Move MUL, S32M2I, S32I2M handling out of switch. These are all
instructions that do not depend on MXU_EN flag of MXU_CR.
Backports commit 87860df5511b972f0234a6b2cfaad5227c79b6b4 from qemu
Add support for emulating the S32I2M and S32M2I MXU instructions.
This commit also contains utility functions for reading/writing
to MXU registers. This is required for overall MXU instruction
support.
Backports commit 96992d1aa1b250c0fffc1ff2dad5e6e4f0b9815b from qemu
Add MXU decoding engine: add handlers for all instruction pools,
and main decode handler. The handlers, for now, for the purpose
of this patch, contain only sceleton in the form of a single
switch statement.
Backports commit 03f400883a1dd92fac5b0d9127b38e34c9a722d7 from qemu
Amend MXU instruction opcodes. Pool04 is actually only instruction
OPC_MXU_S16MAD. Two cases within S16MAD are recognized by 1-bit
subfield 'aptn1'.
Backports commit eab0bdb07cbed1131be2d1f541059c7b96b05e32 from qemu
Define a bit for MXU in insn_flags. This is the first non-MIPS
(third party) ASE supported in QEMU for MIPS, so it is placed in
the section "bits 56-63: vendor-specific ASEs".
Backports commit a031ac61619294ae473a78d1834e757fad8b59e5 from qemu
Define and initialize the 16 MXU registers - 15 general computational
register, and 1 control register). There is also a zero register, but
it does not have any corresponding variable.
Backports commit eb5559f67dc8dc12335dd996877bb6daaea32eb2 from qemu.
Implement emulation of nanoMIPS EVA instructions. They are all
part of P.LS.E0 instruction pool, or one of its subpools.
Backports commit d046a9ea1b8877a570a8b12a2d0125ec59fe5b22 from qemu
Opcode for ALIGN and DALIGN must be in fact ranges of opcodes, to
allow paremeter 'bp' to occupy two and three bits, respectively.
Backports commit 373ecd3823f949fd550ec49685299e287af5753e from qemu
Replace MIPS32 with MIPS, since the file covers all generations
of MIPS architectures.
Backports commit ab99e0e44bc7b0e2e52d9083a673866b18470536 from qemu
The primary purpose of this change is to support programs compiled by
GCC for the R5900 target and thereby run R5900 Linux distributions, for
example Gentoo.
GCC in version 7.3, by itself, by inspection of the GCC source code
and inspection of the generated machine code, for the R5900 target,
only emits two instructions that are specific to the R5900: the three-
operand MULT and MULTU. GCC and libc also emit certain MIPS III
instructions that are not part of the R5900 ISA. They are normally
trapped and emulated by the Linux kernel, and therefore need to be
treated accordingly by QEMU.
A program compiled by GCC is taken to mean source code compiled by GCC
under the restrictions above. One can, with the apparent limitations,
with a bit of effort obtain a fully functioning operating system such
as R5900 Gentoo. Strictly speaking, programs need not be compiled by
GCC to make use of this change.
Instructions and other facilities of the R5900 not implemented by this
change are intended to signal provisional exceptions. One such example
is the FPU that is not compliant with IEEE 754-1985 in system mode. It
is therefore provisionally disabled. In user space the FPU is trapped
and emulated by IEEE 754-1985 compliant software in the kernel, and
this is handled accordingly by QEMU. Another example is the 93
multimedia instructions specific to the R5900 that generate provisional
reserved instruction exception signals.
One of the benefits of running a Linux distribution under QEMU is that
programs can be compiled with a native compiler, where the host and
target are the same, as opposed to a cross-compiler, where they are
not the same. This is especially important in cases where the target
hardware does not have the resources to run a native compiler.
Problems with cross-compilation are often related to host and target
differences in integer sizes, pointer sizes, endianness, machine code,
ABI, etc. Sometimes cross-compilation is not even supported by the
build script for a given package. One effective way to avoid those
problems is to replace the cross-compiler with a native compiler. This
change of compilation methods does not resolve the inherent problems
with cross-compilation.
