phys+pc+flags are a match,
so hashing cs_base is wasteful. It could be that this is an ARM-only
thing, though. UPDATE:
On Tue, Apr 05, 2016 at 08:41:43 -0700, Richard Henderson wrote:
> The cs_base field is only used by i386 (in 16-bit modes), and sparc (for a TB
> consisting of only a delay slot).
> It may well still turn out to be reasonable to ignore cs_base for hashing.
BTW, after this change the hash table should not be called "tb_hash_phys"
anymore; this is addressed later in this series.
This change gives consistent bootup time improvements. I tested two
host machines:
- Intel Xeon E5-2690: 11.6% less time
- Intel i7-4790K: 19.2% less time
Increasing the number of hash buckets yields further improvements. However,
using a larger, fixed number of buckets can degrade performance for other
workloads that do not translate as many blocks (600K+ for debian-jessie arm
bootup). This is dealt with later in this series.
Backports commit 42bd32287f3a18d823f2258b813824a39ed7c6d9 from qemu
This will be used by upcoming changes for hashing the tb hash.
Add this into a separate file to include the copyright notice from
xxhash.
Backports commit dc8b295d05ec35a8c032f9abca421772347ba5d4 from qemu
The exception_action() function in user-exec.c is just a call to
cpu_loop_exit() for every target CPU except i386. Since this
function is only called if the target's handle_mmu_fault() hook has
indicated an MMU fault, and that hook is only called from the
handle_cpu_signal() code path, we can simply move the x86-specific
setup into that hook, which allows us to remove the TARGET_I386
ifdef from user-exec.c.
Of the actions that were done by the call to raise_interrupt_err():
* cpu_svm_check_intercept_param() is a no-op in user mode
* check_exception() is a no-op since double faults are impossible
for user-mode
* assignments to cs->exception_index and env->error_code are no-ops
* assigning to env->exception_next_eip is unnecessary because it
is not used unless env->exception_is_int is true
* cpu_loop_exit_restore() is equivalent to cpu_loop_exit() since
pc is 0
which leaves just setting env_>exception_is_int as the action that
needs to be added to x86_cpu_handle_mmu_fault().
Backports commit 0c33682d5f29b0a4ae53bdec4c8e52e4fae37b34 from qemu
Add a comment to do_interrupt_user() along the same lines as the
existing one for do_interrupt_all() noting that the next_eip
argument is not used unless is_int is true or intno is EXCP_SYSCALL.
Backports commit 33271823323483b4ede1ae99de83d33b25875402 from qemu
The function cpu_resume_from_signal() is now always called with a
NULL puc argument, and is rather misnamed since it is never called
from a signal handler. It is essentially forcing an exit to the
top level cpu loop but without raising any exception, so rename
it to cpu_loop_exit_noexc() and drop the useless unused argument.
Backports commit 6886b98036a8f8f5bce8b10756ce080084cef11b from qemu
Since the only caller of page_unprotect() which might cause it to
need to call cpu_resume_from_signal() is handle_cpu_signal() in
the user-mode code, push the longjump handling out to that function.
Since this is the only caller of cpu_resume_from_signal() which
passes a non-NULL puc argument, split the non-NULL handling into
a new cpu_exit_tb_from_sighandler() function. This allows us
to merge the softmmu and usermode implementations of the
cpu_resume_from_signal() function, which are now identical.
Backports commit f213e72f2356b77768b9cb73814a3b26ad5a0099 from qemu
The user-mode-only function tb_invalidate_phys_page() is only
called from two places:
* page_unprotect(), which passes in a non-zero pc, a puc pointer
and the value 'true' for the locked argument
* page_set_flags(), which passes in a zero pc, a NULL puc pointer
and a 'false' locked argument
If the pc is non-zero then we may call cpu_resume_from_signal(),
which does a longjmp out of the calling code (and out of the
signal handler); this is to cover the case of a target CPU with
"precise self-modifying code" (currently only x86) executing
a store instruction which modifies code in the same TB as the
store itself. Rather than doing the longjump directly here,
return a flag to the caller which indicates whether the current
TB was modified, and move the longjump to page_unprotect.
Backports commit 75809229bbf28b371afce14921ff5be98ddc5faa from qemu
Make sure that config-host.h and config-target.h are rebuilt whenever
there is a change in the scripts that generates them; add the dependency
to the pattern rule as suggested by Peter.
Backports commit 553350156d80c18d0127c742f47b7adbd642f3ef from qemu
The WORDS_ALIGNED #define is not used anywhere, and hasn't been since
2013 when commit 612d590ebc6cef rewrote the various ld<type>_<endian>_p
functions to not use it. Remove the #define and the comment describing it.
Also remove the line in the comment about TARGET_WORDS_ALIGNED, since
it has never actually existed.
Backports commit 0d5c21f2b3bf1e0b562a2c74e353d2e03f2f50ef from qemu
This fixes these warnings from shellcheck:
^-- SC2006: Use $(..) instead of deprecated `..`
Backports commit 89138857619b2a023c32200e9af780792ccaa8c3 from qemu
Address size is 40-bit for the AArch32 stage 2 translation,
and t0sz can be negative (from -8 to 7),
so we need to adjust it to use the existing TTBR selecting logic.
Backports commit 6e99f762612827afeff54add2e4fc2c3b2657fed from qemu
Remove some incorrect code from arm_cpu_do_interrupt_aarch64()
which attempts to set the IL bit in the syndrome register based
on the value of env->thumb. This is wrong in several ways:
* IL doesn't indicate Thumb-vs-ARM, it indicates instruction
length (which may be 16 or 32 for Thumb and is always 32 for ARM)
* not every syndrome format uses IL like this -- for some IL is
always set, and for some it is always clear
* the code is changing esr_el[new_el] even for interrupt entry,
which is not supposed to modify ESR_ELx at all
Delete the code, and instead rely on the syndrome value in
env->exception.syndrome having already been set up with the
correct value of IL.
Backports commit 78f1edb19fe11fa0c5d0bf484db59a384f455d3c from qemu
For some exception syndrome types, the IL bit should always be set.
This includes the instruction abort, watchpoint and software step
syndrome types; add the missing ARM_EL_IL bit to the syndrome
values returned by syn_insn_abort(), syn_swstep() and syn_watchpoint().
Backports commit 04ce861ea545477425ad9e045eec3f61c8a27df9 from qemu
Add support for generating the ISS (Instruction Specific Syndrome) for
Data Abort exceptions taken from AArch64.
These syndromes are used by hypervisors for example to trap and emulate
memory accesses.
We save the decoded data out-of-band with the TBs at translation time.
When exceptions hit, the extra data attached to the TB is used to
recreate the state needed to encode instruction syndromes.
This avoids the need to emit moves with every load/store.
Based on a suggestion from Peter Maydell.
Backports commit aaa1f954d4cab243e3d5337a72bc6d104e1c4808 from qemu
Add the Hypervisor System Trap Register for EL2.
This register is used early in the Linux boot and without it the kernel
aborts with a "Synchronous Abort" error.
Backports commit 2a5a9abd4bc45e2f4c62c77e07aebe53608c6915 from qemu
Using "," literal in $(call quiet-command, ...) arguments is awkward.
Add this constant to make it at least doable.
Backports commit 2f4e4dc237261c76734d8ae1d8e09d2983d2f1ca from qemu
Let users of qemu_get_ram_ptr and qemu_ram_ptr_length pass in an
address that is relative to the MemoryRegion. This basically means
what address_space_translate returns.
Because the semantics of the second parameter change, rename the
function to qemu_map_ram_ptr.
Backports commit 0878d0e11ba8013dd759c6921cbf05ba6a41bd71 from qemu
Move the old qemu_ram_addr_from_host to memory_region_from_host and
make it return an offset within the region. For qemu_ram_addr_from_host
return the ram_addr_t directly, similar to what it was before
commit 1b5ec23 ("memory: return MemoryRegion from qemu_ram_addr_from_host",
2013-07-04).
Backports commit 07bdaa4196b51bc7ffa7c3f74e9e4a9dc8a7966a from qemu
Of the two callers, one does not use it, and the other can compute
it itself based on the other output argument (offset) and the RAMBlock.
Backports commit f615f39616c4fd1a3a3b078af8d75bb4be6390de from qemu
Remove direct uses of ram_addr_t and optimize memory_region_{get,set}_fd
now that a MemoryRegion knows its RAMBlock directly.
Backports commit 4ff87573df3606856a92c14eef3393a63d736d11 from qemu
Currently we emit a consume-load in atomic_rcu_read. Because of
limitations in current compilers, this is overkill for non-Alpha hosts
and it is only useful to make Thread Sanitizer work.
This patch leaves the consume-load in atomic_rcu_read when
compiling with Thread Sanitizer enabled, and resorts to a
relaxed load + smp_read_barrier_depends otherwise.
On an RMO host architecture, such as aarch64, the performance
improvement of this change is easily measurable. For instance,
qht-bench performs an atomic_rcu_read on every lookup. Performance
before and after applying this patch:
$ tests/qht-bench -d 5 -n 1
Before: 9.78 MT/s
After: 10.96 MT/s
Backports commit 15487aa132109891482f79d78a30d6cfd465a391 from qemu
For correctness, smp_read_barrier_depends() is only required to
emit a barrier on Alpha hosts. However, we are currently emitting
a consume fence unconditionally, and most compilers currently treat
consume and acquire fences as equivalent.
Fix it by keeping the consume fence if we're compiling with Thread
Sanitizer, since this might help prevent false warnings. Otherwise,
only emit the barrier for Alpha hosts. Note that we still guarantee
that smp_read_barrier_depends() is a compiler barrier.
Backports commit c983895258a771f8a5e4a53950bfb7fd2216651c from qemu
It is not safe to make a direct jump to a TB spanning two pages in
system emulation because the mapping for the second page can get changed
but we don't take care of direct jumps in this case.
However in user mode emulation, this is not the case because there's
only static address translation and TBs are always invalidated properly.
Backports commit c88c67e58b61618a904d2333ceebefc3c852d32e from qemu
QOM instance_init functions are not supposed to have any side-effects,
as new objects may be created at any moment for querying property
information (see qmp_device_list_properties()).
Move TCG initialization to realize time so it won't be called when just
doing object_new() on a X86CPU subclass.
Backports commit 57f2453ab48a771b30aeced01b329ee85853bb7b from qemu
x86_cpudef_init() doesn't do anything anymore, cpudef_init(),
cpudef_setup(), and x86_cpudef_init() can be finally removed.
Backports commit 3e2c0e062f0963a6b73b0cd1990fad79495463d9 from qemu
Newer PC machines don't set hw_version, and older machines set
model-id on compat_props explicitly, so we don't need the
x86_cpudef_setup() code that sets model_id using
qemu_hw_version() anymore.
Backports commit 9cf2cc3d8237732946720d78bf9aec0064026ed8 from qemu
The macro will be used by code that will stop calling
qemu_hw_version() at runtime and just need a constant value.
Backports commit d494352c2f7818aeba184a8ef757569083740bb2 from qemu
This doesn't introduce any change in the code, as the offsets and
struct sizes match what was present in the table. This can be
validated by the QEMU_BUILD_BUG_ON lines on target-i386/cpu.h,
which ensures the struct sizes and offsets match the existing
values in ext_save_area.
Backports commit ee1b09f695dcd8532f470e53297473bd3bc88718 from qemu
Add structs that define the layout of the xsave areas used by
Intel processors. Add some QEMU_BUILD_BUG_ON lines to ensure the
structs match the XSAVE_* macros in target-i386/kvm.c and the
offsets and sizes at target-i386/cpu.c:ext_save_areas.
Backports commit b503717d28e8f7eff39bf38624e6cf42687d951a from qemu
mr->ram_block->offset is already aligned to both host and target size
(see qemu_ram_alloc_internal). Remove further masking as it is
unnecessary.
Backports commit e4e697940dff612b789b0858270c20a8b680f78d from qemu
Its value is alway set to mr->romd_mode, so the removed comparisons are
fully superseded by "a->mr == b->mr".
