Add the infrastructure for building and invoking a decodetree decoder
for the AArch32 Neon encodings. At the moment the new decoder covers
nothing, so we always fall back to the existing hand-written decode.
We follow the same pattern we did for the VFP decodetree conversion
(commit 78e138bc1f672c145ef6ace74617d and following): code that deals
with Neon will be moving gradually out to translate-neon.vfp.inc,
which we #include into translate.c.
In order to share the decode files between A32 and T32, we
split Neon into 3 parts:
* data-processing
* load-store
* 'shared' encodings
The first two groups of instructions have similar but not identical
A32 and T32 encodings, so we need to manually transform the T32
encoding into the A32 one before calling the decoder; the third group
covers the Neon instructions which are identical in A32 and T32.
Backports commit 625e3dd44a15dfbe9532daa6454df3f86cf04d3e from qemu
We were accidentally permitting decode of Thumb Neon insns even if
the CPU didn't have the FEATURE_NEON bit set, because the feature
check was being done before the call to disas_neon_data_insn() and
disas_neon_ls_insn() in the Arm decoder but was omitted from the
Thumb decoder. Push the feature bit check down into the called
functions so it is done for both Arm and Thumb encodings.
Backports commit d1a6d3b594157425232a1ae5ea7f51b7a1c1aa2e from qemu
Somewhere along theline we accidentally added a duplicate
"using D16-D31 when they don't exist" check to do_vfm_dp()
(probably an artifact of a patchseries rebase). Remove it.
Backports commit 0d787cf1f3c88fa29477e054f8523f6d82d91c98 from qemu
MIDR_EL1 is a 64-bit system register with the top 32-bit being RES0.
Represent it in QEMU's ARMCPU struct with a uint64_t, not a
uint32_t.
This fixes an error when compiling with -Werror=conversion
because we were manipulating the register value using a
local uint64_t variable:
target/arm/cpu64.c: In function ‘aarch64_max_initfn’:
target/arm/cpu64.c:628:21: error: conversion from ‘uint64_t’ {aka ‘long unsigned int’} to ‘uint32_t’ {aka ‘unsigned int’} may change value [-Werror=conversion]
628 | cpu->midr = t;
| ^
and future-proofs us against a possible future architecture
change using some of the top 32 bits.
Backports commit e544f80030121040c8932ff1bd4006f390266c0f from qemu
In aarch64_max_initfn() we update both 32-bit and 64-bit ID
registers. The intended pattern is that for 64-bit ID registers we
use FIELD_DP64 and the uint64_t 't' register, while 32-bit ID
registers use FIELD_DP32 and the uint32_t 'u' register. For
ID_AA64DFR0 we accidentally used 'u', meaning that the top 32 bits of
this 64-bit ID register would end up always zero. Luckily at the
moment that's what they should be anyway, so this bug has no visible
effects.
Use the right-sized variable.
Backports commit 5a89dd2385a193aa954a7c9bf4e381f2ba6ae359 from qemu
The ARMv8.2-TTS2UXN feature extends the XN field in stage 2
translation table descriptors from just bit [54] to bits [54:53],
allowing stage 2 to control execution permissions separately for EL0
and EL1. Implement the new semantics of the XN field and enable
the feature for our 'max' CPU.
Backports commit ce3125bed935a12e619a8253c19340ecaa899347 from qemu
For ARMv8.2-TTS2UXN, the stage 2 page table walk wants to know
whether the stage 1 access is for EL0 or not, because whether
exec permission is given can depend on whether this is an EL0
or EL1 access. Add a new argument to get_phys_addr_lpae() so
the call sites can pass this information in.
Since get_phys_addr_lpae() doesn't already have a doc comment,
add one so we have a place to put the documentation of the
semantics of the new s1_is_el0 argument.
Backports commit ff7de2fc2c994030bfb83af9ddc9a3cd70ce3e88 from qemu
The access_type argument to get_phys_addr_lpae() is an MMUAccessType;
use the enum constant MMU_DATA_LOAD rather than a literal 0 when we
call it in S1_ptw_translate().
