Add support for the new ARMv8.2 SHA-3, SM3, SM4 and SHA-512 instructions to
AArch64 user mode emulation.
Backports commit 955f56d44a73d74016b2e71765d984ac7a6db1dc from qemu
This implements emulation of the new SM4 instructions that have
been added as an optional extension to the ARMv8 Crypto Extensions
in ARM v8.2.
Backports commit b6577bcd251ca0d57ae1de149e3c706b38f21587 from qemu
This implements emulation of the new SM3 instructions that have
been added as an optional extension to the ARMv8 Crypto Extensions
in ARM v8.2.
Backports commit 80d6f4c6bbb718f343a832df8dee15329cc7686c from qemu
This implements emulation of the new SHA-3 instructions that have
been added as an optional extensions to the ARMv8 Crypto Extensions
in ARM v8.2.
Backports commit cd270ade74ea86467f393a9fb9c54c4f1148c28f from qemu
This implements emulation of the new SHA-3 instructions that have
been added as an optional extensions to the ARMv8 Crypto Extensions
in ARM v8.2.
Backports commit cd270ade74ea86467f393a9fb9c54c4f1148c28f from qemu
This implements emulation of the new SHA-512 instructions that have
been added as an optional extensions to the ARMv8 Crypto Extensions
in ARM v8.2.
Backports commit 90b827d131812d7f0a8abb13dba1942a2bcee821 from qemu
Handle possible MPU faults, SAU faults or bus errors when
popping register state off the stack during exception return.
Backports commit 95695effe8caa552b8f243bceb3a08de4003c882 from qemu
Make the load of the exception vector from the vector table honour
the SAU and any bus error on the load (possibly provoking a derived
exception), rather than simply aborting if the load fails.
Backports commit 600c33f24752a00e81e9372261e35c2befea612b from qemu
The Application Interrupt and Reset Control Register has some changes
for v8M:
* new bits SYSRESETREQS, BFHFNMINS and PRIS: these all have
real state if the security extension is implemented and otherwise
are constant
* the PRIGROUP field is banked between security states
* non-secure code can be blocked from using the SYSRESET bit
to reset the system if SYSRESETREQS is set
Implement the new state and the changes to register read and write.
For the moment we ignore the effects of the secure PRIGROUP.
We will implement the effects of PRIS and BFHFNMIS later.
Backports register-related additions in commit 3b2e934463121f06d04e4d17658a9a7cdc3717b0 from qemu
Make v7m_push_callee_stack() honour the MPU by using the
new v7m_stack_write() function. We return a flag to indicate
whether the pushes failed, which we can then use in
v7m_exception_taken() to cause us to handle the derived
exception correctly.
Backports commit 65b4234ff73a4d4865438ce30bdfaaa499464efa from qemu
The memory writes done to push registers on the stack
on exception entry in M profile CPUs are supposed to
go via MPU permissions checks, which may cause us to
take a derived exception instead of the original one of
the MPU lookup fails. We were implementing these as
always-succeeds direct writes to physical memory.
Rewrite v7m_push_stack() to do the necessary checks.
Backports commit fd592d890ec40e3686760de84044230a8ebb1eb3 from qemu
In the v8M architecture, if the process of taking an exception
results in a further exception this is called a derived exception
(for example, an MPU exception when writing the exception frame to
memory). If the derived exception happens while pushing the initial
stack frame, we must ignore any subsequent possible exception
pushing the callee-saves registers.
In preparation for making the stack writes check for exceptions,
add a return value from v7m_push_stack() and a new parameter to
v7m_exception_taken(), so that the former can tell the latter that
it needs to ignore failures to write to the stack. We also plumb
the argument through to v7m_push_callee_stack(), which is where
the code to ignore the failures will be.
(Note that the v8M ARM pseudocode structures this slightly differently:
derived exceptions cause the attempt to process the original
exception to be abandoned; then at the top level it calls
DerivedLateArrival to prioritize the derived exception and call
TakeException from there. We choose to let the NVIC do the prioritization
and continue forward with a call to TakeException which will then
take either the original or the derived exception. The effect is
the same, but this structure works better for QEMU because we don't
have a convenient top level place to do the abandon-and-retry logic.)
Backports commit 0094ca70e165cfb69882fa2e100d935d45f1c983 from qemu
Currently armv7m_nvic_acknowledge_irq() does three things:
* make the current highest priority pending interrupt active
* return a bool indicating whether that interrupt is targeting
Secure or NonSecure state
* implicitly tell the caller which is the highest priority
pending interrupt by setting env->v7m.exception
We need to split these jobs, because v7m_exception_taken()
needs to know whether the pending interrupt targets Secure so
it can choose to stack callee-saves registers or not, but it
must not make the interrupt active until after it has done
that stacking, in case the stacking causes a derived exception.
Similarly, it needs to know the number of the pending interrupt
so it can read the correct vector table entry before the
interrupt is made active, because vector table reads might
also cause a derived exception.
Create a new armv7m_nvic_get_pending_irq_info() function which simply
returns information about the highest priority pending interrupt, and
use it to rearrange the v7m_exception_taken() code so we don't
acknowledge the exception until we've done all the things which could
possibly cause a derived exception.
Backports part of commit 6c9485188170e11ad31ce477c8ce200b8e8ce59d from qemu
In order to support derived exceptions (exceptions generated in
the course of trying to take an exception), we need to be able
to handle prioritizing whether to take the original exception
or the derived exception.
We do this by introducing a new function
armv7m_nvic_set_pending_derived() which the exception-taking code in
helper.c will call when a derived exception occurs. Derived
exceptions are dealt with mostly like normal pending exceptions, so
we share the implementation with the armv7m_nvic_set_pending()
function.
Note that the way we structure this is significantly different
from the v8M Arm ARM pseudocode: that does all the prioritization
logic in the DerivedLateArrival() function, whereas we choose to
let the existing "identify highest priority exception" logic
do the prioritization for us. The effect is the same, though.
Backports part of commit 5ede82b8ccb652382c106d53f656ed67997d76e8 from qemu
The x86 vector instruction set is extremely irregular. With newer
editions, Intel has filled in some of the blanks. However, we don't
get many 64-bit operations until SSE4.2, introduced in 2009.
The subsequent edition was for AVX1, introduced in 2011, which added
three-operand addressing, and adjusts how all instructions should be
encoded.
Given the relatively narrow 2 year window between possible to support
and desirable to support, and to vastly simplify code maintainence,
I am only planning to support AVX1 and later cpus.
Backports commit 770c2fc7bb70804ae9869995fd02dadd6d7656ac from qemu
Trivial move and constant propagation. Some identity and constant
function folding, but nothing that requires knowledge of the size
of the vector element.
Backports commit 170ba88f45bd7b1c5593021ed8e174f663b0bd1a from qemu
Use dup to convert a non-constant scalar to a third vector.
Add addition, multiplication, and logical operations with an immediate.
Add addition, subtraction, multiplication, and logical operations with
a non-constant scalar. Allow for the front-end to build operations in
which the scalar operand comes first.
Backports commit 22fc3527034678489ec554e82fd52f8a7f05418e from qemu
No vector ops as yet. SSE only has direct support for 8- and 16-bit
saturation; handling 32- and 64-bit saturation is much more expensive.
Backports commit f49b12c6e6a75a5bd109bcbbda072b24e5fb8dfd from qemu
Opcodes are added for scalar and vector shifts, but considering the
varied semantics of these do not expose them to the front ends. Do
go ahead and provide them in case they are needed for backend expansion.
Backports commit d0ec97967f940bbc11dced83422b39c224127f1e from qemu
Some functions use intN_t arguments, some use uintN_t, some just
used "unsigned". To aid putting function pointers in tables, we
need consistency.