Backports commit 5b5660adf1fdb61db14ec681b10463b8cba633f1 from qemu
The collision check does nothing and hasn't been used. Remove the
variable together with related code.
Backports commit b61359781958759317ee6fd1a45b59be0b7dbbe1 from qemu
On the one hand, we have already qemu_get_ram_block() whose function
is similar. On the other hand, we can directly use mr->ram_block but
searching RAMblock by ram_addr which is a kind of waste.
Backports commit fa53a0e53efdc7002497ea4a76aacf6cceb170ef from qemu
Include qom/object.h and exec/memory.h instead of exec/ioport.h;
exec/ioport.h was almost everywhere required only for those two
includes, not for the content of the header itself.
Remove block/aio.h, everybody is already including it through
another path.
With this change, include/hw/hw.h is freed from qemu-common.h.
Backports commit df43d49cb8708b9c88a20afe0d1a3089b550a5b8 from qemu
pio_addr_t is almost unused, because these days I/O ports are simply
accessed through the address space. cpu_{in,out}[bwl] themselves are
almost unused; monitor.c and xen-hvm.c could use address_space_read/write
directly, since they have an integer size at hand. This leaves qtest as
the only user of those functions.
On the other hand even portio_* functions use this type; the only
interesting use of pio_addr_t thus is include/hw/sysbus.h. I guess I
could move it there, but I don't see much benefit in that either. Using
uint32_t is enough and avoids the need to include ioport.h everywhere.
Backports commit 89a80e7400f7225d9401b35ef32454b4ab29dc67 from qemu
exec-all.h contains TCG-specific definitions. It is not needed outside
TCG-specific files such as translate.c, exec.c or *helper.c.
One generic function had snuck into include/exec/exec-all.h; move it to
include/qom/cpu.h.
Backports commit 63c915526d6a54a95919ebece83fa9ca631b2508 from qemu
TCG backends do not need most of exec-all.h; extract what they actually
need to a separate file or move it directly to tcg.h. The next patch
will stop including exec-all.h from everywhere.
Backports commit 00f6da6a1a5d1ce085334eccbb50ec899ceed513 from qemu
These are here for historical reasons: they are needed from both gdbstub.c
and op_helper.c, and the latter was compiled with fixed AREG0. It is
not needed anymore, so uninline them.
Backports commit e6623d88f44aae9e9c78276c0cb7bd352283d50a from qemu
Move it to the actual users. There are still a few includes of
qemu/bswap.h in headers; removing them is left for future work.
Backports commit 58369e22cf971448411bfbc8c894b2addebe2111 from qemu
Disentangle cpu-common.h and memory.h from NEED_CPU_H. Prototypes are
not defined for !NEED_CPU_H, so remove them from poison.h too. Only
macros need poisoning.
Backports commit a7d6039cb35592683ecc56d2b37817da2d2f8b00 from qemu
Make SPARCCPU an opaque type within cpu-qom.h, and move all definitions
of private methods, as well as all type definitions that require knowledge
of the layout to cpu.h. This helps making files independent of NEED_CPU_H
if they only need to pass around CPU pointers.
Backports commit d61d1b20610e4655d7846e4cb43d22188e935f5f from qemu
Make MIPSCPU an opaque type within cpu-qom.h, and move all definitions of
private methods, as well as all type definitions that require knowledge
of the layout to cpu.h. This helps making files independent of NEED_CPU_H
if they only need to pass around CPU pointers.
Backports commit 416bf936864f16caad6993b9ebd452fb34f801bd from qemu
Make M68KCPU an opaque type within cpu-qom.h, and move all definitions of
private methods, as well as all type definitions that require knowledge
of the layout to cpu.h. This helps making files independent of NEED_CPU_H
if they only need to pass around CPU pointers.
Backports commit a836b8fa00fa1032ccd234a71b33943627d211ea from qemu
Make X86CPU an opaque type within cpu-qom.h, and move all definitions of
private methods, as well as all type definitions that require knowledge
of the layout to cpu.h. This helps making files independent of NEED_CPU_H
if they only need to pass around CPU pointers.
Backports commit 4da6f8d954429c0cd1471d25cb9dbe909607374e from qemu
Make ARMCPU an opaque type within cpu-qom.h, and move all definitions of
private methods, as well as all type definitions that require knowledge
of the layout to cpu.h. This helps making files independent of NEED_CPU_H
if they only need to pass around CPU pointers.
Backports commit 74e755647c1598a6845df1ee4f8b96d01afd96e7 from qemu
Return the negated value of accel_initialised is meaningless,
and the caller vl doesn't check it.
Backports commit bdc3f61dec2f9c227235bb5f677a0272e1184c82 from qemu
Simplify cpu_exec() by extracting TB execution code outside of
cpu_exec() into a new static inline function cpu_loop_exec_tb().
Backports commit 928de9ee14b0b63ee9f9275732ed3e1c8b5f4790 from qemu
Simplify cpu_exec() by extracting interrupt handling code outside of
cpu_exec() into a new static inline function cpu_handle_interrupt().
Backports commit c385e6e49763c6dd5dbbd90fadde95d986f8bd38 from qemu
Simplify cpu_exec() by extracting exception handling code out of
cpu_exec() into a new static inline function cpu_handle_exception().
Also make cpu_handle_debug_exception() inline as it is used only once.
Backports commit ea284766ec6b9f1712369249566b4c372f3cec8b from qemu
Simplify cpu_exec() by extracting CPU halt state handling code out of
cpu_exec() into a new static inline function cpu_handle_halt().
Backports commit 8b2d34e997371c9729a0f41e3cc624d4300bbe78 from qemu
This comment should have been deleted by commit 0ac087f1f3ae ("removed
unused code") but somehow it is still here. There's no point to keep it.
Backports commit c6f0d9f84c43ae973270df1a77482466558ee487 from qemu
This field was used for telling cpu_interrupt() to unlink a chain of TBs
being executed when it worked that way. Now, cpu_interrupt() don't do
this anymore. So we don't need this field anymore.
Backports commit 3213525f8ab48742db09dab18cb9ae6f36a6c921 from qemu
Move tb_add_jump() call and surrounding code from cpu_exec() into
tb_find_fast(). That simplifies cpu_exec() a little by hiding the direct
chaining optimization details into tb_find_fast(). It also allows to
move tb_lock()/tb_unlock() pair into tb_find_fast(), putting it closer
to tb_find_slow() which also manipulates the lock.
Backports commit a0522c7a55cc8ac76d82884cf8e52f76daa664cc from qemu
'tb_invalidated_flag' was meant to catch two events:
* some TB has been invalidated by tb_phys_invalidate();
* the whole translation buffer has been flushed by tb_flush().
Then it was checked:
* in cpu_exec() to ensure that the last executed TB can be safely
linked to directly call the next one;
* in cpu_exec_nocache() to decide if the original TB should be provided
for further possible invalidation along with the temporarily
generated TB.
It is always safe to patch an invalidated TB since it is not going to be
used anyway. It is also safe to call tb_phys_invalidate() for an already
invalidated TB. Thus, setting this flag in tb_phys_invalidate() is
simply unnecessary. Moreover, it can prevent from pretty proper linking
of TBs, if any arbitrary TB has been invalidated. So just don't touch it
in tb_phys_invalidate().
If this flag is only used to catch whether tb_flush() has been called
then rename it to 'tb_flushed'. Declare it as 'bool' and stick to using
only 'true' and 'false' to set its value. Also, instead of setting it in
tb_gen_code(), just after tb_flush() has been called, do it right inside
of tb_flush().
In cpu_exec(), this flag is used to track if tb_flush() has been called
and have made 'next_tb' (a reference to the last executed TB) invalid
for linking it to directly call the next TB. tb_flush() can be called
during the CPU execution loop from tb_gen_code(), during TB execution or
by another thread while 'tb_lock' is released. Catch for translation
buffer flush reliably by resetting this flag once before first TB lookup
and each time we find it set before trying to add a direct jump. Don't
touch in in tb_find_physical().
Each vCPU has its own execution loop in multithreaded mode and thus
should have its own copy of the flag to be able to reset it with its own
'next_tb' and don't affect any other vCPU execution thread. So make this
flag per-vCPU and move it to CPUState.
In cpu_exec_nocache(), we only need to check if tb_flush() has been
called from tb_gen_code() called by cpu_exec_nocache() itself. To do
this reliably, preserve the old value of the flag, reset it before
calling tb_gen_code(), check afterwards, and combine the saved value
back to the flag.
This patch is based on the patch "tcg: move tb_invalidated_flag to
CPUState" from Paolo Bonzini <pbonzini@redhat.com>.
Backports commit 6f789be56d3f38e9214dafcfab3bf9be7191f370 from qemu
The value returned from tcg_qemu_tb_exec() is the value passed to the
corresponding tcg_gen_exit_tb() at translation time of the last TB
attempted to execute. It is a little confusing to store it in a variable
named 'next_tb'. In fact, it is a combination of 4-byte aligned pointer
and additional information in its two least significant bits. Break it
down right away into two variables named 'last_tb' and 'tb_exit' which
are a pointer to the last TB attempted to execute and the TB exit
reason, correspondingly. This simplifies the code and improves its
readability.
Correct a misleading documentation comment for tcg_qemu_tb_exec() and
fix logging in cpu_tb_exec(). Also rename a misleading 'next_tb' in
another couple of places.
Backports commit 819af24b9c1e95e6576f1cefd32f4d6bf56dfa56 from qemu
In user mode, there's only a static address translation, TBs are always
invalidated properly and direct jumps are reset when mapping change.
Thus the destination address is always valid for direct jumps and
there's no need to restrict it to the pages the TB resides in.
Backports commit 90aa39a1cc4837360889f0e033ca25cc82100308 from qemu
We don't take care of direct jumps when address mapping changes. Thus we
must be sure to generate direct jumps so that they always keep valid
even if address mapping changes. Luckily, we can only allow to execute a
TB if it was generated from the pages which match with current mapping.
Document tcg_gen_goto_tb() declaration and note the reason for
destination PC limitations.
Some targets with variable length instructions allow TB to straddle a
page boundary. However, we make sure that both of TB pages match the
current address mapping when looking up TBs. So it is safe to do direct
jumps into the both pages. Correct the checks for some of those targets.
Given that, we can safely patch a TB which spans two pages. Remove the
unnecessary check in cpu_exec() and allow such TBs to be patched.
Backports commit 5b053a4a28278bca606eeff7d1c0730df1b047e9 from qemu
Unify the code of this function with tb_jmp_remove_from_list(). Making
these functions similar improves their readability. Also this could be a
step towards making this function thread-safe.
Backports commit f9c5b66f487a04d3747dc6997b1503f9258df945 from qemu
Move the code for removing jumps to a TB out of tb_phys_invalidate() to
a separate static inline function tb_jmp_unlink(). This simplifies
tb_phys_invalidate() and improves code structure.
Backports commit 89bba496322d4cf996d42cdd4bb0912231656c3d from qemu
tb_jmp_remove() was only used to remove the TB from a list of all TBs
jumping to the same TB which is n-th jump destination of the given TB.
Put a comment briefly describing the function behavior and rename it to
better reflect its purpose.
Backports commit 133626783aa5a1bf86332fa3e6f7b8efe005f924 from qemu
The check is to make sure that another thread hasn't already done the
same while we were outside of tb_lock. Mention this in a comment.
Backports commit 9962c478b153a18fe88a6509fe58cd178aff8abc from qemu
Initialize TB's direct jump list data fields and reset the jumps before
tb_link_page() puts it into the physical hash table and the physical
page list. So TB is completely initialized before it becomes visible.
This is pure rearrangement of code to a more suitable place, though it
could be a preparation for relaxing the locking scheme in future.
Backports commit 901bc3deb43bf37c85e43955905d003be7ae5fa5 from qemu
These fields do not contain pure pointers to a TranslationBlock
structure. So uintptr_t is the most appropriate type for them.
Also put some asserts to assure that the two least significant bits of
the pointer are always zero before assigning it to jmp_list_first.
Backports commit c37e6d7e3589ecb96914faa21025ad7ba6654aea from qemu
Briefly describe in a comment how direct block chaining is done. It
should help in understanding of the following data fields.