Backports commit 59dff859cd850876df2cfa561c7bcfc4bdda4599 from qemu
We define ARMMMUIdx_Stage2 as being an MMU index which uses a QEMU
TLB. However we never actually use the TLB -- all stage 2 lookups
are done by direct calls to get_phys_addr_lpae() followed by a
physical address load via address_space_ld*().
Remove Stage2 from the list of ARM MMU indexes which correspond to
real core MMU indexes, and instead put it in the set of "NOTLB" ARM
MMU indexes.
This allows us to drop NB_MMU_MODES to 11. It also means we can
safely add support for the ARMv8.3-TTS2UXN extension, which adds
permission bits to the stage 2 descriptors which define execute
permission separatel for EL0 and EL1; supporting that while keeping
Stage2 in a QEMU TLB would require us to use separate TLBs for
"Stage2 for an EL0 access" and "Stage2 for an EL1 access", which is a
lot of extra complication given we aren't even using the QEMU TLB.
In the process of updating the comment on our MMU index use,
fix a couple of other minor errors:
* NS EL2 EL2&0 was missing from the list in the comment
* some text hadn't been updated from when we bumped NB_MMU_MODES
above 8
Backports commit bf05340cb655637451162c02dadcd6581a05c02c from qemu
According to Arm ARM, VQDMULL is only valid when U=0, while having
U=1 is unallocated.
Backports commit ab553ef74ee52c0889679d0bd0da084aaf938f5c from qemu
We will move this code in the next commit. Clean it up
first to avoid checkpatch.pl errors.
Backports commit 51c510aa5876a681cd0059ed3bacaa17590dc2d5 from qemu
Make cpu_register() (renamed to arm_cpu_register()) available
from internals.h so we can register CPUs also from other files
in the future.
Backports commit 37bcf244454f4efb82e2c0c64bbd7eabcc165a0c from qemu
Under KVM these registers are written by the hardware.
Restrict the writefn handlers to TCG to avoid when building
without TCG:
LINK aarch64-softmmu/qemu-system-aarch64
target/arm/helper.o: In function `do_ats_write':
target/arm/helper.c:3524: undefined reference to `raise_exception'
Backports commit 9fb005b02dbda7f47b789b7f19bf5f73622a4756 from qemu
These instructions are often used in glibc's string routines.
They were the final uses of the 32-bit at a time neon helpers.
Backports commit 6b375d3546b009d1e63e07397ec9c6af256e15e9 from qemu
The sifive-e34 cpu type is the same as the sifive-e31 with the
single precision floating-point extension enabled.
Backports commit d784733bf1875c1ba355c69739518f24d56f1260 from qemu
Remove the user version information. This was never used and never
publically exposed in a release of QEMU, so let's just remove it. In
future to manage versions we can extend the extension properties to
specify version.
Backports commit c9a73910c34a2147bcf6a3b5194d27abb19c2e54 from qemu
As-per RISC-V H-Extension v0.5 draft, the Stage2 SV32 page table has
12bits of VPN[1] and 10bits of VPN[0]. The additional 2bits in VPN[1]
is required to handle the 34bit intermediate physical address coming
from Stage1 SV32 page table. The 12bits of VPN[1] implies that Stage2
SV32 level-0 page table will be 16KB in size with total 4096 enteries
where each entry maps 4MB of memory (same as Stage1 SV32 page table).
The get_physical_address() function is broken for Stage2 SV32 level-0
page table because it incorrectly computes output physical address for
Stage2 SV32 level-0 page table entry.
The root cause of the issue is that get_physical_address() uses the
"widened" variable to compute level-0 physical address mapping which
changes level-0 mapping size (instead of 4MB). We should use the
"widened" variable only for computing index of Stage2 SV32 level-0
page table.
Backports commit ee79e7cd47ef47074d7c20c221321c5d31d3683d from qemu
Take the result of stage-1 and stage-2 page table walks and AND the two
protection flags together. This way we require both to set permissions
instead of just stage-2.