The native compiler naturally replaces the cross-compiler, because one
typically uses one or the other, and preferably the native compiler
when the circumstances admit this. The native compiler is also a good
test case for the R5900 QEMU user mode. Additionally, Gentoo is well-
known for compiling and installing its packages from sources.
This change has been tested with Gentoo compiled for R5900, including
native compilation of several packages under QEMU.
Backports commit ed4f49ba9bb56ebca6987b1083255daf6c89b5de from qemu.
The Linux kernel traps certain reserved instruction exceptions to
emulate the corresponding instructions. QEMU plays the role of the
kernel in user mode, so those traps are emulated by accepting the
instructions.
This change adds the function check_insn_opc_user_only to signal a
reserved instruction exception for flagged CPUs in QEMU system mode.
The MIPS III instructions DMULT[U], DDIV[U], LL[D] and SC[D] are not
implemented in R5900 hardware. They are trapped and emulated by the
Linux kernel and, accordingly, therefore QEMU user only instructions.
Backports commit 96631327be14c4f54cc31f873c278d9ffedd1e00 from qemu
The R5900 is taken to be MIPS III with certain modifications. From
MIPS IV it implements the instructions MOVN, MOVZ and PREF.
Backports commit 5601e6217d90ed322b4b9a6d68e8db607db91842 from qemu
The three-operand MULT and MULTU are the only R5900-specific
instructions emitted by GCC 7.3. The R5900 also implements the three-
operand MADD and MADDU instructions, but they are omitted in QEMU for
now since they are absent in programs compiled by current GCC versions.
Likewise, the R5900-specific pipeline 1 instruction variants MULT1,
MULTU1, DIV1, DIVU1, MADD1, MADDU1, MFHI1, MFLO1, MTHI1 and MTLO1
are omitted here as well.
Backports commit 21e8e8b230af38b6bd8c953fa5f31e4a5a128e1c from qemu
The R5900 implements the 64-bit MIPS III instruction set except
DMULT, DMULTU, DDIV, DDIVU, LL, SC, LLD and SCD. The MIPS IV
instructions MOVN, MOVZ and PREF are implemented. It has the
R5900-specific three-operand instructions MADD, MADDU, MULT and
MULTU as well as pipeline 1 versions MULT1, MULTU1, DIV1, DIVU1,
MADD1, MADDU1, MFHI1, MFLO1, MTHI1 and MTLO1. A set of 93 128-bit
multimedia instructions specific to the R5900 is also implemented.
The Toshiba TX System RISC TX79 Core Architecture manual:
https://wiki.qemu.org/File:C790.pdf
describes the C790 processor that is a follow-up to the R5900. There
are a few notable differences in that the R5900 FPU
- is not IEEE 754-1985 compliant,
- does not implement double format, and
- its machine code is nonstandard.
Backports commit 6f692818a7b53630702d25a709cd61282fd139ad from qemu
Since QEMU does not implement ASIDs, changes to the ASID must flush the
tlb. However, if the ASID does not change there is no reason to flush.
In testing a boot of the Ubuntu installer to the first menu, this reduces
the number of flushes by 30%, or nearly 600k instances.
Backports commit 93f379b0c43617b1361f742f261479eaed4959cb from qemu
The EL3 version of this register does not include an ASID,
and so the tlb_flush performed by vmsa_ttbr_write is not needed.
Backports commit f478847f1ee0df9397f561025ab2f687fd923571 from qemu
Instead of shifts and masks, use direct loads and stores from
the neon register file.
Backports commit 2d6ac920837f558be214ad2ddd28cad7f3b15e5c from qemu
For a sequence of loads or stores from a single register,
little-endian operations can be promoted to an 8-byte op.
This can reduce the number of operations by a factor of 8.
Backports commit e23f12b3a252352b575908ca7b94587acd004641 from qemu
Instead of shifts and masks, use direct loads and stores from the neon
register file. Mirror the iteration structure of the ARM pseudocode
more closely. Correct the parameters of the VLD2 A2 insn.