Rename some fields in TranslationBlock and TCGContext structures to
better reflect their purpose (dropping excessive 'tb_' prefix in
TranslationBlock but keeping it in TCGContext):
tb_next_offset => jmp_reset_offset
tb_jmp_offset => jmp_insn_offset
tb_next => jmp_target_addr
jmp_next => jmp_list_next
jmp_first => jmp_list_first
Avoid using a magic constant as an invalid offset which is used to
indicate that there's no n-th jump generated.
Backports commit f309101c26b59641fc1aa8fb2a98a5441cdaea03 from qemu
The setting of tcg_ctx.code_gen_buffer_size is done by the only caller of
size_code_gen_buffer(), which is code_gen_alloc():
$ git grep size_code_gen_buffer
translate-all.c:static inline size_t size_code_gen_buffer(size_t tb_size)
translate-all.c: tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
Backports commit 835154b6e2200460f04719d0028716a37c178368 from qemu
Ensure direct jump patching in MIPS is atomic by using
atomic_read()/atomic_set() for code patching.
Backports commit c82460a560176ef69c2f0662bd280612e274db96 from qemu
Ensure direct jump patching in SPARC is atomic by using
atomic_read()/atomic_set() for code patching.
Backports commit 84f79fb7c6e857edc807e4a251338243ce0cbac3 from qemu
Ensure direct jump patching in AArch64 is atomic by using
atomic_read()/atomic_set() for code patching.
Backports commit 9e269112953be4d670cb0d25042bd6546fcf3e45 from qemu
Ensure direct jump patching in ARM is atomic by using
atomic_read()/atomic_set() for code patching.
Backports commit 7d14e0e2d661479985197203589c38840e1066df from qemu
Ensure direct jump patching in s390 is atomic by:
* naturally aligning a location of direct jump address;
* using atomic_read()/atomic_set() for code patching.
Backports commit ed3d51ecd7fe248d3959e469d53890ac9ffe0cd2 from qemu
Ensure direct jump patching in i386 is atomic by:
* naturally aligning a location of direct jump address;
* using atomic_read()/atomic_set() for code patching.
Backports commit 0d07abf05e98903c7faf204a9a90f7d45b7554dc from qemu
These macros provide a convenient way to n-byte align pointers up and
down and check if a pointer is n-byte aligned.
Backports commit 6b587d3cda48e7ba26de8d30bf0d8a7063970715 from qemu
We are inconsistent with the type of tb->flags: usage varies loosely
between int and uint64_t. Settle to uint32_t everywhere, which is
superior to both: at least one target (aarch64) uses the most significant
bit in the u32, and uint64_t is wasteful.
Compile-tested for all targets.
Backports commit 89fee74a0f066dfd73830a7b5fa137e87888c870 from qemu
The TCR_EL2 and TCR_EL3 regdefs were incorrectly using the
vmsa_tcr_el1_write function for writes. Since these registers don't
have the A1 bit that TCR_EL1 does, we don't need to do a tlb_flush()
when they are written. Remove the unnecessary .writefn and also the
harmless but unneeded .raw_writefn and .resetfn definitions.
Backports commit 6459b94c26dd666badb3547fef1456992a08e60b from qemu
The various load/store variants under disas_ldst_reg can all reuse the
same decoding for opc, size, rt and is_vector.
This patch unifies the decoding in preparation for generating
instruction syndromes for data aborts.
This will allow us to reduce the number of places to hook in updates
to the load/store state needed to generate the insn syndromes.
No functional change.
Backports commit cd694521ca061a5d0436d5df4ec8c17c8f4dfcdb from qemu
Use extract32 instead of open coding the bit masking when decoding
is_signed and is_extended. This streamlines the decoding with some
of the other ldst variants.
No functional change.
Backports commit 026a19c3128678d4fe301fc36e8ffacdc9ecccb8 from qemu
Split the data abort syndrome generator into two versions:
One with a valid Instruction Specific Syndrome (ISS) and another without.
The following new flags are supported by the syndrome generator
with ISS:
* isv - Instruction syndrome valid
* sas - Syndrome access size
* sse - Syndrome sign extend
* srt - Syndrome register transfer
* sf - Sixty-Four bit register width
* ar - Acquire/Release
These flags are not yet used, so this patch has no functional change
except that we will now correctly set the IL bit in data abort
syndromes without ISS information.
Backports commit 094d028a7968236cd2b7f7b96394f7a3b8ad97c8 from qemu
Use tcg_set_insn_param() instead of directly accessing internal
tcg data structures to update an insn param.
Backports commit 25caa94c4a26daaab1e65c6d887e2972aeb5749e from qemu
Add tcg_set_insn_param as a mechanism to modify an insn
parameter after emiting the insn. This is useful for icount
and also for embedding fault information for a specific insn.
Backports commit 1d41478fd428e01f057d3248292e4cdcdb048523 from qemu
There is a bug in ARM address translation regime with a long-descriptor
format. On the descriptor reading its address is formed from an index
which is a part of the input address. And on the first iteration this index
is incorrectly masked with 'grainsize' mask. But it can be wider according
to pseudo-code.
On the other hand on the iterations other than first the descriptor address
is formed from the previous level descriptor by masking with 'descaddrmask'
value. It always clears just 12 lower bits, but it must clear 'grainsize'
lower bits instead according to pseudo-code.
The patch fixes both cases.
Backports commit dddb5223413c5425ae6eaeb3b967627efc9675f7 from qemu
As described in AArch32.CheckS2Permission an instruction fetch fails if
XN bit is set or there is no read permission for the address.
Backports commit dfda68377e20943f474505e75238cb96bc6874bf from qemu
Returning a partial object on error is an invitation for a careless
caller to leak memory. We already fixed things in an earlier
patch to guarantee NULL if visit_start fails ("qapi: Guarantee
NULL obj on input visitor callback error"), but that does not
help the case where visit_start succeeds but some other failure
happens before visit_end, such that we leak a partially constructed
object outside visit_type_FOO(). As no one outside the testsuite
was actually relying on these semantics, it is cleaner to just
document and guarantee that ALL pointer-based visit_type_FOO()
functions always leave a safe value in *obj during an input visitor
(either the new object on success, or NULL if an error is
encountered), so callers can now unconditionally use
qapi_free_FOO() to clean up regardless of whether an error occurred.
The decision is done by adding visit_is_input(), then updating the
generated code to check if additional cleanup is needed based on
the type of visitor in use.
Note that we still leave *obj unchanged after a scalar-based
visit_type_FOO(); I did not feel like auditing all uses of
visit_type_Enum() to see if the callers would tolerate a specific
sentinel value (not to mention having to decide whether it would
be better to use 0 or ENUM__MAX as that sentinel).
Backports commit 68ab47e4b4ecc1c4649362b8cc1e49794d1a6537 from qemu
The semantics of the list visit are somewhat baroque, with the
following pseudocode when FooList is used:
start()
for (prev = head; cur = next(prev); prev = &cur) {
visit(&cur->value)
}
Note that these semantics (advance before visit) requires that
the first call to next() return the list head, while all other
calls return the next element of the list; that is, every visitor
implementation is required to track extra state to decide whether
to return the input as-is, or to advance. It also requires an
argument of 'GenericList **' to next(), solely because the first
iteration might need to modify the caller's GenericList head, so
that all other calls have to do a layer of dereferencing.
Thankfully, we only have two uses of list visits in the entire
code base: one in spapr_drc (which completely avoids
visit_next_list(), feeding in integers from a different source
than uint8List), and one in qapi-visit.py. That is, all other
list visitors are generated in qapi-visit.c, and share the same
paradigm based on a qapi FooList type, so we can refactor how
lists are laid out with minimal churn among clients.
We can greatly simplify things by hoisting the special case
into the start() routine, and flipping the order in the loop
to visit before advance:
start(head)
for (tail = *head; tail; tail = next(tail)) {
visit(&tail->value)
}
With the simpler semantics, visitors have less state to track,
the argument to next() is reduced to 'GenericList *', and it
also becomes obvious whether an input visitor is allocating a
FooList during visit_start_list() (rather than the old way of
not knowing if an allocation happened until the first
visit_next_list()). As a minor drawback, we now allocate in
two functions instead of one, and have to pass the size to
both functions (unless we were to tweak the input visitors to
cache the size to start_list for reuse during next_list, but
that defeats the goal of less visitor state).
The signature of visit_start_list() is chosen to match
visit_start_struct(), with the new parameters after 'name'.
The spapr_drc case is a virtual visit, done by passing NULL for
list, similarly to how NULL is passed to visit_start_struct()
when a qapi type is not used in those visits. It was easy to
provide these semantics for qmp-output and dealloc visitors,
and a bit harder for qmp-input (several prerequisite patches
refactored things to make this patch straightforward). But it
turned out that the string and opts visitors munge enough other
state during visit_next_list() to make it easier to just
document and require a GenericList visit for now; an assertion
will remind us to adjust things if we need the semantics in the
future.
Several pre-requisite cleanup patches made the reshuffling of
the various visitors easier; particularly the qmp input visitor.
Backports commit d9f62dde1303286b24ac8ce88be27e2b9b9c5f46 from qemu
As shown in the previous commit, the string input visitor was
treating bogus input as an empty list rather than an error.
Fix parse_str() to set errp, then the callers to exit early if
an error was reported.
Meanwhile, fix the testsuite to use the generated
qapi_free_int16List() instead of rolling our own, and to
validate the fixed behavior, while at the same time documenting
one more change that we'd like to make in a later patch (a
failed visit_start_list should guarantee a NULL pointer,
regardless of what things were on input).
Backports commit 74f24cb6306d065045d0e2215a7d10533fa59c57 from qemu
As mentioned in previous patches, we want to call visit_end_struct()
functions unconditionally, so that visitors can release resources
tied up since the matching visit_start_struct() without also having
to worry about error priority if more than one error occurs.
Even though error_propagate() can be safely used to ignore a second
error during cleanup caused by a first error, it is simpler if the
cleanup cannot set an error. So, split out the error checking
portion (basically, input visitors checking for unvisited keys) into
a new function visit_check_struct(), which can be safely skipped if
any earlier errors are encountered, and leave the cleanup portion
(which never fails, but must be called unconditionally if
visit_start_struct() succeeded) in visit_end_struct().
Generated code in qapi-visit.c has diffs resembling:
|@@ -59,10 +59,12 @@ void visit_type_ACPIOSTInfo(Visitor *v,
| goto out_obj;
| }
| visit_type_ACPIOSTInfo_members(v, obj, &err);
|- error_propagate(errp, err);
|- err = NULL;
|+ if (err) {
|+ goto out_obj;
|+ }
|+ visit_check_struct(v, &err);
| out_obj:
|- visit_end_struct(v, &err);
|+ visit_end_struct(v);
| out:
and in qapi-event.c:
@@ -47,7 +47,10 @@ void qapi_event_send_acpi_device_ost(ACP
| goto out;
| }
| visit_type_q_obj_ACPI_DEVICE_OST_arg_members(v, ¶m, &err);
|- visit_end_struct(v, err ? NULL : &err);
|+ if (!err) {
|+ visit_check_struct(v, &err);
|+ }
|+ visit_end_struct(v);
| if (err) {
| goto out;
Backports commit 15c2f669e3fb2bc97f7b42d1871f595c0ac24af8 from qemu
Tighten assertions in the QMP output visitor, so that:
- qmp_output_get_qobject() can only be called after pairing a
visit_end_* for every visit_start_* (rather than allowing it on
a partially built object)
- qmp_output_get_qobject() cannot be called unless at least one
visit_type_* or visit_start/visit_end pair has occurred since
creation/reset (the accidental return of NULL fixed by commit
ab8bf1d7 would have been much easier to diagnose)
- ensure that we are encountering the expected object or list
type, to provide protection against mismatched push(struct)/
pop(list) or push(list)/pop(struct), similar to the qmp-input
protection added in commit bdd8e6b5.