Backports commit 8f67cd6db7375f9133d900b13b300931fbc2e1d8 from qemu
When doing the fist of a two stage lookup (Hypervisor extensions) don't
set the current protection flags from the second stage lookup of the
base address PTE.
Backports commit 384728905441279e54fa3d714b11bf1b1bcbfd27 from qemu
Fixes the following coccinelle warnings:
$ spatch --sp-file --verbose-parsing ... \
scripts/coccinelle/remove_local_err.cocci
...
SUSPICIOUS: a \ character appears outside of a #define at ./target/ppc/translate_init.inc.c:5213
SUSPICIOUS: a \ character appears outside of a #define at ./target/ppc/translate_init.inc.c:5261
SUSPICIOUS: a \ character appears outside of a #define at ./target/microblaze/cpu.c:166
SUSPICIOUS: a \ character appears outside of a #define at ./target/microblaze/cpu.c:167
SUSPICIOUS: a \ character appears outside of a #define at ./target/microblaze/cpu.c:169
SUSPICIOUS: a \ character appears outside of a #define at ./target/microblaze/cpu.c:170
SUSPICIOUS: a \ character appears outside of a #define at ./target/microblaze/cpu.c:171
SUSPICIOUS: a \ character appears outside of a #define at ./target/microblaze/cpu.c:172
SUSPICIOUS: a \ character appears outside of a #define at ./target/microblaze/cpu.c:173
SUSPICIOUS: a \ character appears outside of a #define at ./target/i386/cpu.c:5787
SUSPICIOUS: a \ character appears outside of a #define at ./target/i386/cpu.c:5789
SUSPICIOUS: a \ character appears outside of a #define at ./target/i386/cpu.c:5800
SUSPICIOUS: a \ character appears outside of a #define at ./target/i386/cpu.c:5801
SUSPICIOUS: a \ character appears outside of a #define at ./target/i386/cpu.c:5802
SUSPICIOUS: a \ character appears outside of a #define at ./target/i386/cpu.c:5804
SUSPICIOUS: a \ character appears outside of a #define at ./target/i386/cpu.c:5805
SUSPICIOUS: a \ character appears outside of a #define at ./target/i386/cpu.c:5806
SUSPICIOUS: a \ character appears outside of a #define at ./target/i386/cpu.c:6329
SUSPICIOUS: a \ character appears outside of a #define at ./hw/sd/sdhci.c:1133
SUSPICIOUS: a \ character appears outside of a #define at ./hw/scsi/scsi-disk.c:3081
SUSPICIOUS: a \ character appears outside of a #define at ./hw/net/virtio-net.c:1529
SUSPICIOUS: a \ character appears outside of a #define at ./hw/riscv/sifive_u.c:468
SUSPICIOUS: a \ character appears outside of a #define at ./dump/dump.c:1895
SUSPICIOUS: a \ character appears outside of a #define at ./block/vhdx.c:2209
SUSPICIOUS: a \ character appears outside of a #define at ./block/vhdx.c:2215
SUSPICIOUS: a \ character appears outside of a #define at ./block/vhdx.c:2221
SUSPICIOUS: a \ character appears outside of a #define at ./block/vhdx.c:2222
SUSPICIOUS: a \ character appears outside of a #define at ./block/replication.c:172
SUSPICIOUS: a \ character appears outside of a #define at ./block/replication.c:173
Backports commit 78ee6bd04821847036a805cb4bdd46464e1d3098 from qemu
In commit 41a4bf1feab098da4cd the added code to set the CNP
field in ID_MMFR4 for the AArch64 'max' CPU had a typo
where it used the wrong variable name, resulting in ID_MMFR4
fields AC2, XNX and LSM being wrong. Fix the typo.
Fixes: 41a4bf1feab098da4cd
Backports commit e73c4443473107ddf11ad3a7fea5bef2001ee802 from qemu
An old comment in get_phys_addr_lpae() claims that the code does not
support the different format TCR for VTCR_EL2. This used to be true
but it is not true now (in particular the aa64_va_parameters() and
aa32_va_parameters() functions correctly handle the different
register format by checking whether the mmu_idx is Stage2).
Remove the out of date parts of the comment.