Backports commit 474b2e8f0f765515515b495e6872b5e18a660baf from qemu
Typical slowdown introduced by AddressSanitizer is 2x.
UBSan shouldn't have much impact on runtime cost.
Enable it by default when --enable-debug, unless --disable-sanitizers.
Backports commit 247724cb302af5d70c8853154b640dfabf2bbb56 from qemu
Python2 did not validate locale correctness when reading input data, so
would happily read UTF-8 data in non-UTF-8 locales. Python3 is strict so
if you try to read UTF-8 data in the C locale, it will raise an error
for any UTF-8 bytes that aren't representable in 7-bit ascii encoding.
e.g.
UnicodeDecodeError: 'ascii' codec can't decode byte 0xc3 in position 54: ordinal not in range(128)
Traceback (most recent call last):
File "/tmp/qemu-test/src/scripts/qapi-commands.py", line 317, in <module>
schema = QAPISchema(input_file)
File "/tmp/qemu-test/src/scripts/qapi.py", line 1468, in __init__
parser = QAPISchemaParser(open(fname, 'r'))
File "/tmp/qemu-test/src/scripts/qapi.py", line 301, in __init__
previously_included)
File "/tmp/qemu-test/src/scripts/qapi.py", line 348, in _include
exprs_include = QAPISchemaParser(fobj, previously_included, info)
File "/tmp/qemu-test/src/scripts/qapi.py", line 271, in __init__
self.src = fp.read()
File "/usr/lib64/python3.5/encodings/ascii.py", line 26, in decode
return codecs.ascii_decode(input, self.errors)[0]
More background on this can be seen in
https://www.python.org/dev/peps/pep-0538/
Many distros support a new C.UTF-8 locale that is like the C locale,
but with UTF-8 instead of 7-bit ASCII. That is not entirely portable
though. This patch thus sets the LANG to "C", but overrides LC_CTYPE
to be en_US.UTF-8 locale. This gets us pretty close to C.UTF-8, but
in a way that should be portable to everywhere QEMU builds.
This patch only forces UTF-8 for QAPI scripts, since that is the one
showing the immediate error under Python3 with C locale, but potentially
we ought to force this for all python scripts used in the build process.
Backports commit d4e5ec877ca698a87dabe68814c6f93668f50c60 from qemu
Some early python 3.x versions will have different default
ordering when calling the 'values()' method on a dict, compared
to python 2.x and later 3.x versions. Explicitly sort the items
to get a stable ordering.
Backports commit f7a5376d4b667cf6c83c1d640e32d22456d7b5ee from qemu
The OrderedDict class appeared in the 'collections' module
from python 2.7 onwards, so use that in preference to our
local backport if available.
Backports commit 38710a8994911d98acbe183a39ec3a53638de510 from qemu
The iteritems()/itervalues() methods are gone in py3, but the
items()/values() methods are still around. The latter are less
efficient than the former in py2, but this has unmeasurably
small impact on QEMU build time, so taking portability over
efficiency is a net win.
Backports commit 2f8480447067d6f42af52a886385284ead052af9 from qemu
Python 3 no longer supports the bare "print" statement, it must be
called as a normal function with round brackets. It is possible to
opt-in to this new syntax with Python 2.6 onwards by importing the
"print_function" from the "__future__" module, making it easy to
support Python 2 and 3 in parallel.
Backports commit ef9d9108917d6d5f903bca31602827e512a51c50 from qemu
The instruction "moves" can select source and destination
address space (user or kernel). This patch modifies
all the load/store functions to be able to provide
the address space the caller wants to use instead
of using the current one. All the callers are modified
to provide the default address space to these functions.
Backports commit 54e1e0b5b5ce4fc76335b1fbbf09cb8fdd5ab89d from qemu
Only add MC68040 MMU page table processing and related
registers (Special Status Word, Translation Control Register,
User Root Pointer and Supervisor Root Pointer).
Transparent Translation Registers, DFC/SFC and pflush/ptest
will be added later.
Backports commit 88b2fef6c3c3b45ac0dc2196ace7248a09c8e41d from qemu
The MC68040 MMU provides the size of the access that
triggers the page fault.
This size is set in the Special Status Word which
is written in the stack frame of the access fault
exception.
So we need the size in m68k_cpu_unassigned_access() and
m68k_cpu_handle_mmu_fault().
To be able to do that, this patch modifies the prototype of
handle_mmu_fault handler, tlb_fill() and probe_write().
do_unassigned_access() already includes a size parameter.
This patch also updates handle_mmu_fault handlers and
tlb_fill() of all targets (only parameter, no code change).
Backports commit 98670d47cd8d63a529ff230fd39ddaa186156f8c from qemu
Rather than passing a regno to the helper, pass pointers to the
vector register directly. This eliminates the need to pass in
the environment pointer and reduces the number of places that
directly access env->vfp.regs[].
Backports commit e7c06c4e4c98c47899417f154df1f2ef4e8d09a0 from qemu
Rather than passing regnos to the helpers, pass pointers to the
vector registers directly. This eliminates the need to pass in
the environment pointer and reduces the number of places that
directly access env->vfp.regs[].
Backports commit b13708bbbdda54c7f7e28222b22453986c026391 from qemu
Rather than passing regnos to the helpers, pass pointers to the
vector registers directly. This eliminates the need to pass in
the environment pointer and reduces the number of places that
directly access env->vfp.regs[].
Backports commit 1a66ac61af45af04688d1d15896737310e366c06 from qemu
Commit ("3b39d734141a target/arm: Handle page table walk load failures
correctly") modified both versions of the page table walking code (i.e.,
arm_ldl_ptw and arm_ldq_ptw) to record the result of the translation in
a temporary 'data' variable so that it can be inspected before being
returned. However, arm_ldq_ptw() returns an uint64_t, and using a
temporary uint32_t variable truncates the upper bits, corrupting the
result. This causes problems when using more than 4 GB of memory in
a TCG guest. So use a uint64_t instead.
Backports commit 9aea1ea31af25fe344a88da086ff913cca09c667 from qemu
The code sequence we were generating was only good for unsigned
comparisons. For signed comparisions, use the sequence from gcc.
Fixes booting of ppc64 firmware, with a patch changing the code
sequence for ppc comparisons.
Backports commit 7170ac33135e6ecf89752d3949bcecf9b9766d1c from qemu
It is more typical to provide the ';' by the caller of a macro
than to embed it in the macro itself; this is because syntax
highlight engines can get confused if a macro is called without
a semicolon before the closing '}'.
Backports commit 94f5c480e9b5ce95394026b3f025816470e23eaf from qemu
Move generic make flags in MAKEFLAGS (SUBDIR_MAKEFLAGS is more qemu specific).
Use --quiet to silence make 'is up to date' message.
Backports commit 42a77f1ce4934b243df003f95bda88530631387a from qemu
Instead of ignoring the response from address_space_ld*()
(indicating an attempt to read a page table descriptor from
an invalid physical address), use it to report the failure
correctly.
Since this is another couple of locations where we need to
decide the value of the ARMMMUFaultInfo ea bit based on a
MemTxResult, we factor out that operation into a helper
function.
Backports commit 3b39d734141a71296d08af3d4c32f872fafd782e from qemu
For PMSAv7, the v7A/R Arm ARM defines that setting AP to 0b111
is an UNPREDICTABLE reserved combination. However, for v7M
this value is documented as having the same behaviour as 0b110:
read-only for both privileged and unprivileged. Accept this
value on an M profile core rather than treating it as a guest
error and a no-access page.
Backports commit 8638f1ad7403b63db880dadce38e6690b5d82b64 from qemu
Refactor disas_thumb2_insn() so that it generates the code for raising
an UNDEF exception for invalid insns, rather than returning a flag
which the caller must check to see if it needs to generate the UNDEF
code. This brings the function in to line with the behaviour of
disas_thumb_insn() and disas_arm_insn().