- ensure that except for the root, 'name' is non-null inside a
dict, and NULL inside a list (this may need changing later if
we add "name.0" support for better error messages for a list,
but for now it makes sure all users are at least consistent)
Backports commit 56a6f02b8ce1fe41a2a9077593e46eca7d98267d from qemu
Implement the new type_null() callback for the qmp input and
output visitors. While we don't yet have a use for this in QAPI
input (the generator will need some tweaks first), some
potential usages have already been discussed on the list.
Meanwhile, the output visitor could already output explicit null
via type_any, but this gives us finer control.
At any rate, it's easy to test that we can round-trip an explicit
null through manual use of visit_type_null() wrapped by a virtual
visit_start_struct() walk, even if we can't do the visit in a
QAPI type. Repurpose the test_visitor_out_empty test,
particularly since a future patch will tighten semantics to
forbid use of qmp_output_get_qobject() without at least one
intervening visit_type_*.
Backports commit 3df016f185521f8dfa5bd89168722887156405c7 from qemu
Right now, qmp-output-visitor happens to produce a QNull result
if nothing is actually visited between the creation of the visitor
and the request for the resulting QObject. A stronger protocol
would require that a QMP output visit MUST visit something. But
to still be able to produce a JSON 'null' output, we need a new
visitor function that states our intentions. Yes, we could say
that such a visit must go through visit_type_any(), but that
feels clunky.
So this patch introduces the new visit_type_null() interface and
its no-op interface in the dealloc visitor, and stubs in the
qmp visitors (the next patch will finish the implementation).
For the visitors that will not implement the callback, document
the situation. The code in qapi-visit-core unconditionally
dereferences the callback pointer, so that a segfault will inform
a developer if they need to implement the callback for their
choice of visitor.
Note that JSON has a primitive null type, with the single value
null; likewise with the QNull type for QObject; but for QAPI,
we just have the 'null' value without a null type. We may
eventually want to add more support in QAPI for null (most likely,
we'd use it via an alternate type that permits 'null' or an
object); but we'll create that usage when we need it.
Backports commit 3bc97fd5924561d92f32758c67eaffd2e4e25038 from qemu
The visitor interface for mapping between QObject/QemuOpts/string
and QAPI is scandalously under-documented, making changes to visitor
core, individual visitors, and users of visitors difficult to
coordinate. Among other questions: when is it safe to pass NULL,
vs. when a string must be provided; which visitors implement which
callbacks; the difference between concrete and virtual visits.
Correct this by retrofitting proper contracts, and document where some
of the interface warts remain (for example, we may want to modify
visit_end_* to require the same 'obj' as the visit_start counterpart,
so the dealloc visitor can be simplified). Later patches in this
series will tackle some, but not all, of these warts.
Add assertions to (partially) enforce the contract. Some of these
were only made possible by recent cleanup commits.
Backports commit adfb264c9ed04bfc694921b72173be8e29e90024 from qemu
After recent changes, the only remaining use of
visit_start_implicit_struct() is for allocating the space needed
when visiting an alternate. Since the term 'implicit struct' is
hard to explain, rename the function to its current usage. While
at it, we can merge the functionality of visit_get_next_type()
into the same function, making it more like visit_start_struct().
Generated code is now slightly smaller:
| {
| Error *err = NULL;
|
|- visit_start_implicit_struct(v, (void**) obj, sizeof(BlockdevRef), &err);
|+ visit_start_alternate(v, name, (GenericAlternate **)obj, sizeof(**obj),
|+ true, &err);
| if (err) {
| goto out;
| }
|- visit_get_next_type(v, name, &(*obj)->type, true, &err);
|- if (err) {
|- goto out_obj;
|- }
| switch ((*obj)->type) {
| case QTYPE_QDICT:
| visit_start_struct(v, name, NULL, 0, &err);
...
| }
|-out_obj:
|- visit_end_implicit_struct(v);
|+ visit_end_alternate(v);
| out:
| error_propagate(errp, err);
| }
Backports commit dbf11922622685934bfb41e7cf2be9bd4a0405c0 from qemu
In the QMP input visitor, visiting a list traverses two objects:
the QAPI GenericList of the caller (which gets advanced in
visit_next_list() regardless of this patch), and the QList input
that we are converting to QAPI. For consistency with QDict
visits, we want to consume elements from the input QList during
the visit_type_FOO() for the list element; that is, we want ALL
the code for consuming an input to live in qmp_input_get_object(),
rather than having it split according to whether we are visiting
a dict or a list. Making qmp_input_get_object() the common point
of consumption will make it easier for a later patch to refactor
visit_start_list() to cover the GenericList * head of a QAPI list,
and in turn will get rid of the 'first' flag (which lived in
qmp_input_next_list() pre-patch, and is hoisted to StackObject
by this patch).
This patch is therefore altering the post-condition use of 'entry',
while keeping what gets visited unchanged, from:
start_list next_list type_ELT ... next_list type_ELT next_list end_list
visits 1st elt last elt
entry NULL 1st elt 1st elt last elt last elt NULL gone
where type_ELT() returns (entry ? entry : 1st elt) and next_list() steps
entry
to this usage:
start_list next_list type_ELT ... next_list type_ELT next_list end_list
visits 1st elt last elt
entry 1st elt 1nd elt 2nd elt last elt NULL NULL gone
where type_ELT() steps entry and returns the old entry, and next_list()
leaves entry alone.
Backports commit fcf3cb21783b2dae3358fdbe7001cb2f74e0cedf from qemu
Don't embed the root of the visit into the stack of current
containers being visited. That way, we no longer get confused
on whether the first visit of a dictionary is to the dictionary
itself or to one of the members of the dictionary, based on
whether the caller passed name=NULL; and makes the QMP Input
visitor like other visitors where the value of 'name' is now
ignored on the root visit. (We may someday want to revisit
the rules on what 'name' should be on a top-level visit,
rather than just ignoring it; but that would be the topic of
another patch).
An audit of all qmp_input_visitor_new() call sites shows that
there were only two places where callers had previously been
visiting to a QDict with a non-NULL name to bypass a call to
visit_start_struct(), and those were fixed in prior patches.
Backports commit ce140b176920b5b65184020735a3c65ed3e9aeda from qemu
Commit e8316d7 mistakenly passed consume=true within
qmp_input_optional() when checking if an optional member was
present, but the mistake was silently ignored since the code
happily let us extract a member more than once. Fix
qmp_input_optional() to not consume anything, then tighten up
the input visitor to ensure that a member is consumed exactly
once (all generated code follows this pattern; and the new
assert will catch any hand-written code that tries to visit
the same key more than once).
Backports commit e5826a2fd727f0be54a81083f31fe02a275465cd from qemu
The following uses of a QMP input visitor should be strict
(that is, excess keys in QDict input should be flagged if not
converted to QAPI):
- Testsuite code unrelated to explicitly testing non-strict
mode (test-qmp-commands, test-visitor-serialization); since
we want more code to be strict by default, having more tests
of strict mode doesn't hurt
- Code used for cloning QAPI objects (replay-input.c,
qemu-sockets.c); we are reparsing a QObject just barely
produced by the qmp output visitor and which therefore should
not have any garbage, so while it is extra work to be strict,
it validates that our clone is correct [note that a later patch
series will simplify these two uses by creating an actual
clone visitor that is much more efficient than a
generate/reparse cycle]
- qmp_object_add(), which calls into user_creatable_add_type().
Since command line parsing for '-object' uses the same
user_creatable_add_type() through the OptsVisitor, and that is
always strict, we want to ensure that any nested dictionaries
would be treated the same in QMP and from the command line (I
don't actually know if such nested dictionaries exist). Note
that on this code change, strictness only matters for nested
dictionaries (if even possible), since we already flag excess
input at the top level during an earlier object_property_set()
on an unknown key, whether from QemuOpts:
$ ./x86_64-softmmu/qemu-system-x86_64 -nographic -nodefaults -qmp stdio -object secret,id=sec0,data=letmein,format=raw,foo=bar
qemu-system-x86_64: -object secret,id=sec0,data=letmein,format=raw,foo=bar: Property '.foo' not found
or from QMP:
$ ./x86_64-softmmu/qemu-system-x86_64 -nographic -nodefaults -qmp stdio
{"QMP": {"version": {"qemu": {"micro": 93, "minor": 5, "major": 2}, "package": ""}, "capabilities": []}}
{"execute":"qmp_capabilities"}
{"return": {}}
{"execute":"object-add","arguments":{"qom-type":"secret","id":"sec0","props":{"format":"raw","data":"letmein","foo":"bar"}}}
{"error": {"class": "GenericError", "desc": "Property '.foo' not found"}}
The only remaining uses of non-strict input visits are:
- QMP 'qom-set' (which eventually executes
object_property_set_qobject()) - mark it as something to revisit
in the future (I didn't want to spend any more time on this patch
auditing if we have any QOM dictionary properties that might be
impacted, and couldn't easily prove whether this code path is
shared with anything else).
- test-qmp-input-visitor: explicit tests of non-strict mode. If
we later get rid of users that don't need strictness, then this
test should be merged with test-qmp-input-strict
Backports relevant parts of commit 240f64b6dc3346d044d7beb7cc3a53668ce47384 from qemu
Rather than having two separate ways to create a QMP input
visitor, where the safer approach has the more verbose name,
it is better to consolidate things into a single function
where the caller must explicitly choose whether to be strict
or to ignore excess input. This patch is the strictly
mechanical conversion; the next patch will then audit which
uses can be made stricter.
Backports commit fc471c18d5d2ec713d5a019f9530398675494bc8 from qemu
Management of the top of stack was a bit verbose; creating a
temporary variable and adding some comments makes the existing
code more legible before the next few patches improve things.
No semantic changes other than asserting that we are always
visiting a QObject, and not a NULL value. In particular, the
check for 'name && qobject_type(qobj) == QTYPE_QDICT)' is a
bit overkill (a dict visit should always have a name); a later
patch revisits that, while this patch is only changing one
layer of indentation due to dropping 'if (qobj)'.
Backports commit b471d012e5d7bec1d2272738141e121b5581fcdf from qemu
Our existing input visitors were not very consistent on errors in a
function taking 'TYPE **obj'. These are start_struct(),
start_alternate(), type_str(), and type_any(). next_list() is
similar, but can't fail (see commit 08f9541). While all of them set
'*obj' to allocated storage on success, it was not obvious whether
'*obj' was guaranteed safe on failure, or whether it was left
uninitialized. But a future patch wants to guarantee that
visit_type_FOO() does not leak a partially-constructed obj back to
the caller; it is easier to implement this if we can reliably state
that input visitors assign '*obj' regardless of success or failure,
and that on failure *obj is NULL. Add assertions to enforce
consistency in the final setting of err vs. *obj.
The opts-visitor start_struct() doesn't set an error, but it
also was doing a weird check for 0 size; all callers pass in
non-zero size if obj is non-NULL.
The testsuite has at least one spot where we no longer need
to pre-initialize a variable prior to a visit; valgrind confirms
that the test is still fine with the cleanup.
A later patch will document the design constraint implemented
here.
Backports commit e58d695e6c3a5cfa0aa2fc91b87ade017ef28b05 from qemu
By sticking the next pointer first, we don't need a union with
64-bit padding for smaller types. On 32-bit platforms, this
can reduce the size of uint8List from 16 bytes (or 12, depending
on whether 64-bit ints can tolerate 4-byte alignment) down to 8.
It has no effect on 64-bit platforms (where alignment still
dictates a 16-byte struct); but fewer anonymous unions is still
a win in my book.
It requires visit_next_list() to gain a size parameter, to know
what size element to allocate; comparable to the size parameter
of visit_start_struct().
I debated about going one step further, to allow for fewer casts,
by doing:
typedef GenericList GenericList;
struct GenericList {
GenericList *next;
};
struct FooList {
GenericList base;
Foo *value;
};
so that you convert to 'GenericList *' by '&foolist->base', and
back by 'container_of(generic, GenericList, base)' (as opposed to
the existing '(GenericList *)foolist' and '(FooList *)generic').
But doing that would require hoisting the declaration of
GenericList prior to inclusion of qapi-types.h, rather than its
current spot in visitor.h; it also makes iteration a bit more
verbose through 'foolist->base.next' instead of 'foolist->next'.