Backports commit 07d1be3b3aac20c21ac4a95c7f3f01a3622a31a3 from qemu
Our implementation of the PSTATE.PAN bit incorrectly cleared all
access permission bits for privileged access to memory which is
user-accessible. It should only affect the privileged read and write
permissions; execute permission is dealt with via XN/PXN instead.
Fixes: 81636b70c226dc27d7ebc8d
Backports commit f4e1dbc578a051db08a40c05276ebf525b98f949 from qemu
Loongson multimedia condition instructions were previously implemented as
write 0 to rd due to lack of documentation. So I just confirmed with Loongson
about their encoding and implemented them correctly.
Backports commit 84878f4c00a7beca1d1460e2f77a6c833b8d0393 from qemu
The arm_current_el() should be invoked after mode switching. Otherwise, we
get a wrong current EL value, since current EL is also determined by
current mode.
Fixes: 4a2696c0d4 ("target/arm: Set PAN bit as required on exception entry")
Backports commit 88828bf133b64b7a860c166af3423ef1a47c5d3b from qemu
We are not short of numbers for EXCP_*. There is no need to confuse things
by having EXCP_VMEXIT and EXCP_SYSCALL overlap, even though the former is
only used for system mode and the latter is only used for user mode.
Backports commit 628460891dd46c25e33eec01757ac655679ea198 from qemu
Coverity reports a BAD_SHIFT with ctz32(imm5), with imm5 == 0.
This is an invalid encoding, but we diagnose that just below
by rejecting size > 3. Avoid the warning by sinking the
computation of index below the check.
Backports commit 550a04893c2bd4442211b353680b9a6408d94dba from qemu
Coverity raised a shed-load of errors cascading from inferring
that clz32(immh) might yield 32, from immh might be 0.
While immh cannot be 0 from encoding, it is not obvious even to
a human how we've checked that: via the filtering provided by
data_proc_simd[].
Backports commit 3944d58db3fc5bf131345a21a44013bc13849a12 from qemu
Coverity rightly notes that ctz32(bas) on 0 will return 32,
which makes the len calculation a BAD_SHIFT.
A value of 0 in DBGWCR<n>_EL1.BAS is reserved. Simply move
the existing check we have for this case
Backports commit ae1111d4def40c6f592c3a307c599272b778eb65 from qemu
Adds the support for 2nd Gen AMD EPYC Processors. The model display
name will be EPYC-Rome.
Adds the following new feature bits on top of the feature bits from the
first generation EPYC models.
perfctr-core : core performance counter extensions support. Enables the VM to
use extended performance counter support. It enables six
programmable counters instead of four counters.
clzero : instruction zeroes out the 64 byte cache line specified in RAX.
xsaveerptr : XSAVE, XSAVE, FXSAVEOPT, XSAVEC, XSAVES always save error
pointers and FXRSTOR, XRSTOR, XRSTORS always restore error
pointers.
wbnoinvd : Write back and do not invalidate cache
ibpb : Indirect Branch Prediction Barrier
amd-stibp : Single Thread Indirect Branch Predictor
clwb : Cache Line Write Back and Retain
xsaves : XSAVES, XRSTORS and IA32_XSS support
rdpid : Read Processor ID instruction support
umip : User-Mode Instruction Prevention support
The Reference documents are available at
https://developer.amd.com/wp-content/resources/55803_0.54-PUB.pdfhttps://www.amd.com/system/files/TechDocs/24594.pdf
Depends on following kernel commits:
40bc47b08b6e ("kvm: x86: Enumerate support for CLZERO instruction")
504ce1954fba ("KVM: x86: Expose XSAVEERPTR to the guest")
6d61e3c32248 ("kvm: x86: Expose RDPID in KVM_GET_SUPPORTED_CPUID")
52297436199d ("kvm: svm: Update svm_xsaves_supported")
Backports commit 143c30d4d346831a09e59e9af45afdca0331e819 from qem
Adds the following missing CPUID bits:
perfctr-core : core performance counter extensions support. Enables the VM
to use extended performance counter support. It enables six
programmable counters instead of 4 counters.
clzero : instruction zeroes out the 64 byte cache line specified in RAX.
xsaveerptr : XSAVE, XSAVE, FXSAVEOPT, XSAVEC, XSAVES always save error
pointers and FXRSTOR, XRSTOR, XRSTORS always restore error
pointers.
ibpb : Indirect Branch Prediction Barrie.
xsaves : XSAVES, XRSTORS and IA32_XSS supported.