Backports commit 2eea841c11096e8dcc457b80e21f3fbdc32d2590 from qemu
ldxp loads two consecutive doublewords from memory regardless of CPU
endianness. On store, stlxp currently assumes to work with a 128bit
value and consequently switches order in big-endian mode. With this
change it packs the doublewords in reverse order in anticipation of the
128bit big-endian store operation interposing them so they end up in
memory in the right order. This makes it work for both MTTCG and !MTTCG.
It effectively implements the ARM ARM STLXP operation pseudo-code:
data = if BigEndian() then el1:el2 else el2:el1;
With this change an aarch64_be Linux 4.14.4 kernel succeeds to boot up
in system emulation mode.
Backports commit 0785557f8811133bd69be02aeccf018d47a26373 from qemu
This code is preventing the MMU debug code from displaying virtual
mappings of IO devices (anything that is not located in the RAM).
Before this patch, Qemu would output 0xffffffffffffffff (-1) as the
physical address corresponding to an IO device virtual address.
With this patch the intended physical address is displayed.
Backports commit 7e450a8f50ac12fc8f69b6ce555254c84efcf407 from qemu
Add the third stack pointer, the Interrupt Stack Pointer (ISP)
(680x0 only). This stack will be needed in softmmu mode.
Update movec to set/get the value of the three stacks.
Backports commit 6e22b28e22aa6ed1b8db6f24da2633868019d4c9 from qemu
Some cleanup, and allows SR to be moved from any addressing mode.
Previous code was wrong for coldfire: coldfire also allows to
use addressing mode to set SR/CCR. It only supports Data register
to get SR/CCR (move from)
Backports commit b6a21d8d8f69ac04fd6180e752a65d582c07e948 from qemu
The instruction traps if the CPU is not in
Supervisor state but the helper is empty because
there is no easy way to reset all the peripherals
without resetting the CPU itself.
Backports commit 0bdb2b3bf5660f892ddbfa09baea56cdca57ad1d from qemu
Add cache lines invalidate and cache lines push
as no-op operations, as we don't have cache.
These instructions are 68040 only.
Backports commit f58ed1c50add3e76331afdc92387c0da9dd9e443 from qemu
move16 moves the source line to the destination line. Lines are aligned
to 16-byte boundaries and are 16 bytes long.
Backports commit 9d4f0429f3dc1dc6c67de3eaa3106e6c1cfa1524 from qemu
chk and chk2 compare a value to boundaries, and
trigger a CHK exception if the value is out of bounds.
Backports commit 8bf6cbaf396a8b54b138bb8a7c3377f2868ed16e from qemu
As gen_helper_get_ccr() is able to compute CCR from cc_op and
flags, we don't need to flush flags before to call it.
flush_flags() and get_ccr() use COMPUTE_CCR() to compute
flags. get_ccr() computes CCR value,
whereas flush_flags update live cc_op and flags.
Backports commit 4131c242cc850aaf76e59d4c787d220f07850cf5 from qemu
And remove update_cc_op() from gen_exception() because there is
one in gen_jmp_im().
Backports commit 7cd7b5ca9be805e8a4ced4c07014c24e34812f27 from qemu
We had two fields specific to INDEX_op_call. Rename these and
add some macros so that the fields may be reused for other opcodes.
Backports commit cd9090aa9dbba30db8aec9a2fc103aaf1ab0f5a7 from qemu
With no fixed array allocation, we can't overflow a buffer.
This will be important as optimizations related to host vectors
may expand the number of ops used.
Use QTAILQ to link the ops together.
Backports commit 15fa08f8451babc88d733bd411d4c94976f9d0f8 from qemu
cpu_restore_state officially supports being passed an address it can't
resolve the state for. As a result the checks in the helpers are
superfluous and can be removed. This makes the code consistent with
other users of cpu_restore_state.
Of course this does nothing to address what to do if cpu_restore_state
can't resolve the state but so far it seems this is handled elsewhere.
The change was made with included coccinelle script.
Backports commit 65255e8efdd5fca602bcc4ff61a879939ff75f4f from qemu
The first call of set_cc_op() in a new translation sequence
is done with old_op set to CC_OP_DYNAMIC (-1).
This will do an out of bound access to the array cc_op_live[].
We fix that by adding an entry in cc_op_live[] for CC_OP_DYNAMIC.
Backports commit 7deddf96e94f3e1eb3677db0ea7b53e61751b544 from qemu
Renaming cpu address space names so that they won't be the same when
there are more than one.
Backports commit 87a621d857be1b2b3dd1d0847ca311a863dbcb53 from qemu
Normally we create an address space for that CPU and pass that address
space into the function. Let's just do it inside to unify address space
creations. It'll simplify my next patch to rename those address spaces.
Backports commit 80ceb07a83375e3a0091591f96bd47bce2f640ce from qemu
These gcc warnings are fixed:
target/i386/translate.c:4461:12: warning:
variable 'prefixes' might be clobbered by 'longjmp' or 'vfork' [-Wclobbered]
target/i386/translate.c:4466:9: warning:
variable 'rex_w' might be clobbered by 'longjmp' or 'vfork' [-Wclobbered]
target/i386/translate.c:4466:16: warning:
variable 'rex_r' might be clobbered by 'longjmp' or 'vfork' [-Wclobbered]
Tested with x86_64-w64-mingw32-gcc from Debian stretch.
Backports commit a4926d99129a1d8072fc4681cd4efdb214f65ed4 from qemu
Intel IceLake cpu has added new cpu features,AVX512_VBMI2/GFNI/
VAES/VPCLMULQDQ/AVX512_VNNI/AVX512_BITALG. Those new cpu features
need expose to guest VM.
The bit definition:
CPUID.(EAX=7,ECX=0):ECX[bit 06] AVX512_VBMI2
CPUID.(EAX=7,ECX=0):ECX[bit 08] GFNI
CPUID.(EAX=7,ECX=0):ECX[bit 09] VAES
CPUID.(EAX=7,ECX=0):ECX[bit 10] VPCLMULQDQ
CPUID.(EAX=7,ECX=0):ECX[bit 11] AVX512_VNNI
CPUID.(EAX=7,ECX=0):ECX[bit 12] AVX512_BITALG
The release document ref below link:
https://software.intel.com/sites/default/files/managed/c5/15/\
architecture-instruction-set-extensions-programming-reference.pdf
Backports commit aff9e6e46a343e1404498be4edd03db1112f0950 from qemu
For some systems (i.e. FreeBSD) the default 'make' is not compatible with the
GNU extensions used by QEMU makefiles.
Calling the GNU make (gmake) works, however the help displayed refers to the
host 'make' and copy/paste leads to lot of unobvious errors:
$ gmake check-help
[...]
make check Run all tests
$ make check
make: "Makefile" line 28: Missing dependency operator
make: "Makefile" line 37: Need an operator
make: "Makefile" line 41: warning: duplicate script for target "git-submodule-update" ignored
make: "rules.mak" line 70: warning: duplicate script for target "%.o" ignored
make: Unknown modifier ' '
make: Unclosed substitution for eval modules (= missing)
make: "tests/Makefile.include" line 24: Variable/Value missing from "export"
make: "tests/" line 1: warning: Zero byte read from file, skipping rest of line.
make: "tests/" line 1: Need an operator
make: "Makefile" line 660: warning: duplicate script for target "ifneq" ignored
make: "Makefile" line 78: warning: using previous script for "ifneq" defined here
make: Fatal errors encountered -- cannot continue
Using the $(MAKE) variable, the help displayed is consistent with the 'make'
program used.
Backports commit b98a3bae2596fd9bf60f140d042c8e993daba930 from qemu
This was never used since its introduction in commit
196ea13104f8 ("memory: Add global-locking property to memory
regions").