Note that for lists of objects, the 'value' payload is still
hidden behind a boxed pointer. Someday, it would be nice to do:
struct FooList {
FooList *next;
Foo value;
};
for one less level of malloc for each list element. This patch
is a step in that direction (now that 'next' is no longer at a
fixed non-zero offset within the struct, we can store more than
just a pointer's-worth of data as the value payload), but the
actual conversion would be a task for another series, as it will
touch a lot of code.
Backports commit e65d89bf1a4484e0db0f3dc820a8b209f2fb1e8b from qemu
We have three classes of QAPI visitors: input, output, and dealloc.
Currently, all implementations of these visitors have one thing in
common based on their visitor type: the implementation used for the
visit_type_enum() callback. But since we plan to add more such
common behavior, in relation to documenting and further refining
the semantics, it makes more sense to have the visitor
implementations advertise which class they belong to, so the common
qapi-visit-core code can use that information in multiple places.
A later patch will better document the types of visitors directly
in visitor.h.
For this patch, knowing the class of a visitor implementation lets
us make input_type_enum() and output_type_enum() become static
functions, by replacing the callback function Visitor.type_enum()
with the simpler enum member Visitor.type. Share a common
assertion in qapi-visit-core as part of the refactoring.
Move comments in opts-visitor.c to match the refactored layout.
Backports commit 983f52d4b3f86fb9dc9f8b142132feb5a8723016 from qemu
QEMU 2.6 added support for the XSAVE family of instructions, which
includes the XSETBV instruction which allows setting the XCR0
register.
But, when booting Linux kernels with XSAVE support enabled, I was
getting very early crashes where the instruction pointer was set
to 0x3. I tracked it down to a jump instruction generated by this:
gen_jmp_im(s->pc - pc_start);
where s->pc is pointing to the instruction after XSETBV and pc_start
is pointing _at_ XSETBV. Subtract the two and you get 0x3. Whoops.
The fix is to replace this typo with the pattern found everywhere
else in the file when folks want to end the translation buffer.
Richard Henderson confirmed that this is a bug and that this is the
correct fix.
Backports commit 502c8e86ea07294067578292c6d402601c196019 from qemu
Recent versions of GCC report the following error when compiling
target-mips/helper.c:
qemu/target-mips/helper.c:542:9: warning: ‘memset’ used with length
equal to number of elements without multiplication by element size
[-Wmemset-elt-size]
Backports commit a525decfaa3449f1458ea2d7a06320cf46aebf3f from qemu
Commit b00c72180c36 ("target-mips: add PC, XNP reg numbers to RDHWR")
changed the rdhwr helpers to use check_hwrena() to check the register
being accessed is enabled in CP0_HWREna when used from user mode. If
that check fails an EXCP_RI exception is raised at the host PC
calculated with GETPC().
However check_hwrena() may not be fully inlined as the
do_raise_exception() part of it is common regardless of the arguments.
This causes GETPC() to calculate the address in the call in the helper
instead of the generated code calling the helper. No TB will be found
and the EPC reported with the resulting guest RI exception points to the
beginning of the TB instead of the RDHWR instruction.
We can't reliably force check_hwrena() to be inlined, and converting it
to a macro would be ugly, so instead pass the host PC in as an argument,
with each rdhwr helper passing GETPC(). This should avoid any dependence
on compiler behaviour, and in practice seems to ensure the full inlining
of check_hwrena() on x86_64.
This issue causes failures when running a MIPS KVM (trap & emulate)
guest in a MIPS QEMU TCG guest, as the inner guest kernel will do a
RDHWR of counter, which is disabled in the outer guest's CP0_HWREna by
KVM so it can emulate the inner guest's counter. The emulation fails and
the RI exception is passed to the inner guest.
Backports commit d96391c1ffeb30a0afa695c86579517c69d9a889 from qemu
For KVM to use Transparent Huge Pages (THP) we have to ensure that the
alignment of the userspace address of the KVM memory slot and the IPA
that the guest sees for a memory region have the same offset from the 2M
huge page size boundary.
One way to achieve this is to always align the IPA region at a 2M
boundary and ensure that the mmap alignment is also at 2M.
Unfortunately, we were only doing this for __arm__, not for __aarch64__,
so add this simple condition.
This fixes a performance regression using KVM/ARM on AArch64 platforms
that showed a performance penalty of more than 50%, introduced by the
following commit:
9fac18f (oslib: allocate PROT_NONE pages on top of RAM, 2015-09-10)
We were only lucky before the above commit, because we were allocating
large regions and naturally getting a 2M alignment on those allocations
then.
Backports commit ee1e0f8e5d3682c561edcdceccff72b9d9b16d8b from qemu
The TCG code is quite performance sensitive, but at the same time can
also be quite tricky. That is why asserts that can be enabled with the
--enable-debug-tcg configure option.
This used to work the following way:
| #include "config.h"
|
| ...
|
| #if !defined(CONFIG_DEBUG_TCG) && !defined(NDEBUG)
| /* define it to suppress various consistency checks (faster) */
| #define NDEBUG
| #endif
|
| ...
|
| #include <assert.h>
Since commit 757e725b (tcg: Clean up includes) "config.h" as been
replaced by "qemu/osdep.h" which itself includes <assert.h>. As a
consequence the assertions are always enabled, even when using
--disable-debug-tcg, causing a performance regression, especially on
targets with many registers. For instance on qemu-system-ppc the
speed difference is about 15%.
tcg_debug_assert is controlled directly by CONFIG_DEBUG_TCG and already
uses in some places. This patch replaces all the calls to assert into
calss to tcg_debug_assert.
Backports commit eabb7b91b36b202b4dac2df2d59d698e3aff197a from qemu
Accoding the chapter 7.6 Trap Processing of the SPARC Architecture Manual v9,
the Trap Based Address Register is not modified as a trap is taken.
This fix allows booting FreeBSD-10.3-RELEASE-sparc64.
Backports commit de5f1077446ca455342db149737bdc395a7b9882 from qemu
ldstub [addr], reg incorrectly reads a signed byte from memory which causes
problems in the 32-bit Solaris mutex code. Here the byte value being read is
0xff which is incorrectly sign-extended to 0xffffffff before being written back
to the target register causing lock detection to behave incorrectly.
This fixes the intermittent hangs and MUTEX_HELD warnings issued to the
console when running 32-bit Solaris images under qemu-system-sparc.
With thanks to Joseph Dery for providing a condensed test image to consistently
reproduce the problem on demand, and Martin Husemann for allowing me access to
real hardware for comparison.
Backports commit 4553e10360a0713e31647220ed396942f9a6fca0 from qemu
Since 5e5f07e08 "TCG: Move translation block variables
to new context inside tcg_ctx: tb_ctx" on Feb 1 2013, compilation
of usermode + TB_DEBUG_CHECK has been broken. Fix it.
Backports commit 7e6bd36d61129feb7f667cb09ffec1b7b54b971c from qemu
Xiao Guangrong ran kvm-unit-tests on an actual machine with PKU and
found that it fails:
test pte.p pte.user pde.p pde.user pde.a pde.pse pkru.wd pkey=1 user write efer.nx cr4.pke: FAIL: error code 27 expected 7
Dump mapping: address: 0x123400000000
------L4: 2ebe007
------L3: 2ebf007
------L2: 8000000020000a5
(All failures are combinations of "pde.user pde.p pkru.wd pkey=1",
plus either "pde.pse" or "pte.p pte.user", plus one of "user cr0.wp",
"cr0.wp" or "user", plus unimportant bits such as accessed/dirty or
efer.nx).
So PFEC.PKEY is set even if the ordinary check failed (which it did
because pde.w is zero). Adjust QEMU to match behavior of silicon.
Backports commit 44d066a2f770ee9d61fd1c2a609bdf2a994dfdf7 from qemu
The MIPS TCG backend is the only one to have
tcg_target_reg_alloc_order[] elements of type TCGReg rather than int.
This resulted in commit 91478cefaaf2 ("tcg: Allocate indirect_base
temporaries in a different order") breaking the build on MIPS since the
type differed from indirect_reg_alloc_order[]:
tcg/tcg.c:1725:44: error: pointer type mismatch in conditional expression [-Werror]
order = rev ? indirect_reg_alloc_order : tcg_target_reg_alloc_order;
^
Make it an array of ints to fix the build and match other architectures.
Backports commit 2dc7553d0c0a3915c649e1a91b0f0be70b4674b3 from qemu
In order to simplify arguments of function, introduce a new struct
named X86CPUTopoInfo.
Backports commit ed256144cd6f0ca2ff59fc3fc8dca547506f433b from qemu
Move the architecture agnostic function prototypes for exec.c out of
cputlb.h to exec-all.h. This allows hiding of the arch specific
cputlb.h from exec.c which should be getting close to having no
architecture specifics. Prepares support for multi-arch, which will have
a minimal cpu.h that services exec.c but not cputlb.h.
Backports commit dfccc7602374c9fd3b083208b552d62daa244811 from qemu
To prepare for multi-arch, cputlb.c should only have awareness of one
single architecture. This means it should not have access to the full
CPU lists which may be heterogeneous. Instead, push the CPU_LOOP() up
to the one and only caller in exec.c.
Backports commit 9a13565d52bfd321934fb44ee004bbaf5f5913a8 from qemu
The last two arguments to these functions are the last and first bit to
check relative to the base. The code was using incorrectly the first
bit and the number of bits. Fix this in cpu_physical_memory_get_dirty
and cpu_physical_memory_all_dirty. This requires a few changes in the
iteration; change the code in cpu_physical_memory_set_dirty_range to
match.
Backports commit 88c73d16ad1b6c22a2ab082064d0d521f756296a from qemu
The __atomic primitives have been available since GCC 4.7 and provide
a richer interface for describing memory ordering requirements. As a
bonus by using the primitives instead of hand-rolled functions we can
use tools such as the ThreadSanitizer which need the use of well
defined APIs for its analysis.
If we have __ATOMIC defines we exclusively use the __atomic primitives
for all our atomic access. Otherwise we fall back to the mixture of
__sync and hand-rolled barrier cases.
Backports commit a0aa44b488b3601415d55041e4619aef5f3a4ba8 from qemu
__atomic_thread_fence does not include a compiler barrier; in the
C++11 memory model, fences take effect in combination with other
atomic operations. GCC implements this by making __atomic_load and
__atomic_store access memory as if the pointer was volatile, and
leaves no trace whatsoever of acquire and release fences in the
compiler's intermediate representation.
In QEMU, we want memory barriers to act on all memory, but at the same
time we would like to use __atomic_thread_fence for portability reasons.
Add compiler barriers manually around the __atomic_thread_fence.
Backports commit 3bbf572345c65813f86a8fc434ea1b23beb08e16 from qemu
Although accesses to ram_list.dirty_memory[] use atomics so multiple
threads can safely dirty the bitmap, the data structure is not fully
thread-safe yet.
This patch handles the RAM hotplug case where ram_list.dirty_memory[] is
grown. ram_list.dirty_memory[] is change from a regular bitmap to an
RCU array of pointers to fixed-size bitmap blocks. Threads can continue
accessing bitmap blocks while the array is being extended. See the
comments in the code for an in-depth explanation of struct
DirtyMemoryBlocks.
I have tested that live migration with virtio-blk dataplane works.
Backports commit 5b82b703b69acc67b78b98a5efc897a3912719eb from qemu
Move the ALIAS tag from VTCR_EL2 to VTCR so that we migrate the
64-bit version, as is usual. (This has no particular effect now
unless the guest wrote to the high RES0 bits of VTCR_EL2.)
Add a comment about why it's OK that we don't have the various
accessor functions that the EL1 TCR regdefs do.
Backports commit bf06c1123a427fefc2cf9cf8019578eafc19eb6f from qemu
The regdefs for the ESR_EL2 and ESR_EL3 system registers should not
be marked as ARM_CP_ALIAS, because these are the master copies; the
DFSR regdef in vmsa_pmsa_cp_reginfo[] is marked as an alias.
Remove the ALIAS tags so that these registers are correctly migrated.