Note that this includes a bugfix for handling of the insn
"VLD2 (multiple 2-element structures)" -- we were using an
incorrect stride value.
Backports commit ac55d00709e78cd39dfa298dcaac7aecb58762e8 from qemu
Also introduces neon_element_offset to find the env offset
of a specific element within a neon register.
Backports commit 32f91fb71f4c32113ec8c2af5f74f14abe6c7162 from qemu
For a sequence of loads or stores from a single register,
little-endian operations can be promoted to an 8-byte op.
This can reduce the number of operations by a factor of 8.
Backports commit 87f9a7f0c8d5122c36743885158782c2348a6d21 from qemu
This can reduce the number of opcodes required for certain
complex forms of load-multiple (e.g. ld4.16b).
Backports commit a7d8143aed2268f147cc1abfebc848ed6282a313 from qemu
For traps of FP/SIMD instructions to AArch32 Hyp mode, the syndrome
provided in HSR has more information than is reported to AArch64.
Specifically, there are extra fields TA and coproc which indicate
whether the trapped instruction was FP or SIMD. Add this extra
information to the syndromes we construct, and mask it out when
taking the exception to AArch64.
Backports commit 4be42f4013fa1a9df47b48aae5148767bed8e80c from qemu
For the v7 version of the Arm architecture, the IL bit in
syndrome register values where the field is not valid was
defined to be UNK/SBZP. In v8 this is RES1, which is what
QEMU currently implements. Handle the desired v7 behaviour
by squashing the IL bit for the affected cases:
* EC == EC_UNCATEGORIZED
* prefetch aborts
* data aborts where ISV is 0
(The fourth case listed in the v8 Arm ARM DDI 0487C.a in
section G7.2.70, "illegal state exception", can't happen
on a v7 CPU.)
This deals with a corner case noted in a comment.
Backports commit 2ed08180db096ea5e44573529b85e09b1ed10b08 from qemu
Create and use a utility function to extract the EC field
from a syndrome, rather than open-coding the shift.
Backports commit 64b91e3f890a8c221b65c6820a5ee39107ee40f5 from qemu
If the HCR_EL2 PTW virtualizaiton configuration register bit
is set, then this means that a stage 2 Permission fault must
be generated if a stage 1 translation table access is made
to an address that is mapped as Device memory in stage 2.
Implement this.
Backports commit eadb2febf05452bd8062c4c7823d7d789142500c from qemu
The HCR_EL2 VI and VF bits are supposed to track whether there is
a pending virtual IRQ or virtual FIQ. For QEMU we store the
pending VIRQ/VFIQ status in cs->interrupt_request, so this means:
* if the register is read we must get these bit values from
cs->interrupt_request
* if the register is written then we must write the bit
values back into cs->interrupt_request
Backports commit 8a0fc3a29fc2315325400c738f807d0d4ae0ab7f from qemu
The A/I/F bits in ISR_EL1 should track the virtual interrupt
status, not the physical interrupt status, if the associated
HCR_EL2.AMO/IMO/FMO bit is set. Implement this, rather than
always showing the physical interrupt status.
We don't currently implement anything to do with external
aborts, so this applies only to the I and F bits (though it
ought to be possible for the outer guest to present a virtual
external abort to the inner guest, even if QEMU doesn't
emulate physical external aborts, so there is missing
functionality in this area).
Backports commit 636540e9c40bd0931ef3022cb953bb7dbecd74ed from qemu
The HCR.DC virtualization configuration register bit has the
following effects:
* SCTLR.M behaves as if it is 0 for all purposes except
direct reads of the bit
* HCR.VM behaves as if it is 1 for all purposes except
direct reads of the bit
* the memory type produced by the first stage of the EL1&EL0
translation regime is Normal Non-Shareable,
Inner Write-Back Read-Allocate Write-Allocate,
Outer Write-Back Read-Allocate Write-Allocate.
Implement this behaviour.