Backports commit e2fbe20851ceec5ccd7b539a89db0420393fb85d from qemu
SPARC Linux has an oddity that it insists that mmap()
of MAP_FIXED memory must be at an alignment defined by
SHMLBA, which is more aligned than the page size
(typically, SHMLBA alignment is to 16K, and pages are 8K).
This is a relic of ancient hardware that had cache
aliasing constraints, but even on modern hardware the
kernel still insists on the alignment.
To ensure that we get mmap() alignment sufficient to
make the kernel happy, change QEMU_VMALLOC_ALIGN,
qemu_fd_getpagesize() and qemu_mempath_getpagesize()
to use the maximum of getpagesize() and SHMLBA.
In particular, this allows 'make check' to pass on Sparc:
we were previously failing the ivshmem tests.
Backports commit 57d1f6d7ce23e79a8ebe4a57bd2363b269b4664b from qemu
Now that do_ats_write() is entirely in control of whether to
generate a 32-bit PAR or a 64-bit PAR, we can make it use the
correct (complicated) condition for doing so.
Backports commit 1313e2d7e2cd8b21741e0cf542eb09dfc4188f79 from qemu
All of the callers of get_phys_addr() and arm_tlb_fill() now ignore
the FSR values they return, so we can just remove the argument
entirely.
Backports commit bc52bfeb3be2052942b7dac8ba284f342ac9605b from qemu
In do_ats_write(), rather than using the FSR value from get_phys_addr(),
construct the PAR values using the information in the ARMMMUFaultInfo
struct. This allows us to create a PAR of the correct format regardless
of what the translation table format is.
For the moment we leave the condition for "when should this be a
64 bit PAR" as it was previously; this will need to be fixed to
properly support AArch32 Hyp mode.
Backports commit 5efe9ed45dec775ebe91ce72bd805ee780d16064 from qemu
Now that ARMMMUFaultInfo is guaranteed to have enough information
to construct a fault status code, we can pass it in to the
deliver_fault() function and let it generate the correct type
of FSR for the destination, rather than relying on the value
provided by get_phys_addr().
I don't think there are any cases the old code was getting
wrong, but this is more obviously correct.
Backports commit 681f9a89d201d7891e2c60dff5e5415d8f618518 from qemu
Make get_phys_addr_pmsav8() return a fault type in the ARMMMUFaultInfo
structure, which we convert to the FSC at the callsite.
Backports commit 3f551b5b7380ff131fe22944aa6f5b166aa13caf from qemu
Make get_phys_addr_pmsav7() return a fault type in the ARMMMUFaultInfo
structure, which we convert to the FSC at the callsite.
Backports commit 9375ad15338b24e06109071ac3a85df48a2cc2e6 from qemu
Make get_phys_addr_pmsav5() return a fault type in the ARMMMUFaultInfo
structure, which we convert to the FSC at the callsite.
Note that PMSAv5 does not define any guest-visible fault status
register, so the different "fsr" values we were previously
returning are entirely arbitrary. So we can just switch to using
the most appropriae fi->type values without worrying that we
need to special-case FaultInfo->FSC conversion for PMSAv5.
Backports commit 53a4e5c5b07b2f50c538511b74b0d3d4964695ea from qemu
Make get_phys_addr_v6() return a fault type in the ARMMMUFaultInfo
structure, which we convert to the FSC at the callsite.
Backports commit da909b2c23a68e57bbcb6be98229e40df606f0c8 from qemu
Make get_phys_addr_v6() return a fault type in the ARMMMUFaultInfo
structure, which we convert to the FSC at the callsite.
Backports commit f06cf243945ccb24cb9578304306ae7fcb4cf3fd from qemu
Make get_phys_addr_v5() return a fault type in the ARMMMUFaultInfo
structure, which we convert to the FSC at the callsite.
Backports commit f989983e8dc9be6bc3468c6dbe46fcb1501a740c from qemu
All the callers of arm_ldq_ptw() and arm_ldl_ptw() ignore the value
that those functions store in the fsr argument on failure: if they
return failure to their callers they will always overwrite the fsr
value with something else.
Remove the argument from these functions and S1_ptw_translate().
This will simplify removing fsr from the calling functions.
Backports commit 3795a6de9f7ec4a7e3dcb8bf02a88a014147b0b0 from qemu
Currently get_phys_addr() and its various subfunctions return
a hard-coded fault status register value for translation
failures. This is awkward because FSR values these days may
be either long-descriptor format or short-descriptor format.
Worse, the right FSR type to use doesn't depend only on the
translation table being walked -- some cases, like fault
info reported to AArch32 EL2 for some kinds of ATS operation,
must be in long-descriptor format even if the translation
table being walked was short format. We can't get those cases
right with our current approach.
Provide fields in the ARMMMUFaultInfo struct which allow
get_phys_addr() to provide sufficient information for a caller to
construct an FSR value themselves, and utility functions which do
this for both long and short format FSR values, as a first step in
switching get_phys_addr() and its children to only returning the
failure cause in the ARMMMUFaultInfo struct.
Backports commit 1fa498fe0de979030bd1f481046e9f1c5574a584 from qemu
Implement the TT instruction which queries the security
state and access permissions of a memory location.
Backports commit 5158de241b0fb344a6c948dfcbc4e611ab5fafbe from qemu
For the TT instruction we're going to need to do an MPU lookup that
also tells us which MPU region the access hit. This requires us
to do the MPU lookup without first doing the SAU security access
check, so pull the MPU lookup parts of get_phys_addr_pmsav8()
out into their own function.
The TT instruction also needs to know the MPU region number which
the lookup hit, so provide this information to the caller of the
MPU lookup code, even though get_phys_addr_pmsav8() doesn't
need to know it.
Backports commit 54317c0ff3a3c0f6b2c3a1d3c8b5d93686a86d24 from qemu
The TT instruction is going to need to look up the MMU index
for a specified security and privilege state. Refactor the
existing arm_v7m_mmu_idx_for_secstate() into a version that
lets you specify the privilege state and one that uses the
current state of the CPU.
Backports commit ec8e3340286a87d3924c223d60ba5c994549f796 from qemu
For M profile, we currently have an mmu index MNegPri for
"requested execution priority negative". This fails to
distinguish "requested execution priority negative, privileged"
from "requested execution priority negative, usermode", but
the two can return different results for MPU lookups. Fix this
by splitting MNegPri into MNegPriPriv and MNegPriUser, and
similarly for the Secure equivalent MSNegPri.
This takes us from 6 M profile MMU modes to 8, which means
we need to bump NB_MMU_MODES; this is OK since the point
where we are forced to reduce TLB sizes is 9 MMU modes.
(It would in theory be possible to stick with 6 MMU indexes:
{mpu-disabled,user,privileged} x {secure,nonsecure} since
in the MPU-disabled case the result of an MPU lookup is
always the same for both user and privileged code. However
we would then need to rework the TB flags handling to put
user/priv into the TB flags separately from the mmuidx.
Adding an extra couple of mmu indexes is simpler.)
Backports commit 62593718d77c06ad2b5e942727cead40775d2395 from qemu
When we added the ARMMMUIdx_MSUser MMU index we forgot to
add it to the case statement in regime_is_user(), so we
weren't treating it as unprivileged when doing MPU lookups.
Correct the omission.
Backports commit 871bec7c44a453d9cab972ce1b5d12e1af0545ab from qemu
In ARMv7M the CPU ignores explicit writes to CONTROL.SPSEL
in Handler mode. In v8M the behaviour is slightly different:
writes to the bit are permitted but will have no effect.
We've already done the hard work to handle the value in
CONTROL.SPSEL being out of sync with what stack pointer is
actually in use, so all we need to do to fix this last loose
end is to update the condition we use to guard whether we
call write_v7m_control_spsel() on the register write.