Depends on following kernel commits:
40bc47b08b6e ("kvm: x86: Enumerate support for CLZERO instruction")
504ce1954fba ("KVM: x86: Expose XSAVEERPTR to the guest")
52297436199d ("kvm: svm: Update svm_xsaves_supported")
These new features will be added in EPYC-v3. The -cpu help output after the change.
x86 EPYC-v1 AMD EPYC Processor
x86 EPYC-v2 AMD EPYC Processor (with IBPB)
x86 EPYC-v3 AMD EPYC Processor
Backports commit a16e8dbc043720abcb37fc7dca313e720b4e0f0c from qemu
Because MPX is being removed from the linux kernel, remove MPX feature
from Denverton.
Backports commit ab0c942c868210e78ff88aef83efb4b4018068e1 from qemu
For system emulation we need to check the state of the GIC before we
report the value. However this isn't relevant to exporting of the
value to linux-user and indeed breaks the exported value as set by
modify_arm_cp_regs.
Backports commit 976b99b6ec2e15cd7c36d72fdb9b60c37c5494f8 from qemu
Currently riscv_cpu_local_irq_pending is used to find out pending
interrupt and VS mode interrupts are being shifted to represent
S mode interrupts in this function. So when the cause returned by
this function is passed to riscv_cpu_do_interrupt to actually
forward the interrupt, the VS mode forwarding check does not work
as intended and interrupt is actually forwarded to hypervisor. This
patch fixes this issue.
Backports commit c5969a3a3c2cb9ea02ffb7e86acb059d3cf8c264 from qemu
As reported in: https://bugs.launchpad.net/qemu/+bug/1851939 we weren't
correctly handling illegal instructions based on the value of MSTATUS_TSR
and the current privledge level.
This patch fixes the issue raised in the bug by raising an illegal
instruction if TSR is set and we are in S-Mode.
Backports commit ed5abf46b3c414ef58e647145f19b3966700b206 from qemu
We must include the tag in the FAR_ELx register when raising
an addressing exception. Which means that we should not clear
out the tag during translation.
We cannot at present comply with this for user mode, so we
retain the clean_data_tbi function for the moment, though it
no longer does what it says on the tin for system mode. This
function is to be replaced with MTE, so don't worry about the
slight misnaming.
Buglink: https://bugs.launchpad.net/qemu/+bug/1867072
Backports commit 38d931687fa196a7ef860f8583815abc7fd5521a from qemu
This data access was forgotten when we added support for cleaning
addresses of TBI information.
Fixes: 3a471103ac1823ba
Backports commit 597d61a3b1f94c53a3aaa77671697c0c5f797dbf from qemu.
The function does not write registers, and only reads them by
implication via the exception path.
Backports commit 1371b02c5a060e423e70560dbca769b54e471ba9 from qemu
This is an aarch64-only function. Move it out of the shared file.
This patch is code movement only.
Backports commit 7b182eb2467af6c47c9c77c64bbbeed8ed53c330 from qemu
If by context we know that we're in AArch64 mode, we need not
test for M-profile when reconstructing the full ARMMMUIdx.
Backports commit 20dc67c947a691fa9df05e76aec6df50204b4b94 from qemu
Replicate the single TBI bit from TCR_EL2 and TCR_EL3 so that
we can unconditionally use pointer bit 55 to index into our
composite TBI1:TBI0 field.
Backports commit 3e270f67f0f05277021763af119a6ce195f8ed51 from qemu
This bit traps EL1 access to cache maintenance insns that operate
to the point of unification. There are no longer any references to
plain aa64_cacheop_access, so remove it.