Backports commit 9d1bab337caf2324a233e5937f415fad4ce1641b from qemu
The HCR.FB virtualization configuration register bit requests that
TLB maintenance, branch predictor invalidate-all and icache
invalidate-all operations performed in NS EL1 should be upgraded
from "local CPU only to "broadcast within Inner Shareable domain".
For QEMU we NOP the branch predictor and icache operations, so
we only need to upgrade the TLB invalidates:
AArch32 TLBIALL, TLBIMVA, TLBIASID, DTLBIALL, DTLBIMVA, DTLBIASID,
ITLBIALL, ITLBIMVA, ITLBIASID, TLBIMVAA, TLBIMVAL, TLBIMVAAL
AArch64 TLBI VMALLE1, TLBI VAE1, TLBI ASIDE1, TLBI VAAE1,
TLBI VALE1, TLBI VAALE1
Backports commit b4ab8ce98b8c482c8986785800f238d32a1578a9 from qemu
For AArch32, exception return happens through certain kinds
of CPSR write. We don't currently have any CPU_LOG_INT logging
of these events (unlike AArch64, where we log in the ERET
instruction). Add some suitable logging.
This will log exception returns like this:
Exception return from AArch32 hyp to usr PC 0x80100374
paralleling the existing logging in the exception_return
helper for AArch64 exception returns:
Exception return from AArch64 EL2 to AArch64 EL0 PC 0x8003045c
Exception return from AArch64 EL2 to AArch32 EL0 PC 0x8003045c
(Note that an AArch32 exception return can only be
AArch32->AArch32, never to AArch64.)
Backports commit 81e3728407bf4a12f83e14fd410d5f0a7d29b5b4 from qemu
Having V6 alone imply jazelle was wrong for cortex-m0.
Change to an assertion for V6 & !M.
This was harmless, because the only place we tested ARM_FEATURE_JAZELLE
was for 'bxj' in disas_arm(), which is unreachable for M-profile cores.
Backports commit 09cbd50198d5dcac8bea2e47fa5dd641ec505fae from qemu
Both arm and thumb2 division are controlled by the same ISAR field,
which takes care of the arm implies thumb case. Having M imply
thumb2 division was wrong for cortex-m0, which is v6m and does not
have thumb2 at all, much less thumb2 division.
Backports commit 7e0cf8b47f0e67cebbc3dfa73f304e56ad1a090f from qemu
Most of the v8 extensions are self-contained within the ISAR
registers and are not implied by other feature bits, which
makes them the easiest to convert.
Backports commit 962fcbf2efe57231a9f5df0ae0f40c05e35628ba from qemu
Instantiating mps2-an505 (cortex-m33) will fail make check when
V7VE asserts that ID_ISAR0.Divide includes ARM division. It is
also wrong to include ARM_FEATURE_LPAE.
Backports commit 5256df880d1312a58472af3fb0a3c51e708f2161 from qemu
This patch extends the qemu-kvm state sync logic with support for
KVM_GET/SET_VCPU_EVENTS, giving access to yet missing SError exception.
And also it can support the exception state migration.
The SError exception states include SError pending state and ESR value,
the kvm_put/get_vcpu_events() will be called when set or get system
registers. When do migration, if source machine has SError pending,
QEMU will do this migration regardless whether the target machine supports
to specify guest ESR value, because if target machine does not support that,
it can also inject the SError with zero ESR value.
Backports the relevant parts of commit
202ccb6bab5fe26bca2c82bff23302f7acfd1940 from qemu
Fix misplaced 'break' in handling of NM_SHRA_R_PH. Found by
Coverity (CID 1395627).
Backports commit d5ebcbaf09e8c14e62b2966446195be5eeabcbab from qemu
Fix emulation of microMIPS R6 <SELEQZ|SELNEZ>.<D|S> instructions.
Their handling was permuted.
Backports commit fdac60cd0458f34b2e79d74a55bec10836e26471 from qemu
Implement hardware page table walker. This implementation is
limiter only to MIPS32.