Backports commit 83d7f86d3d27473c0aac79c1baaa5c2ab01b02d9 from qemu
For v8M it is possible for the CONTROL.SPSEL bit value and the
current stack to be out of sync. This means we need to update
the checks used in reads and writes of the PSP and MSP special
registers to use v7m_using_psp() rather than directly checking
the SPSEL bit in the control register.
Backports commit 1169d3aa5b19adca9384d954d80e1f48da388284 from qemu
EPYC-IBPB is a copy of the EPYC CPU model with
just CPUID_8000_0008_EBX_IBPB added.
Backports commit 8ebfafa796ca0cb2b035a7f06f836a675d8b48be from qemu
The new MSR IA32_SPEC_CTRL MSR was introduced by a recent Intel
microcode updated and can be used by OSes to mitigate
CVE-2017-5715. Unfortunately we can't change the existing CPU
models without breaking existing setups, so users need to
explicitly update their VM configuration to use the new *-IBRS
CPU model if they want to expose IBRS to guests.
The new CPU models are simple copies of the existing CPU models,
with just CPUID_7_0_EDX_SPEC_CTRL added and model_id updated.
Backports commit 61efbbf869293f1deb9ee39d44bd4e635de59fa7 from qemu
Add the new feature word and the "ibpb" feature flag.
Based on a patch by Paolo Bonzini.
Backports commit 1ade973f5202404e772aae7b1acd331270d246dc from qemu
It is valid to have a 48-character model ID on CPUID, however the
definition of X86CPUDefinition::model_id is char[48], which can
make the compiler drop the null terminator from the string.
If a CPU model happens to have 48 bytes on model_id, "-cpu help"
will print garbage and the object_property_set_str() call at
x86_cpu_load_def() will read data outside the model_id array.
We could increase the array size to 49, but this would mean the
compiler would not issue a warning if a 49-char string is used by
mistake for model_id.
To make things simpler, simply change model_id to be const char*,
and validate the string length using an assert() on
x86_register_cpudef_type().
Backports commit 4b220d88ba76fb2623ce4b8ba1f1eea66b82144e from qemu
In commit e3af7c788b73a6495eb9d94992ef11f6ad6f3c56 we
replaced direct calls to to cpu_ld*_code() with calls
to the x86_ld*_code() wrappers which incorporate an
advance of s->pc. Unfortunately we didn't notice that
in one place the old code was deliberately not incrementing
s->pc:
@@ -4501,7 +4528,7 @@ static target_ulong disas_insn(DisasContext *s, CPUState *cpu)
static const int pp_prefix[4] = {
0, PREFIX_DATA, PREFIX_REPZ, PREFIX_REPNZ
};
- int vex3, vex2 = cpu_ldub_code(env, s->pc);
+ int vex3, vex2 = x86_ldub_code(env, s);
if (!CODE64(s) && (vex2 & 0xc0) != 0xc0) {
/* 4.1.4.6: In 32-bit mode, bits [7:6] must be 11b,
This meant we were mishandling this set of instructions.
Remove the manual advance of s->pc for the "is VEX" case
(which is now done by x86_ldub_code()) and instead rewind
PC in the case where we decide that this isn't really VEX.
Backports commit 817a9fcba8043faa467929e7b0193df6bdc92211 from qemu
The refactoring of commit 296e5a0a6c3935 has a nasty bug:
it accidentally dropped the generation of code to raise
the UNDEF exception when disas_thumb2_insn() returns nonzero.
This means that 32-bit Thumb2 instruction patterns that
ought to UNDEF just act like nops instead. This is likely
to break any number of things, including the kernel's "disable
the FPU and use the UNDEF exception to identify when to turn
it back on again" trick.
Backports commit 7472e2efb049ea65a6a5e7261b78ebf5c561bc2f from qemu
In our various supported host OSes, the time_t type may be either 32
or 64 bit, and could in theory also be either signed or unsigned.
Notably, in OpenBSD time_t is a 64 bit type even if 'long' is 32
bits, so using LONG_MAX for TIME_MAX is incorrect.
Use an approach suggested by Paolo Bonzini which calculates
the maximum value of the type rather than hardcoding it;
to do this we use the TYPE_MAXIMUM macro from Gnulib.
Backports commit e7b47c22e2df14d55e3e4426688c929bf8e3f7fb from qemu
In do_ats_write(), rather than using extended_addresses_enabled() to
decide whether the value we get back from get_phys_addr() is a 64-bit
format PAR or a 32-bit one, use arm_s1_regime_using_lpae_format().
This is not really the correct answer, because the PAR format
depends on the AT instruction being used, not just on the
translation regime. However getting this correct requires a
significant refactoring, so that get_phys_addr() returns raw
information about the fault which the caller can then assemble
into a suitable FSR/PAR/syndrome for its purposes, rather than
get_phys_addr() returning a pre-formatted FSR.
However this change at least improves the situation by making
the PAR work correctly for address translation operations done
at AArch64 EL2 on the EL2 translation regime. In particular,
this is necessary for Xen to be able to run in our emulation,
so this seems like a safer interim fix given that we are in freeze.
Backports commit 50cd71b0d347c74517dcb7da447fe657fca57d9c from qemu
The CPU ID registers ID_AA64PFR0_EL1, ID_PFR1_EL1 and ID_PFR1
have a field for reporting presence of GICv3 system registers.
We need to report this field correctly in order for Xen to
work as a guest inside QEMU emulation. We mustn't incorrectly
claim the sysregs exist when they don't, though, or Linux will
crash.
Unfortunately the way we've designed the GICv3 emulation in QEMU
puts the system registers as part of the GICv3 device, which
may be created after the CPU proper has been realized. This
means that we don't know at the point when we define the ID
registers what the correct value is. Handle this by switching
them to calling a function at runtime to read the value, where
we can fill in the GIC field appropriately.
Backports commit 96a8b92ed8f02d5e86ad380d3299d9f41f99b072 from qemu
We use raw memory primitives along the !parallel_cpus paths in order to
simplify the endianness handling. Because of that, we did not benefit
from the generic changes to cpu_ldst_user_only_template.h.
The simplest fix is to manipulate helper_retaddr here.
Backports commit 3bdb5fcc9a08a9a47ce30c4e0c2d64c95190b49d from qemu
When we handle a signal from a fault within a user-only memory helper,
we cannot cpu_restore_state with the PC found within the signal frame.
Use a TLS variable, helper_retaddr, to record the unwind start point
to find the faulting guest insn.
Backports commit ec603b5584fa71213ef8f324fe89e4b27cc9d2bc from qemu
When we handle a signal from a fault within a user-only memory helper,
we cannot cpu_restore_state with the PC found within the signal frame.
Use a TLS variable, helper_retaddr, to record the unwind start point
to find the faulting guest insn.
Backports commit ec603b5584fa71213ef8f324fe89e4b27cc9d2bc from qemu
Fixes the following warning when compiling with gcc 5.4.0 with -O1
optimizations and --enable-debug:
target/arm/translate-a64.c: In function ‘aarch64_tr_translate_insn’:
target/arm/translate-a64.c:2361:8: error: ‘post_index’ may be used uninitialized in this function [-Werror=maybe-uninitialized]
if (!post_index) {
^
target/arm/translate-a64.c:2307:10: note: ‘post_index’ was declared here
bool post_index;
^
target/arm/translate-a64.c:2386:8: error: ‘writeback’ may be used uninitialized in this function [-Werror=maybe-uninitialized]
if (writeback) {
^
target/arm/translate-a64.c:2308:10: note: ‘writeback’ was declared here
bool writeback;
^
Note that idx comes from selecting 2 bits, and therefore its value
can be at most 3.