Backports commit 094a7d0b9d10812d06be2c5c19288cee4603c693 from qemu
The regdef for SCTRL_EL3 was incorrectly marked as being an
ARM_CP_ALIAS, with the remark that this was because the 32-bit
definition would take care of reset and migration. However the
intention for banked registers as documented in the comment in
add_cpreg_to_hashtable() is:
* 2) If ARMv8 is enabled then we can count on a 64-bit version
* taking care of the secure bank. This requires that separate
* 32 and 64-bit definitions are provided.
and so it marks the 32-bit secure banked version as an alias.
This results in the sctlr_s/sctlr_el[3] field never being reset
or migrated for a 64-bit CPU with EL3 enabled.
Fix this by removing the ARM_CP_ALIAS annotation from SCTLR_EL3.
Since this means it now needs a real reset value, move the regdef
into the same place that we define the 32-bit SCTLR.
Backports commit e24fdd238a159d830a9a65dd9b08f80fba9b9e06 from qemu
MIPS Release 6 and MIPS SIMD Architecture make it mandatory to have IEEE
754-2008 FPU which is indicated by CP1 FIR.HAS2008, FCSR.ABS2008 and
FCSR.NAN2008 bits set to 1.
In QEMU we still keep these bits cleared as there is no 2008-NaN support.
However, this now causes problems preventing from running R6 Linux with
the v4.5 kernel. Kernel refuses to execute 2008-NaN ELFs on a CPU
whose FPU does not support 2008-NaN encoding:
(...)
VFS: Mounted root (ext4 filesystem) readonly on device 8:0.
devtmpfs: mounted
Freeing unused kernel memory: 256K (ffffffff806f0000 - ffffffff80730000)
request_module: runaway loop modprobe binfmt-464c
Starting init: /sbin/init exists but couldn't execute it (error -8)
request_module: runaway loop modprobe binfmt-464c
Starting init: /bin/sh exists but couldn't execute it (error -8)
Kernel panic - not syncing: No working init found. Try passing init= option to kernel. See Linux Documentation/init.txt for guidance.
Therefore always indicate presence of 2008-NaN support in R6 as well as in
R5+MSA CPUs, even though this feature is not yet supported by MIPS in QEMU.
Backports commit ba5c79f26221c0fd7139c883a34a4e75d993f732 from qemu
There is no particular reason to keep these functions in the header.
Suggested by Paolo.
Backports commit 99affd1d5bd4e396ecda50e53dfbc5147fa1313d from qemu
The MAAR register is a read/write register included in Release 5
of the architecture that defines the accessibility attributes of
physical address regions. In particular, MAAR defines whether an
instruction fetch or data load can speculatively access a memory
region within the physical address bounds specified by MAAR.
As QEMU doesn't do speculative access, hence this patch only
provides ability to access the registers.
Backports commit f6d4dd810983fdf3d1c9fb81838167efef63d1c8 from qemu
Indicate that in the MIPS64R6-generic CPU the memory-mapped
Global Configuration Register Space is implemented.
Backports commit a9a95061715ca09abff56a3f239f704c410912c2 from qemu
Physical base address for the memory-mapped Coherency Manager Global
Configuration Register space.
The MIPS default location for the GCR_BASE address is 0x1FBF_8.
This register only exists if Config3 CMGCR is set to one.
Backports commit c870e3f52cac0c8a4a1377398327c4ff20d49d41 from qemu
To avoid cluttering the code with #ifdef legs we wrap up the print
statements into a tlb_debug() macro. As access to the virtual TLB can
get quite heavy defining DEBUG_TLB_LOG will ensure all the logs go to
the qemu_log target of CPU_LOG_MMU instead of stderr. This remains
compile time optional as these debug statements haven't been considered
for usefulness for user visible logging.
I've also removed DEBUG_TLB_CHECK which wasn't used.
Backports commit 8526e1f4e418443a4d6ed0714487e47d45ef9c98 from qemu
qemu-log: dfilter-ise exec, out_asm, op and opt_op
This ensures the code generation debug code will honour -dfilter if set.
For the "exec" tracing I've added a new inline macro for efficiency's
sake.
Backports commit d977e1c2dbc9e63454b2000f91954d02543bf43b from qemu
When debugging big programs or system emulation sometimes you want both
the verbosity of cpu,exec et all but don't want to generate lots of logs
for unneeded stuff. This patch adds a new option -dfilter which allows
you to specify interesting address ranges in the form:
-dfilter 0x8000..0x8fff,0xffffffc000080000+0x200,...
Then logging code can use the new qemu_log_in_addr_range() function to
decide if it will output logging information for the given range.
Backports commit 3514552e04388d8e7686bcf89efd022e892acb5b from qemu
Improve the TB execution logging so that it is easier to identify
what is happening from trace logs:
* move the "Trace" logging of executed TBs into cpu_tb_exec()
so that it is emitted if and only if we actually execute a TB,
and for consistency for the CPU state logging
* log when we link two TBs together via tb_add_jump()
* log when cpu_tb_exec() returns early from a chain of TBs
The new style logging looks like this:
Trace 0x7fb7cc822ca0 [ffffffc0000dce00]
Linking TBs 0x7fb7cc822ca0 [ffffffc0000dce00] index 0 -> 0x7fb7cc823110 [ffffffc0000dce10]
Trace 0x7fb7cc823110 [ffffffc0000dce10]
Trace 0x7fb7cc823420 [ffffffc000302688]
Trace 0x7fb7cc8234a0 [ffffffc000302698]
Trace 0x7fb7cc823520 [ffffffc0003026a4]
Trace 0x7fb7cc823560 [ffffffc0000dce44]
Linking TBs 0x7fb7cc823560 [ffffffc0000dce44] index 1 -> 0x7fb7cc8235d0 [ffffffc0000dce70]
Trace 0x7fb7cc8235d0 [ffffffc0000dce70]
Stopped execution of TB chain before 0x7fb7cc8235d0 [ffffffc0000dce70]
Trace 0x7fb7cc8235d0 [ffffffc0000dce70]
Trace 0x7fb7cc822fd0 [ffffffc0000dd52c]
Backports commit 1a830635229e14c403600167823ea6b3b79d3097 from qemu
Make qemu_log_mask() a macro which only calls the function to
do the actual work if the logging is enabled. This avoids making
a function call in possible fast paths where logging is disabled.
Backports commit 7ee606230e6b7645d92365d9b39179368e83ac54 from qemu
My later debugging patches need access to the origin PC which is held in
the TranslationBlock structure. Pass down the whole structure as it also
holds the information about the code start point.
Backports commit 5bd2ec3d7b47b2252745882795d79aef36380fb7 from qemu
Move declarations out of qemu-common.h for functions declared in
utils/ files: e.g. include/qemu/path.h for utils/path.c.
Move inline functions out of qemu-common.h and into new files (e.g.
include/qemu/bcd.h)
Backports commit f348b6d1a53e5271cf1c9f9acc4646b4b98c1771 from qemu
Not only it makes sense, but it gets rid of checkpatch warning:
WARNING: consider using qemu_strtosz in preference to strtosz
Also remove get rid of tabs to please checkpatch.
Backports commit 4677bb40f809394bef5fa07329dea855c0371697 from qemu
This patch replaces get_ticks_per_sec() calls with the macro
NANOSECONDS_PER_SECOND. Also, as there are no callers, get_ticks_per_sec()
is then removed. This replacement improves the readability and
understandability of code.
For example,
timer_mod(fdctrl->result_timer,
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (get_ticks_per_sec() / 50));
NANOSECONDS_PER_SECOND makes it obvious that qemu_clock_get_ns
matches the unit of the expression on the right side of the plus.
Backports commit 73bcb24d932912f8e75e1d88da0fc0ac6d4bce78 from qemu
qemu-common.h should only be included by .c files. Its file comment
explains why: "No header file should depend on qemu-common.h, as this
would easily lead to circular header dependencies."
One of the reasons for headers to include it is QEMU_ALIGN_UP() and
QEMU_ALIGN_DOWN(). Move them next to ROUND_UP() in qemu/osdep.h, to
facilitate removing these ill-advised includes later on.
Backports commit e07e540aaa08718c9ff8213067a3dcef31b3e313 from qemu
qemu-common.h should only be included by .c files. Its file comment
explains why: "No header file should depend on qemu-common.h, as this
would easily lead to circular header dependencies."
One of the reasons for headers to include it is HOST_LONG_BITS. Move
that to its more natural home qemu/osdep.h, to facilitate removing
these ill-advised includes later on.
This also lets us use HOST_LONG_BITS in bswap.h instead of duplicating
its definition there to avoid cyclic inclusion.
Backports commit a8139632161d7546218b696cada0a4f64cc78fb7 from qemu
Commit 57cb38b included qapi/error.h into qemu/osdep.h to get the
Error typedef. Since then, we've moved to include qemu/osdep.h
everywhere. Its file comment explains: "To avoid getting into
possible circular include dependencies, this file should not include
any other QEMU headers, with the exceptions of config-host.h,
compiler.h, os-posix.h and os-win32.h, all of which are doing a
similar job to this file and are under similar constraints."
qapi/error.h doesn't do a similar job, and it doesn't adhere to
similar constraints: it includes qapi-types.h. That's in excess of
100KiB of crap most .c files don't actually need.
Add the typedef to qemu/typedefs.h, and include that instead of
qapi/error.h. Include qapi/error.h in .c files that need it and don't
get it now. Include qapi-types.h in qom/object.h for uint16List.
Update scripts/clean-includes accordingly. Update it further to match
reality: replace config.h by config-target.h, add sysemu/os-posix.h,
sysemu/os-win32.h. Update the list of includes in the qemu/osdep.h
comment quoted above similarly.
This reduces the number of objects depending on qapi/error.h from "all
of them" to less than a third. Unfortunately, the number depending on
qapi-types.h shrinks only a little. More work is needed for that one.
Backports commit da34e65cb4025728566d6504a99916f6e7e1dd6a from qemu
As soon as setjmp.h is included from qemu/osdep.h, those old include
statements are no longer needed.
Add also setjmp.h to the list in scripts/clean-includes.
Backports commit 8ff98f1ed2f50cd05c3c5027c7efdf69859ec664 from qemu
setjmp must be declared before sysemu/os-win32.h
because it is redefined there for 64 bit Windows.
Backports commit e89fdafb58038038e3ccb860c5e1068ba063bac8 from qemu
Now that the generator supports it, we might as well use an
anonymous base rather than breaking out a single-use Base
structure, for all three of our current QMP flat unions.
Oddly enough, this change does not affect the resulting
introspection output (because we already inline the members of
a base type into an object, and had no independent use of the
base type reachable from a command).
The case_whitelist now has to list the name of an implicit
type; which is not too bad (consider it a feature if it makes
it harder for developers to make the whitelist grow :)
Backports commit 3666a97f78704b941c360dc917acb14c8774eca7 from qemu
Rather than requiring all flat unions to explicitly create
a separate base struct, we can allow the qapi schema to specify
the common members via an inline dictionary. This is similar to
how commands can specify an inline anonymous type for its 'data'.
We already have several struct types that only exist to serve as
a single flat union's base; the next commit will clean them up.
In particular, this patch's change to the BlockdevOptions example
in qapi-code-gen.txt will actually be done in the real QAPI schema.
Now that anonymous bases are legal, we need to rework the
flat-union-bad-base negative test (as previously written, it
forms what is now valid QAPI; tweak it to now provide coverage
of a new error message path), and add a positive test in
qapi-schema-test to use an anonymous base (making the integer
argument optional, for even more coverage).
Note that this patch only allows anonymous bases for flat unions;
simple unions are already enough syntactic sugar that we do not
want to burden them further. Meanwhile, while it would be easy
to also allow an anonymous base for structs, that would be quite
redundant, as the members can be put right into the struct
instead.