Backports commit 074cfcb4daedf59ccbbbc83c24eee80e0e8f4c71 from qemu
Add reset state for PWSize and PWField registers. The reset state
is different for pre-R6 and R6 (and post-R6) ISAa
Backports commit 630107955757b9dfc5c09f105caa267eded2e3b1 from qemu
Add PWCtl register (CP0 Register 5, Select 6).
The PWCtl register configures hardware page table walking for TLB
refills.
This register is required for the hardware page walker feature. It
exists only if Config3 PW bit is set to 1. It contains following
fields:
PWEn (31) - Hardware Page Table walker enable
PWDirExt (30) - If 1, 4-th level implemented (MIPS64 only)
XK (28) - If 1, walker handles xkseg (MIPS64 only)
XS (27) - If 1, walker handles xsseg (MIPS64 only)
XU (26) - If 1, walker handles xuseg (MIPS64 only)
DPH (7) - Dual Page format of Huge Page support
HugePg (6) - Huge Page PTE supported in Directory levels
PSn (5..0) - Bit position of PTEvld in Huge Page PTE
Backports commit 103be64c26c166f12b3e1308edadef3443723ff1 from qemu
Add PWSize register (CP0 Register 5, Select 7).
The PWSize register configures hardware page table walking for TLB
refills.
This register is required for the hardware page walker feature. It
exists only if Config3 PW bit is set to 1. It contains following
fields:
BDW (37..32) Base Directory index width (MIPS64 only)
GDW (29..24) Global Directory index width
UDW (23..18) Upper Directory index width
MDW (17..12) Middle Directory index width
PTW (11..6 ) Page Table index width
PTEW ( 5..0 ) Left shift applied to the Page Table index
Backports commit 20b28ebc49945583d7191b57755cfd92433de9ff from qemu
Add PWField register (CP0 Register 5, Select 6).
The PWField register configures hardware page table walking for TLB
refills.
This register is required for the hardware page walker feature. It
exists only if Config3 PW bit is set to 1. It contains following
fields:
MIPS64:
BDI (37..32) - Base Directory index
GDI (29..24) - Global Directory index
UDI (23..18) - Upper Directory index
MDI (17..12) - Middle Directory index
PTI (11..6 ) - Page Table index
PTEI ( 5..0 ) - Page Table Entry shift
MIPS32:
GDW (29..24) - Global Directory index
UDW (23..18) - Upper Directory index
MDW (17..12) - Middle Directory index
PTW (11..6 ) - Page Table index
PTEW ( 5..0 ) - Page Table Entry shift
Backports commit fa75ad1459f4f6abbeb6d375a812dfad61320f58 from qemu
Add PWBase register (CP0 Register 5, Select 5).
The PWBase register contains the Page Table Base virtual address.
This register is required for the hardware page walker feature. It
exists only if Config3 PW bit is set to 1.
Backports commit 5e31fdd59fda5c4ba9eb0daadc2a26273a29a0b6 from qemu
Add field corresponding to CP0 Config2 to DisasContext. This is
needed for availability control via Config2 bits.
Backports commit 49735f76db25bf10f57973d5249f17151b801760 from qemu
Do following replacements:
ASE_DSPR2 -> ASE_DSP_R2
ASE_DSPR3 -> ASE_DSP_R3
MIPS_HFLAG_DSPR2 -> MIPS_HFLAG_DSP_R2
MIPS_HFLAG_DSPR3 -> MIPS_HFLAG_DSP_R3
check_dspr2() -> check_dsp_r2()
check_dspr3() -> check_dsp_r3()
and several other similar minor replacements.
Backports commit 908f6be1b9cbc270470230f805d6f7474ab3178d from qemu
Add infrastructure for availability control for DSP R3 ASE MIPS
instructions. Only BPOSGE32C currently belongs to DSP R3 ASE, but
this is likely to be changed in near future.
Backports commit 59e781fbf13a2dede15437d055b09d7ea120dcac from qemu
Increase the size of insn_flags holder size to 64 bits. This is
needed for future extensions since existing bits are almost all used.
Backports commit f9c9cd63e3dd84c5f052deec880ec92046bbe305 from qemu