Backports commit 5ca66278c859bb1ded243755aeead2be6992ce73 from qemu
For AArch32 LDREXD and STREXD, architecturally the 32-bit word at the
lowest address is always Rt and the one at addr+4 is Rt2, even if the
CPU is big-endian. Our implementation does these with a single
64-bit store, so if we're big-endian then we need to put the two
32-bit halves together in the opposite order to little-endian,
so that they end up in the right places. We were trying to do
this with the gen_aa32_frob64() function, but that is not correct
for the usermode emulator, because there there is a distinction
between "load a 64 bit value" (which does a BE 64-bit access
and doesn't need swapping) and "load two 32 bit values as one
64 bit access" (where we still need to do the swapping, like
system mode BE32).
Backports commit 3448d47b3172015006b79197eb5a69826c6a7b6d from qemu
On a successful address translation instruction, PAR is supposed to
contain cacheability and shareability attributes determined by the
translation. We previously returned 0 for these bits (in line with the
general strategy of ignoring caches and memory attributes), but some
guest OSes may depend on them.
This patch collects the attribute bits in the page-table walk, and
updates PAR with the correct attributes for all LPAE translations.
Short descriptor formats still return 0 for these bits, as in the
prior implementation.
Backports commit 5b2d261d60caf9d988d91ca1e02392d6fc8ea104 from qemu
GCC 4.9 and newer stopped warning for missing braces around the
"universal" C zero initializer {0}. One such initializer sneaked
into scsi/qemu-pr-helper.c and is breaking the build with such
older GCC versions.
Detect the lack of support for the idiom, and disable the warning
in that case.
Backports commit 20bc94a2b8449b7700b6bfa25a87ce2320a1c649 from qemu
Rather than have separate code only used for guest_base,
rely on a recent change to handle constant pool entries.
Backports commit ba2c747992f8c315c2fbddba196ce9137430d61d from qemu
Both ARMv6 and AArch64 currently may drop complex guest_base values
into the constant pool. But generic code wasn't expecting that, and
the pool is not emitted. Correct that.
Backports commit 5b38ee31616d1532c3c3a6dc644a9160d608ed2f from qemu
WFI/E are often, but not always, 4 bytes long. When they are, we need to
set ARM_EL_IL_SHIFT in the syndrome register.
Pass the instruction length to HELPER(wfi), use it to decrement pc
appropriately and to pass an is_16bit flag to syn_wfx, which sets
ARM_EL_IL_SHIFT if needed.
Set dc->insn in both arm_tr_translate_insn and thumb_tr_translate_insn.
Backports commit 58803318e5a546b2eb0efd7a053ed36b6c29ae6f from qemu
Using the offset of a temporary, relative to TCGContext, rather than
its index means that we don't use 0. That leaves offset 0 free for
a NULL representation without having to leave index 0 unused.
Backports commit e89b28a63501c0ad6d2501fe851d0c5202055e70 from qemu
When we used structures for TCGv_*, we needed a macro in order to
perform a comparison. Now that we use pointers, this is just clutter
Backports commit 11f4e8f8bfaa2caaab24bef6bbbb8a0205015119 from qemu
The GET and MAKE functions weren't really specific enough.
We now have a full complement of functions that convert exactly
between temporaries, arguments, tcgv pointers, and indices.
The target/sparc change is also a bug fix, which would have affected
a host that defines TCG_TARGET_HAS_extr[lh]_i64_i32, i.e. MIPS64.
Backports commit dc41aa7d34989b552efe712ffe184236216f960b from qemu
Transform TCGv_* to an "argument" or a temporary.
For now, an argument is simply the temporary index.
Backports commit ae8b75dc6ec808378487064922f25f1e7ea7a9be from qemu
While we're touching many of the lines anyway, adjust the naming
of the functions to better distinguish when "TCGArg" vs "TCGTemp"
should be used.
Backports commit 6349039d0b06eda59820629b934944246b14a1c1 from qemu
Copy s->nb_globals or s->nb_temps to a local variable for the purposes
of iteration. This should allow the compiler to use low-overhead
looping constructs on some hosts.
Backports commit ac3b88911ebc6fc841f28898ee8aed40839debe2 from qemu
Rather than have a separate buffer of 10*max_ops entries,
give each opcode 10 entries. The result is actually a bit
smaller and should have slightly more cache locality.
Backports commit 75e8b9b7aa0b95a761b9add7e2f09248b101a392 from qemu
Besides being more correct, arbitrarily long instruction allow the
generation of a translation block that spans three pages. This
confuses the generator and even allows ring 3 code to poison the
translation block cache and inject code into other processes that are
in guest ring 3.
This is an improved (and more invasive) fix for commit 30663fd ("tcg/i386:
Check the size of instruction being translated", 2017-03-24). In addition
to being more precise (and generating the right exception, which is #GP
rather than #UD), it distinguishes better between page faults and too long
instructions, as shown by this test case:
int main()
{
char *x = mmap(NULL, 8192, PROT_READ|PROT_WRITE|PROT_EXEC,
MAP_PRIVATE|MAP_ANON, -1, 0);
memset(x, 0x66, 4096);
x[4096] = 0x90;
x[4097] = 0xc3;
char *i = x + 4096 - 15;
mprotect(x + 4096, 4096, PROT_READ|PROT_WRITE);
((void(*)(void)) i) ();
}
... which produces a #GP without the mprotect, and a #PF with it.
Backports commit b066c5375737ad0d630196dab2a2b329515a1d00 from qemu
These take care of advancing s->pc, and will provide a unified point
where to check for the 15-byte instruction length limit.
Backports commit e3af7c788b73a6495eb9d94992ef11f6ad6f3c56 from qemu
Most of the users of page_set_flags offset (page, page + len) as
the end points. One might consider this an error, since the other
users do supply an endpoint as the last byte of the region.
However, the first thing that page_set_flags does is round end UP
to the start of the next page. Which means computing page + len - 1
is in the end pointless. Therefore, accept this usage and do not
assert when given the exact size of the vm as the endpoint.
Backports commit de258eb07db6cf893ef1bfad8c0cedc0b983db55 from qemu
DEFINE_TYPES() will help to simplify following routine patterns:
static void foo_register_types(void)
{
type_register_static(&foo1_type_info);
type_register_static(&foo2_type_info);
...
}
type_init(foo_register_types)
or
static void foo_register_types(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(type_infos); i++) {
type_register_static(&type_infos[i]);
}
}
type_init(foo_register_types)
with a single line
DEFINE_TYPES(type_infos)
where types have static definition which could be consolidated in
a single array of TypeInfo structures.
It saves us ~6-10LOC per use case and would help to replace
imperative foo_register_types() there with declarative style of
type registration.
Backports commit 38b5d79b2e8cf6085324066d84e8bb3b3bbe8548 from qemu
it will help to remove code duplication of registration
static types in places that have open coded loop to
perform batch type registering.
Backports commit aa04c9d20704fa5b9ab239d5111adbcce5f49808 from qemu
The common situation of the SG instruction is that it is
executed from S&NSC memory by a CPU in NS state. That case
is handled by v7m_handle_execute_nsc(). However the instruction
also has defined behaviour in a couple of other cases:
* SG instruction in NS memory (behaves as a NOP)
* SG in S memory but CPU already secure (clears IT bits and
does nothing else)
* SG instruction in v8M without Security Extension (NOP)
These can be implemented in translate.c.
Backports commit 76eff04d166b8fe747adbe82de8b7e060e668ff9 from qemu
A few Thumb instructions are always unconditional even inside an
IT block (as opposed to being UNPREDICTABLE if used inside an
IT block): BKPT, the v8M SG instruction, and the A profile
HLT (debug halt) instruction.
This means we need to suppress the jump-over-instruction-on-condfail
code generation (though the IT state still advances as usual and
subsequent insns in the IT block may be conditional).