Backports commit 38262d8a732f8bd0e9ca3dc064f6e73d00c08b9a from qemu
This bit traps EL1 access to cache maintenance insns that operate
to the point of coherency or persistence.
Backports commit 1bed4d2e55459129c19f5952bcfc65bd0c70db5b from qemu
Update the {TGE,E2H} == '11' masking to ARMv8.6.
If EL2 is configured for aarch32, disable all of
the bits that are RES0 in aarch32 mode.
Backports commit 4990e1d3c128580dd2fa0bbb1a42b6d63ba1ac28 from qemu
Don't merely start with v8.0, handle v7VE as well. Ensure that writes
from aarch32 mode do not change bits in the other half of the register.
Protect reads of aa64 id registers with ARM_FEATURE_AARCH64.
Backports commit d1fb4da208411ce7b3dafb9f9e7726ebcec14edb from qemu
The ARMv8.2-TTCNP extension allows an implementation to optimize by
sharing TLB entries between multiple cores, provided that software
declares that it's ready to deal with this by setting a CnP bit in
the TTBRn_ELx. It is mandatory from ARMv8.2 onward.
For QEMU's TLB implementation, sharing TLB entries between different
cores would not really benefit us and would be a lot of work to
implement. So we implement this extension in the "trivial" manner:
we allow the guest to set and read back the CnP bit, but don't change
our behaviour (this is an architecturally valid implementation
choice).
The only code path which looks at the TTBRn_ELx values for the
long-descriptor format where the CnP bit is defined is already doing
enough masking to not get confused when the CnP bit at the bottom of
the register is set, so we can simply add a comment noting why we're
relying on that mask.
Backports commit 41a4bf1feab098da4cd5495cd56a99b0339e2275 from qemu
Currently, TIME CSRs are emulated only for user-only mode. This
patch add TIME CSRs emulation for privileged mode.
For privileged mode, the TIME CSRs will return value provided
by rdtime callback which is registered by QEMU machine/platform
emulation (i.e. CLINT emulation). If rdtime callback is not
available then the monitor (i.e. OpenSBI) will trap-n-emulate
TIME CSRs in software.
We see 25+% performance improvement in hackbench numbers when
TIME CSRs are not trap-n-emulated.
Backports commit c695724868ce4049fd79c5a509880dbdf171e744 from qemu
Add a helper macro MSTATUS_MPV_ISSET() which will determine if the
MSTATUS_MPV bit is set for both 32-bit and 64-bit RISC-V.
Backports commit e44b50b5b2e508fdd24915ab0e44ac49685e1de3 from qemu
mark_fs_dirty() is the only place in translate.c that uses the
virt_enabled bool. Let's respect the contents of MSTATUS.MPRV and
HSTATUS.SPRV when setting the bool as this is used for performing
floating point operations when V=0.
Backports commit ae84dd0ab7eaf7e98cd6ee05b2063cce8ff9bc02 from qemu
When the Hypervisor extension is in use we only enable floating point
support when both status and vsstatus have enabled floating point
support.
Backports commit 29409c1d921d607873268671bf11a088efb5558e from qemu
The hret instruction does not exist in the new spec versions, so remove
it from QEMU.
Backports commit 0736febb2d0e1bb503ca07091c16a16e78480366 from qemu
To ensure our TLB isn't out-of-date we flush it on all virt mode
changes. Unlike priv mode this isn't saved in the mmu_idx as all
guests share V=1. The easiest option is just to flush on all changes.
Backports commit eccc5a12c2fd1c646c69a1e7de29183b7a559973 from qemu
Add a FORCE_HS_EXCEP mode to the RISC-V virtulisation status. This bit
specifies if an exeption should be taken to HS mode no matter the
current delegation status. This is used when an exeption must be taken
to HS mode, such as when handling interrupts.
Backports commit c7b1bbc80fc2af17395d3986c346fd2307e57829 from qemu
Add the Hypervisor CSRs to CPUState and at the same time (to avoid
bisect issues) update the CSR macros for the v0.5 Hyp spec.