Backports commit ac4338f8eb783fd421aae492ca262a586918471e from qemu
Simple unions were carrying a special case that hid their 'data'
QMP member from the resulting C struct, via the hack method
QAPISchemaObjectTypeVariant.simple_union_type(). But by using
the work we started by unboxing flat union and alternate
branches, coupled with the ability to visit the members of an
implicit type, we can now expose the simple union's implicit
type in qapi-types.h:
| struct q_obj_ImageInfoSpecificQCow2_wrapper {
| ImageInfoSpecificQCow2 *data;
| };
|
| struct q_obj_ImageInfoSpecificVmdk_wrapper {
| ImageInfoSpecificVmdk *data;
| };
...
| struct ImageInfoSpecific {
| ImageInfoSpecificKind type;
| union { /* union tag is @type */
| void *data;
|- ImageInfoSpecificQCow2 *qcow2;
|- ImageInfoSpecificVmdk *vmdk;
|+ q_obj_ImageInfoSpecificQCow2_wrapper qcow2;
|+ q_obj_ImageInfoSpecificVmdk_wrapper vmdk;
| } u;
| };
Doing this removes asymmetry between QAPI's QMP side and its
C side (both sides now expose 'data'), and means that the
treatment of a simple union as sugar for a flat union is now
equivalent in both languages (previously the two approaches used
a different layer of dereferencing, where the simple union could
be converted to a flat union with equivalent C layout but
different {} on the wire, or to an equivalent QMP wire form
but with different C representation). Using the implicit type
also lets us get rid of the simple_union_type() hack.
Of course, now all clients of simple unions have to adjust from
using su->u.member to using su->u.member.data; while this touches
a number of files in the tree, some earlier cleanup patches
helped minimize the change to the initialization of a temporary
variable rather than every single member access. The generated
qapi-visit.c code is also affected by the layout change:
|@@ -7393,10 +7393,10 @@ void visit_type_ImageInfoSpecific_member
| }
| switch (obj->type) {
| case IMAGE_INFO_SPECIFIC_KIND_QCOW2:
|- visit_type_ImageInfoSpecificQCow2(v, "data", &obj->u.qcow2, &err);
|+ visit_type_q_obj_ImageInfoSpecificQCow2_wrapper_members(v, &obj->u.qcow2, &err);
| break;
| case IMAGE_INFO_SPECIFIC_KIND_VMDK:
|- visit_type_ImageInfoSpecificVmdk(v, "data", &obj->u.vmdk, &err);
|+ visit_type_q_obj_ImageInfoSpecificVmdk_wrapper_members(v, &obj->u.vmdk, &err);
| break;
| default:
| abort();
Backports commit 32bafa8fdd098d52fbf1102d5a5e48d29398c0aa from qemu
Now that we are always bulk-initializing a QAPI C struct to 0
(whether by g_malloc0() or by 'Type arg = {0};'), we no longer
have any clients of c_null() in the generator for per-element
initialization. This patch is easy enough to revert if we find
a use in the future, but in the present, get rid of the dead code.
Backports commit 861877a0dd0a8e1bdbcc9743530f4dc9745a736a from qemu
Commit 82ca8e46 noticed that we had multiple implementations of
visiting every member of a struct, and consolidated it into
gen_visit_fields() (now gen_visit_members()) with enough
parameters to cater to slight differences between the clients.
But recent exposure of implicit types has meant that we are now
down to a single use of that method, so we can clean up the
unused conditionals and just inline it into the remaining
caller: gen_visit_object_members().
Likewise, gen_err_check() no longer needs optional parameters,
as the lone use of non-defaults was via gen_visit_members().
No change to generated code.
Backports commit 12f254fd5f98717d17f079c73500123303b232da from qemu
Rather than generate inline per-member visits, take advantage
of the 'visit_type_FOO_members()' function for emitting events.
This is possible now that implicit structs can be visited like
any other. Generated code shrinks accordingly; by initializing
a struct based on parameters, through a new gen_param_var()
helper, like:
|@@ -338,6 +250,9 @@ void qapi_event_send_block_job_error(con
| QMPEventFuncEmit emit = qmp_event_get_func_emit();
| QmpOutputVisitor *qov;
| Visitor *v;
|+ q_obj_BLOCK_JOB_ERROR_arg param = {
|+ (char *)device, operation, action
|+ };
|
| if (!emit) {
| return;
@@ -351,19 +266,7 @@ void qapi_event_send_block_job_error(con
| if (err) {
| goto out;
| }
|- visit_type_str(v, "device", (char **)&device, &err);
|- if (err) {
|- goto out_obj;
|- }
|- visit_type_IoOperationType(v, "operation", &operation, &err);
|- if (err) {
|- goto out_obj;
|- }
|- visit_type_BlockErrorAction(v, "action", &action, &err);
|- if (err) {
|- goto out_obj;
|- }
|-out_obj:
|+ visit_type_q_obj_BLOCK_JOB_ERROR_arg_members(v, ¶m, &err);
| visit_end_struct(v, err ? NULL : &err);
Notice that the initialization of 'param' has to cast away const
(just as the old gen_visit_members() had to do): we can't change
the signature of the user function (which uses 'const char *'), but
have to assign it to a non-const QAPI object (which requires
'char *').
While touching this, document with a FIXME comment that there is
still a potential collision between QMP members and our choice of
local variable names within qapi_event_send_FOO().
This patch also paves the way for some followup simplifications
in the generator, in subsequent patches.
Backports commit 0949e95b48e30715e157cabbc59dcb0ed912d3ff from qemu
The original choice of ':obj-' as the prefix for implicit types
made it obvious that we weren't going to clash with any user-defined
names, which cannot contain ':'. But now we want to create structs
for implicit types, to get rid of special cases in the generators,
and our use of ':' in implicit names needs a tweak to produce valid
C code.
We could transliterate ':' to '_', except that C99 mandates that
"identifiers that begin with an underscore are always reserved for
use as identifiers with file scope in both the ordinary and tag name
spaces". So it's time to change our naming convention: we can
instead use the 'q_' prefix that we reserved for ourselves back in
commit 9fb081e0. Technically, since we aren't planning on exposing
the empty type in generated code, we could keep the name ':empty',
but renaming it to 'q_empty' makes the check for startswith('q_')
cover all implicit types, whether or not code is generated for them.
As long as we don't declare 'empty' or 'obj' ticklish, it shouldn't
clash with c_name() prepending 'q_' to the user's ticklish names.
Backports commit 7599697c66d22ff4c859ba6ccea30e6a9aae6b9b from qemu
We already have several places that want to visit all the members
of an implicit object within a larger context (simple union variant,
event with anonymous data, command with anonymous arguments struct);
and will be adding another one soon (the ability to declare an
anonymous base for a flat union). Having a C struct declared for
these implicit types, along with a visit_type_FOO_members() helper
function, will make for fewer special cases in our generator.
We do not, however, need qapi_free_FOO() or visit_type_FOO()
functions for implicit types, because they should not be used
directly outside of the generated code. This is done by adding a
conditional in visit_object_type() for both qapi-types.py and
qapi-visit.py based on the object name. The comparison of
"name.startswith('q_')" is a bit hacky (it's basically duplicating
what .is_implicit() already uses), but beats changing the signature
of the visit_object_type() callback to pass a new 'implicit' flag.
The hack should be temporary: we are considering adding a future
patch that consolidates the narrow visit_object_type(..., base,
local_members, variants) and visit_object_type_flat(...,
all_members, variants) [where different sets of information are
already broken out, and the QAPISchemaObjectType is no longer
available] into a broader visit_object_type(obj_type) [where the
visitor can query the needed fields from obj_type directly].
Also, now that we WANT to output C code for implicits, we no longer
need the visit_needed() filter, leaving 'q_empty' as the only object
still needing a special case. Remember, 'q_empty' is the only
built-in generated object, which means that without a special case
it would be emitted in multiple files (the main qapi-types.h and in
qga-qapi-types.h) causing compilation failure due to redefinition.
But since it has no members, it's easier to just avoid an attempt to
visit that particular type; since gen_object() is called recursively,
we also prime the objects_seen set to cover any recursion into the
empty type.
The patch relies on the changed naming of implicit types in the
previous patch. It is a bit unfortunate that the generated struct
names and visit_type_FOO_members() don't match normal naming
conventions, but it's not too bad, since they will only be used in
generated code.
The generated code grows substantially in size: the implicit
'-wrapper' types must be emitted in qapi-types.h before any union
can include an unboxed member of that type. Arguably, the '-args'
types could be emitted in a private header for just qapi-visit.c
and qmp-marshal.c, rather than polluting qapi-types.h; but adding
complexity to the generator to split the output location according
to role doesn't seem worth the maintenance costs.
Backports commit 7ce106a96feee4d46bfcdb47127b0935804c9357 from qemu
We started moving away from the use of the 'void *data' member
in the C union corresponding to a QAPI union back in commit
544a373; recent commits have gotten rid of other uses. Now
that it is completely unused, we can remove the member itself
as well as the FIXME comment. Update the testsuite to drop the
negative test union-clash-data.
Backports commit 48eb62a74fc2d6b0ae9e5f414304a85cfbf33066 from qemu
Dan Berrange reported a case where he needs to work with a
QCryptoBlockOptions union type using the OptsVisitor, but only
visit one of the branches of that type (the discriminator is not
visited directly, but learned externally). When things were
boxed, it was easy: just visit the variant directly, which took
care of both allocating the variant and visiting its members, then
store that pointer in the union type. But now that things are
unboxed, we need a way to visit the members without allocation,
done by exposing visit_type_FOO_members() to the user.
Before the patch, we had quite a bit of code associated with
object_members_seen to make sure that a declaration of the helper
was in scope before any use of the function. But now that the
helper is public and declared in the header, the .c file no
longer needs to worry about topological sorting (the helper is
always in scope), which leads to some nice cleanups.
Backports commit 4d91e9115cc6700113e772b19d1f39bbcf345977 from qemu
C types and JSON objects don't have fields, but members. We
shouldn't gratuitously invent terminology. This patch is a
strict renaming of static genarated functions, plus the naming
of the dummy filler member for empty structs, before the next
patch exposes some of that naming to the rest of the code base.
Backports commit c81200b01422783cd29796ef4ccc275d05f9ce67 from qemu
C types and JSON objects don't have fields, but members. We
shouldn't gratuitously invent terminology. This patch is a
strict renaming of generator code internals (including testsuite
comments), before later patches rename C interfaces.
No change to generated code with this patch.
Backports commit 14f00c6c492488381a513c3816b15794446231a0 from qemu
QAPISchemaType.c_type() is a bit awkward: it takes two optional
boolean flags is_param and is_unboxed, and they should never both
be True.
Add a new method for each of the flags, and drop the flags from
c_type().
Most callers pass no flags; they remain unchanged.
One caller passes is_param=True; call the new .c_param_type()
instead.
One caller passes is_unboxed=True, except for simple union types.
This is actually an ugly special case that will go away soon, so
until then, we now have to call either .c_type() or the new
.c_unboxed_type(). Tolerable in the interim.
It requires slightly more Python, but is arguably easier to read.
Backports commit 4040d995e49c5b818be79e50a18c1bf8d2354d12 from qemu
We are getting closer to the point where we could use one union
as the base or variant type within another union type (as long
as there are no collisions between any possible combination of
member names allowed across all discriminator choices). But
until we get to that point, it is worth asserting that variants
are not present in places where we are not prepared to handle
them: when exploding a type into a parameter list, we do not
expect variants. The qapi.py code is already checking this,
via the older check_type() method; but someday we hope to get
rid of that and move checking into QAPISchema*.check(). The
two asserts added here make sure any refactoring still catches
problems, and makes it locally obvious why we can iterate over
only type.members without worrying about type.variants.
Backports commit 29f6bd15eb8a55ed37b2a443f7275b3d134eb2b2 from qemu
Just specifying a custom string is simpler in basically all places that
used it, and in addition, specifying the BB or node name is something we
generally do not do in other error messages when opening a BDS, so we
should not do it here.
This changes the output for iotest 036 (to the better, in my opinion),
so the reference output needs to be changed accordingly.
Backports commit a55448b3681a880b77eaefe8b2c42912000cb481 from qemu
Qemu reports translation fault on 1st level instead of 0th level in case of
AArch64 address translation if the translation table walk is disabled or
the address is in the gap between the two regions.