Backports commit dcf14dfb704519846f396a376339ebdb93eaf049 from qemu
Recent changes have left insn_crosses_page() more complicated
than it needed to be:
* it's only called from thumb_tr_translate_insn() so we know
for certain that we're looking at a Thumb insn
* the caller's check for dc->pc >= dc->next_page_start - 3
means that dc->pc can't possibly be 4 aligned, so there's
no need to check that (the check was partly there to ensure
that we didn't treat an ARM insn as Thumb, I think)
* we now have thumb_insn_is_16bit() which lets us do a precise
check of the length of the next insn, rather than opencoding
an inaccurate check
Simplify it down to just loading the first half of the insn
and calling thumb_insn_is_16bit() on it.
Backports commit 5b8d7289e9e92a0d7bcecb93cd189e245fef10cd from qemu
Refactor the Thumb decode to do the loads of the instruction words at
the top level rather than only loading the second half of a 32-bit
Thumb insn in the middle of the decode.
This is simple apart from the awkward case of Thumb1, where the
BL/BLX prefix and suffix instructions live in what in Thumb2 is the
32-bit insn space. To handle these we decode enough to identify
whether we're looking at a prefix/suffix that we handle as a 16 bit
insn, or a prefix that we're going to merge with the following suffix
to consider as a 32 bit insn. The translation of the 16 bit cases
then moves from disas_thumb2_insn() to disas_thumb_insn().
The refactoring has the benefit that we don't need to pass the
CPUARMState* down into the decoder code any more, but the major
reason for doing this is that some Thumb instructions must be always
unconditional regardless of the IT state bits, so we need to know the
whole insn before we emit the "skip this insn if the IT bits and cond
state tell us to" code. (The always unconditional insns are BKPT,
HLT and SG; the last of these is 32 bits.)
Backports commit 296e5a0a6c393553079a641c50521ae33ff89324 from qemu
The code which implements the Thumb1 split BL/BLX instructions
is guarded by a check on "not M or THUMB2". All we really need
to check here is "not THUMB2" (and we assume that elsewhere too,
eg in the ARCH(6T2) test that UNDEFs the Thumb2 insns).
This doesn't change behaviour because all M profile cores
have Thumb2 and so ARM_FEATURE_M implies ARM_FEATURE_THUMB2.
(v6M implements a very restricted subset of Thumb2, but we
can cross that bridge when we get to it with appropriate
feature bits.)
Backports commit 6b8acf256df09c8a8dd7dcaa79b06eaff4ad63f7 from qemu
Secure function return happens when a non-secure function has been
called using BLXNS and so has a particular magic LR value (either
0xfefffffe or 0xfeffffff). The function return via BX behaves
specially when the new PC value is this magic value, in the same
way that exception returns are handled.
Adjust our BX excret guards so that they recognize the function
return magic number as well, and perform the function-return
unstacking in do_v7m_exception_exit().
Backports commit d02a8698d7ae2bfed3b11fe5b064cb0aa406863b from qemu
Implement the SG instruction, which we emulate 'by hand' in the
exception handling code path.
Backports commit 333e10c51ef5876ced26f77b61b69ce0f83161a9 from qemu
Add the M profile secure MMU index values to the switch in
get_a32_user_mem_index() so that LDRT/STRT work correctly
rather than asserting at translate time.
Backports commit b9f587d62cebed427206539750ebf59bde4df422 from qemu
In preparation for adding tc.size to be able to keep track of
TB's using the binary search tree implementation from glib.
Backports commit e7e168f41364c6e83d0f75fc1b3ce7f9c41ccf76 from qemu
This prevents bit rot by ensuring the debug code is compiled when
building a user-mode target.
Unfortunately the helpers are user-mode-only so we cannot fully
get rid of the ifdef checks. Add a comment to explain this.
Backports commit 6eb062abd66611333056633899d3f09c2e795f4c from qemu
This gets rid of an ifdef check while ensuring that the debug code
is compiled, which prevents bit rot.
Backports commit dae9e03aed8e652f5dce2e5cab05dff83aa193b8 from qemu
And fix the following warning when DEBUG_TB_INVALIDATE is enabled
in translate-all.c:
CC mipsn32-linux-user/accel/tcg/translate-all.o
/data/src/qemu/accel/tcg/translate-all.c: In function ‘tb_alloc_page’:
/data/src/qemu/accel/tcg/translate-all.c:1201:16: error: format ‘%lx’ expects argument of type ‘long unsigned int’, but argument 2 has type ‘tb_page_addr_t {aka unsigned int}’ [-Werror=format=]
printf("protecting code page: 0x" TARGET_FMT_lx "\n",
^
cc1: all warnings being treated as errors
/data/src/qemu/rules.mak:66: recipe for target 'accel/tcg/translate-all.o' failed
make[1]: *** [accel/tcg/translate-all.o] Error 1
Makefile:328: recipe for target 'subdir-mipsn32-linux-user' failed
make: *** [subdir-mipsn32-linux-user] Error 2
cota@flamenco:/data/src/qemu/build ((18f3fe1...) *$)$
Backports commit 67a5b5d2f6eb6d3b980570223ba5c478487ddb6f from qemu
This gets rid of some ifdef checks while ensuring that the debug code
is compiled, which prevents bit rot.
Backports commit 424079c13b692cfcd08866bc9ffec77b887fed4e from qemu
It is unlikely that we will ever want to call this helper passing
an argument other than the current PC. So just remove the argument,
and use the pc we already get from cpu_get_tb_cpu_state.
This change paves the way to having a common "tb_lookup" function.
Backports commit 7f11636dbee89b0e4d03e9e2b96e14649a7db778 from qemu
Reusing the have_tb_lock name, which is also defined in translate-all.c,
makes code reviewing unnecessarily harder.
Avoid potential confusion by renaming the local have_tb_lock variable
to something else.
Backports commit 841710c78e022cbc1f798cced035789725702dac from qemu
It looks like there was a transcription error when writing this code
initially. The code previously only decoded src or dst of rax. This
resolves
https://bugs.launchpad.net/qemu/+bug/1719984.
Backports commit e0dd5fd41a1a38766009f442967fab700d2d0550 from qemu
For the SG instruction and secure function return we are going
to want to do memory accesses using the MMU index of the CPU
in secure state, even though the CPU is currently in non-secure
state. Write arm_v7m_mmu_idx_for_secstate() to do this job,
and use it in cpu_mmu_index().
Backports commit b81ac0eb6315e602b18439961e0538538e4aed4f from qemu
In cpu_mmu_index() we try to do this:
if (env->v7m.secure) {
mmu_idx += ARMMMUIdx_MSUser;
}
but it will give the wrong answer, because ARMMMUIdx_MSUser
includes the 0x40 ARM_MMU_IDX_M field, and so does the
mmu_idx we're adding to, and we'll end up with 0x8n rather
than 0x4n. This error is then nullified by the call to
arm_to_core_mmu_idx() which masks out the high part, but
we're about to factor out the code that calculates the
ARMMMUIdx values so it can be used without passing it through
arm_to_core_mmu_idx(), so fix this bug first.
Backports commit fe768788d29597ee56fc11ba2279d502c2617457 from qemu
Implement the security attribute lookups for memory accesses
in the get_phys_addr() functions, causing these to generate
various kinds of SecureFault for bad accesses.
The major subtlety in this code relates to handling of the
case when the security attributes the SAU assigns to the
address don't match the current security state of the CPU.