Backports commit bd023ce33b85d73791b7bc78fd04a8115c60995e from qemu
The MIP CSR is a xlen CSR, it was only 32-bits to allow atomic access.
Now that we don't use atomics for MIP we can change this back to a xlen
CSR.
Backports commit 028616130d5f0abc8a3b96f28963da51a875024b from qemu
The ARMv8.3-CCIDX extension makes the CCSIDR_EL1 system ID registers
have a format that uses the full 64 bit width of the register, and
adds a new CCSIDR2 register so AArch32 can get at the high 32 bits.
QEMU doesn't implement caches, so we just treat these ID registers as
opaque values that are set to the correct constant values for each
CPU. The only thing we need to do is allow 64-bit values in our
cssidr[] array and provide the CCSIDR2 accessors.
We don't set the CCIDX field in our 'max' CPU because the CCSIDR
constant values we use are the same as the ones used by the
Cortex-A57 and they are in the old 32-bit format. This means
that the extra regdef added here is unused currently, but it
means that whenever in the future we add a CPU that does need
the new 64-bit format it will just work when we set the cssidr
values and the ID registers for it.
Backports commit 957e615503bd0de22393fd8dbcb22a5064fd2b5c from qemu
The v8.4-RCPC extension implements some new instructions:
* LDAPUR, LDAPURB, LDAPURH, LDAPRSB, LDAPRSH, LDAPRSW
* STLUR, STLURB, STLURH
These are all in a new subgroup of encodings that sits below the
top-level "Loads and Stores" group in the Arm ARM.
The STLUR* instructions have standard store-release semantics; the
LDAPUR* have Load-AcquirePC semantics, but (as with LDAPR*) we choose
to implement them as the slightly stronger Load-Acquire.
Backports commit a1229109dec4375259d3fff99f362405aab7917a from qemu
The v8.3-RCPC extension implements three new load instructions
which provide slightly weaker consistency guarantees than the
existing load-acquire operations. For QEMU we choose to simply
implement them with a full LDAQ barrier.
Backports commit 2677cf9f92a5319bb995927f9225940414ce879d from qemu
We missed an instance of using FIELD_EX32 on a 64-bit ID
register, in isar_feature_aa64_pmu_8_4(). Fix it.
Backports commit 54117b90ffd8a3977917971c3bd99bb5242710d9 from qemu.
Passing the raw op field from the manual is less instructive
than it might be. Do the full decode and use the existing
helpers to perform the expansion.
Since these are v8 insns, VECLEN+VECSTRIDE are already RES0.
Backports commit f2eafb75511e5d2ee601b43dc6ee0bcc6e453acd from qemu
Passing the raw o1 and o2 fields from the manual is less
instructive than it might be. Do the full decode and let
the trans_* functions pass in booleans to a helper.
Backports commit d486f8308a13543bbcc4887f246e856df991a4bc from qemu
Those vfp instructions without extra opcode fields can
share a common @format for brevity.
Backports commit 906b60facc3d3dd3af56cb1a7860175d805e10a3 from qemu
Have the calls adjacent as an intermediate step toward
actually merging the decodes.
Backports commit f0f6d5c81be47d593e5ece7f06df6fba4c15738b from qemu
Now that we no longer have an early check for ARM_FEATURE_VFP,
we can use the proper ISA check in trans_VLLDM_VLSTM.
Backports commit dc778a6873f534817a13257be2acba3ca87ec015 from qemu
All remaining tests for VFP4 are for fused multiply-add insns.
Since the MVFR1 field is used for both VFP and NEON, move its adjustment
from the !has_neon block to the (!has_vfp && !has_neon) block.
Test for vfp of the appropraite width alongside the test for simdfmac
within translate-vfp.inc.c. Within disas_neon_data_insn, we have
already tested for ARM_FEATURE_NEON.
Backports commit c52881bbc22b50db99a6c37171ad3eea7d959ae6 from qemu
We will eventually remove the early ARM_FEATURE_VFP test,
so add a proper test for each trans_* that does not already
have another ISA test.
Backports commit 82f6abe16b9b951180657c5fe15942d5214aa12e from qemu