Backports commit 1b4093ea6678ff79d3006db3d3abbf6990b4a59b from qemu
Starting with the ARMv7 Virtualization Extensions, the A32 and T32
instruction sets provide instructions "MSR (banked)" and "MRS
(banked)" which can be used to access registers for a mode other
than the current one:
* R<m>_<mode>
* ELR_hyp
* SPSR_<mode>
Implement the missing instructions.
Backports commit 8bfd0550be821cf27d71444e2af350de3c3d2ee3 from qemu
When &error_abort is passed in, the error reporting code
will print the current error message and then abort() the
process. Unfortunately at the time it aborts, we've not
yet appended the errno detail. This makes debugging certain
problems significantly harder as the log is incomplete.
Backports commit 20e2dec14954568848ad74e73aee9b3aeedd6584 from qemu
After reporting an error, ram_block_add was going on with the registration
of the RAMBlock. The visible effect is that it unlocked the ramlist
mutex twice.
Backports commit 39c350ee12e733070e63d64a21bd42607366ea99 from qemu
We discriminate here between opcodes that are illegal in the current
cpu mode or with illegal arguments (such as modrm.mod == 3) and
encodings that are unknown (such as an unimplemented isa extension).
Backports commit b9f9c5b41aab06479cb1695990b7cca98ef84fc7 from qemu
The patch in 7f0b714 was too simplistic, in that we wound up setting
the flag and then resetting it immediately in gen_eob.
Fixes the reported boot problem with Windows XP.
Backports commit f083d92c03e7a0741d2a9eba774a60d5a3ca772f from qemu
While ADDSEG will only be false in 16-bit mode for LEA, it can be
false even in other cases when 16-bit addresses are obtained via
the 67h prefix in 32-bit mode. In this case, gen_lea_v_seg forgets
to add a nonzero FS or GS base if CS/DS/ES/SS are all zero. This
case is pretty rare but happens when booting Windows 95/98, and
this patch fixes it.
The bug is visible since commit d6a291498, but it was introduced
together with gen_lea_v_seg and it probably could be reproduced
with a "addr16 gs movsb" instruction as early as in commit
ca2f29f555805d07fb0b9ebfbbfc4e3656530977.
Backports commit e2e02a820741ec4d96b8f313b06a2a7ed5e94fbd from qemu
In non-64-bit modes, the instruction always stores 16 bits.
But in 64-bit mode, when the destination is a register, the
instruction can write 32 or 64 bits.
Backports commit a657f79e32422634415c09f3f15c73d610297af5 from qemu
SMSW and LMSW accept register operands, but commit 1906b2a ("target-i386:
Rearrange processing of 0F 01", 2016-02-13) did not account for that.
Backports commit 880f8486503b32a29b653a3c0b3cfc5432012f38 from qemu
Under heavy workloads the lookup will likely end up with the same
MemoryRegionSection from last time. Using a pointer to cache the result,
like ram_list.mru_block, significantly reduces cost of
address_space_translate.
During address space topology update, as->dispatch will be reallocated
so the pointer is invalidated automatically.
Perf reports a visible drop on the cpu usage, because phys_page_find is
not called. Before:
2.35% qemu-system-x86_64 [.] phys_page_find
0.97% qemu-system-x86_64 [.] address_space_translate_internal
0.95% qemu-system-x86_64 [.] address_space_translate
0.55% qemu-system-x86_64 [.] address_space_lookup_region
After:
0.97% qemu-system-x86_64 [.] address_space_translate_internal
0.97% qemu-system-x86_64 [.] address_space_lookup_region
0.84% qemu-system-x86_64 [.] address_space_translate
Backports commit 729633c2bc30496073431584eb6e304776b4ebd4 from qemu
This will be shared by the next patch.
Also add a comment explaining the unobvious condition on "size.hi".
Backports commit 29cb533d8cbff1330717619780c2f1dfe764e003 from qemu
Currently the ObjectProperty iterator API works as follows:
ObjectPropertyIterator *iter;
iter = object_property_iter_init(obj);
while ((prop = object_property_iter_next(iter))) {
...
}
object_property_iter_free(iter);
This has the benefit that the ObjectPropertyIterator struct
can be opaque, but has the downside that callers need to
explicitly call a free function. It is also not in keeping
with iterator style used elsewhere in QEMU/GLib2.
This patch changes the API to use stack allocation instead:
ObjectPropertyIterator iter;
object_property_iter_init(&iter, obj);
while ((prop = object_property_iter_next(&iter))) {
...
}
Backports commit 7746abd8e9ee9db20c0b0fdb19504f163ba3cbea from qemu
When there are many instances of a given class, registering
properties against the instance is wasteful of resources. The
majority of objects have a statically defined list of possible
properties, so most of the properties are easily registerable
against the class. Only those properties which are conditionally
registered at runtime need be recorded against the klass.
Registering properties against classes also makes it possible
to provide static introspection of QOM - currently introspection
is only possible after creating an instance of a class, which
severely limits its usefulness.
This impl only supports simple scalar properties. It does not
attempt to allow child object / link object properties against
the class. There are ways to support those too, but it would
make this patch more complicated, so it is left as an exercise
for the future.
There is no equivalent to object_property_del() provided, since
classes must be immutable once they are defined.
Backports commit 16bf7f522a2ff68993f80631ed86254c71eaf5d4 from qemu
ARM GICv3 systems with large number of CPUs create lots of IRQ pins. Since
every pin is represented as a property, number of these properties becomes
very large. Every property add first makes sure there's no duplicates.
Traversing the list becomes very slow, therefore QEMU initialization takes
significant time (several seconds for e. g. 16 CPUs).
This patch replaces list with GHashTable, making lookup very fast. The only
drawback is that object_child_foreach() and object_child_foreach_recursive()
cannot add or remove properties during traversal, since GHashTableIter does
not have modify-safe version. However, the code seems not to modify objects
via these functions.
Backports commit b604a854e843505007c59d68112c654556102a20 from qemu
Commit ef701d7 screwed up handling of out-of-memory conditions.
Before the commit, we report the error and exit(1), in one place. The
commit lifts the error handling up the call chain some, to three
places. Fine. Except it uses &error_abort in these places, changing
the behavior from exit(1) to abort(), and thus undoing the work of
commit 3922825 "exec: Don't abort when we can't allocate guest
memory".
The previous two commits fixed one of the three places, another one
was fixed in commit 33e0eb5. This commit fixes the third one.
Backports commit 0bdaa3a429c6d07cd437b442a1f15f70be1addaa from qemu
Just specifying ops = NULL in some cases can be more convenient than having
two functions.
Backports commit 6d6d2abf2c2e52c0f404d0a31a963e945b0cc7ad from qemu
memory_region_present() leaks a reference to a MemoryRegion in the
case "mr == container". While fixing it, avoid reference counting
altogether for memory_region_present(), by using RCU only.
The return value could in principle be already invalid immediately
after memory_region_present returns, but presumably the caller knows
that and it's using memory_region_present to probe for devices that
are unpluggable, or something like that. The RCU critical section
is needed anyway, because it protects as->current_map.
Backports commit c6742b14fe7352059cd4954a356a8105757af31b from qemu
Very often the owner of the aliased region is the same as the owner of the alias
region itself. When this happens, the reference count can never go back to 0 and
the owner is leaked. This is for example breaking hot-unplug of virtio-pci
devices (the device cannot be plugged back again with the same id).
Another common use for alias is to transform the system I/O address space
into an MMIO regions; in this case the aliased region never dies, so there
is no problem. Otherwise the owner is always the same for aliasing
and aliased region.
I checked all calls to memory_region_init_alias introduced after commit
dfde4e6 (memory: add ref/unref calls, 2013-05-06) and they do not need the
reference in order to keep the owner of the aliased region alive.
Backports commit 52c91dac6bd891656f297dab76da51fc8bc61309 from qemu
All references to mr->ram_addr are replaced by
memory_region_get_ram_addr(mr) (except for a few assertions that are
replaced with mr->ram_block).
Backports commit 8e41fb63c5bf29ecabe0cee1239bf6230f19978a from qemu
We don't force "const" qualifiers with pointers in QEMU, but it's still
good to keep a clean function interface. Assigning to mr->ram_block is
in this sense ugly - one initializer mutating its owning object's state.
Move it to memory_region_init_*, where mr->ram_addr is assigned.
Backports commit 0a75601853c00f3729fa62c49ec0d4bb1e3d9bc1 from qemu
Previously we return RAMBlock.offset; now return the pointer to the
whole structure.
ram_block_add returns void now, error is completely passed with errp.
Backports commit 528f46af6ecd1e300db18684969104d4067b867b from qemu
Commit cbc0326b6fb9 caused SRS instructions executed from Secure
EL1 to trap to EL3 even if the specified mode was not monitor mode.
According to the ARMv8 Architecture reference manual [F6.1.203], ALL
of the following conditions need to be met for SRS to trap to EL3:
* It is executed at Secure PL1.
* The specified mode is monitor mode.
* EL3 is using AArch64.
Correct the condition governing the trap to EL3 to check the
specified mode.
Backports commit ba63cf47a93041137a94e86b7d0cd87fc896949b from qemu
System emulation only has a little-endian target; BE32 mode
is implemented by adjusting the low bits of the address
for every byte and halfword load and store. 64-bit accesses
flip the low and high words.
Backports commit e334bd3190f6c4ca12f1d40d316dc471c70009ab from qemu
Since this is not a high-performance path, just use a helper to
flip the E bit and force a lookup in the hash table since the
flags have changed.
Backports commit 9886ecdf31165de2d4b8bccc1a220bd6ac8bc192 from qemu
Introduce a tbflags for endianness, set based upon the CPUs current
endianness. This in turn propagates through to the disas endianness
flag.
Backports commit 91cca2cda9823b1e7a049cb308a05104b5076cba from qemu
Introduce a disas flag for setting the CPU data endianness. This allows
control of the endianness from the CPU state rather than hard-coding it
to TARGET_WORDS_BIGENDIAN.
Backports commit dacf0a2ff7d39ab12bd90f2f5496a3889facd54a from qemu
Implement SCTLR.EE bit which controls data endianess for exceptions
and page table translations. SCTLR.EE is mirrored to the CPSR.E bit
on exception entry.
Backports commit 73462dddf670c32c45c8ea359658092b0365b2d4 from qemu
endian with address manipulations on subword accesses (to give the
illusion of BE). But user-mode cannot tell the difference and is
already implemented as straight BE. So handle the difference in the
endianess query, where USER mode is BE and system is not.
Backports commit b2e62d9a7b9a2eb10e451a57813bad168376e122 from qemu
There is a CPU data endianness test that is used to drive the
virtio_big_endian test.
Move this up to the header so it can be more generally used for endian
tests. The KVM specific cpu_syncronize_state call is left behind in the
virtio specific function.
Rename it arm_cpu-data_is_big_endian() to more accurately capture that
this is for data accesses only.
Backports commit ed50ff7875d61a75517c92deb0444d73fbbca878 from qemu
bswap_code is a CPU property of sorts ("is the iside endianness the
opposite way round to TARGET_WORDS_BIGENDIAN?") but it is not the
actual CPU state involved here which is SCTLR.B (set for BE32
binaries, clear for BE8).
Replace bswap_code with SCTLR.B, and pass that to arm_ld*_code.
The next patches will make data fetches honor both SCTLR.B and
CPSR.E appropriately.
Backports commit f9fd40ebe4f55e0048e002925b8d65e66d56e7a7 from qemu
In helper.c the expression
(env->uncached_cpsr & CPSR_M) != CPSR_USER
is always true; the right hand side was supposed to be ARM_CPU_MODE_USR
(an error in commit cb01d391).
Since the incorrect expression was always true, this just meant that
commit cb01d391 had no effect.
However simply changing the RHS here would reveal a logic error: if
the mode is USR we wish to completely ignore the attempt to set the
mode bits, which means that we must clear the CPSR_M bits from mask
to avoid the uncached_cpsr bits being updated at the end of the
function.
Move the condition into the correct place in the code, fix its RHS
constant, and add a comment about the fact that we must be doing a
gdbstub write if we're in user mode.
Backports commit 8c4f0eb94cc65ee32a12feba88d0b32e3665d5ea from qemu