In the ARM ARM pseudocode for validating instruction
accesses, the security attributes of the address determine
whether the Secure or NonSecure MPU state is used. At face
value, handling this would require us to encode the relevant
bits of state into mmu_idx for both S and NS at once, which
would result in our needing 16 mmu indexes. Fortunately we
don't actually need to do this because a mismatch between
address attributes and CPU state means either:
* some kind of fault (usually a SecureFault, but in theory
perhaps a UserFault for unaligned access to Device memory)
* execution of the SG instruction in NS state from a
Secure & NonSecure code region
The purpose of SG is simply to flip the CPU into Secure
state, so we can handle it by emulating execution of that
instruction directly in arm_v7m_cpu_do_interrupt(), which
means we can treat all the mismatch cases as "throw an
exception" and we don't need to encode the state of the
other MPU bank into our mmu_idx values.
This commit doesn't include the actual emulation of SG;
it also doesn't include implementation of the IDAU, which
is a per-board way to specify hard-coded memory attributes
for addresses, which override the CPU-internal SAU if they
specify a more secure setting than the SAU is programmed to.
Backports commit 35337cc391245f251bfb9134f181c33e6375d6c1 from qemu
Implement the register interface for the SAU: SAU_CTRL,
SAU_TYPE, SAU_RNR, SAU_RBAR and SAU_RLAR. None of the
actual behaviour is implemented here; registers just
read back as written.
When the CPU definition for Cortex-M33 is eventually
added, its initfn will set cpu->sau_sregion, in the same
way that we currently set cpu->pmsav7_dregion for the
M3 and M4.
Number of SAU regions is typically a configurable
CPU parameter, but this patch doesn't provide a
QEMU CPU property for it. We can easily add one when
we have a board that requires it.
Backports commit 9901c576f6c02d43206e5faaf6e362ab7ea83246 from qemu
Add support for v8M and in particular the security extension
to the exception entry code. This requires changes to:
* calculation of the exception-return magic LR value
* push the callee-saves registers in certain cases
* clear registers when taking non-secure exceptions to avoid
leaking information from the interrupted secure code
* switch to the correct security state on entry
* use the vector table for the security state we're targeting
Backports commit d3392718e1fcf0859fb7c0774a8e946bacb8419c from qemu
For v8M, exceptions from Secure to Non-Secure state will save
callee-saved registers to the exception frame as well as the
caller-saved registers. Add support for unstacking these
registers in exception exit when necessary.
Backports commit 907bedb3f3ce134c149599bd9cb61856d811b8ca from qemu
In v8M, more bits are defined in the exception-return magic
values; update the code that checks these so we accept
the v8M values when the CPU permits them.
Backports commit bfb2eb52788b9605ef2fc9bc72683d4299117fde from qemu
Add the new M profile Secure Fault Status Register
and Secure Fault Address Register.
Backports commit bed079da04dd9e0e249b9bc22bca8dce58b67f40 from qemu
In the v8M architecture, return from an exception to a PC which
has bit 0 set is not UNPREDICTABLE; it is defined that bit 0
is discarded [R_HRJH]. Restrict our complaint about this to v7M.
Backports commit 4e4259d3c574a8e89c3af27bcb84bc19a442efb1 from qemu
Attempting to do an exception return with an exception frame that
is not 8-aligned is UNPREDICTABLE in v8M; warn about this.
(It is not UNPREDICTABLE in v7M, and our implementation can
handle the merely-4-aligned case fine, so we don't need to
do anything except warn.)
Backports commit cb484f9a6e790205e69d9a444c3e353a3a1cfd84 from qemu
ARM v8M specifies that the INVPC usage fault for mismatched
xPSR exception field and handler mode bit should be checked
before updating the PSR and SP, so that the fault is taken
with the existing stack frame rather than by pushing a new one.
Perform this check in the right place for v8M.
Since v7M specifies in its pseudocode that this usage fault
check should happen later, we have to retain the original
code for that check rather than being able to merge the two.
(The distinction is architecturally visible but only in
very obscure corner cases like attempting an invalid exception
return with an exception frame in read only memory.)
Backports commit 224e0c300a0098fb577a03bd29d774d0769f632a from qemu
On exception return for v8M, the SPSEL bit in the EXC_RETURN magic
value should be restored to the SPSEL bit in the CONTROL register
banked specified by the EXC_RETURN.ES bit.
Add write_v7m_control_spsel_for_secstate() which behaves like
write_v7m_control_spsel() but allows the caller to specify which
CONTROL bank to use, reimplement write_v7m_control_spsel() in
terms of it, and use it in exception return.
Backports commit 3f0cddeee1f266d43c956581f3050058360a810d from qemu
Now that we can handle the CONTROL.SPSEL bit not necessarily being
in sync with the current stack pointer, we can restore the correct
security state on exception return. This happens before we start
to read registers off the stack frame, but after we have taken
possible usage faults for bad exception return magic values and
updated CONTROL.SPSEL.
Backports commit 3919e60b6efd9a86a0e6ba637aa584222855ac3a from qemu
In the v7M architecture, there is an invariant that if the CPU is
in Handler mode then the CONTROL.SPSEL bit cannot be nonzero.
This in turn means that the current stack pointer is always
indicated by CONTROL.SPSEL, even though Handler mode always uses
the Main stack pointer.
In v8M, this invariant is removed, and CONTROL.SPSEL may now
be nonzero in Handler mode (though Handler mode still always
uses the Main stack pointer). In preparation for this change,
change how we handle this bit: rename switch_v7m_sp() to
the now more accurate write_v7m_control_spsel(), and make it
check both the handler mode state and the SPSEL bit.
Note that this implicitly changes the point at which we switch
active SP on exception exit from before we pop the exception
frame to after it.
Backports commit de2db7ec894f11931932ca78cd14a8d2b1389d5b from qemu
Currently our M profile exception return code switches to the
target stack pointer relatively early in the process, before
it tries to pop the exception frame off the stack. This is
awkward for v8M for two reasons:
* in v8M the process vs main stack pointer is not selected
purely by the value of CONTROL.SPSEL, so updating SPSEL
and relying on that to switch to the right stack pointer
won't work
* the stack we should be reading the stack frame from and
the stack we will eventually switch to might not be the
same if the guest is doing strange things
Change our exception return code to use a 'frame pointer'
to read the exception frame rather than assuming that we
can switch the live stack pointer this early.
Backports commit 5b5223997c04b769bb362767cecb5f7ec382c5f0 from qemu
This properly forwards SMC events to EL2 when PSCI is provided by QEMU
itself and, thus, ARM_FEATURE_EL3 is off.
Found and tested with the Jailhouse hypervisor. Solution based on
suggestions by Peter Maydell.
Backports commit 77077a83006c3c9bdca496727f1735a3c5c5355d from qemu
We have object_get_objects_root() to keep user created objects, however
no place for objects that will be used internally. Create such a
container for internal objects.
Backports commit 7c47c4ead75d0b733ee8f2f51fd1de0644cc1308 from qemu
This avoids a name clash with the access macro on windows 64:
make
CHK version_gen.h
CC aarch64-softmmu/memory.o
/home/konrad/qemu/memory.c: In function 'access_with_adjusted_size':
/home/konrad/qemu/memory.c:591:73: error: macro "access" passed 7 arguments, \
but takes just 2
(size - access_size - i) * 8, access_mask, attrs);
^
Backports commit 05e015f73c3b5c50c237d3d8e555e25cfa543a5c from qemu
Provide helpers to convert bitmaps to little endian format. It can be
used when we want to send one bitmap via network to some other hosts.
One thing to mention is that, these helpers only solve the problem of
endianess, but it does not solve the problem of different word size on
machines (the bitmaps managing same count of bits may contains different
size when malloced). So we need to take care of the size alignment issue
on the callers for now.
Backports commit d7788151a0807d5d2d410e3f8944d8c8a651f8d2 from qemu
In the A64 decoder, we have a lot of references to section numbers
from version A.a of the v8A ARM ARM (DDI0487). This version of the
document is now long obsolete (we are currently on revision B.a),
and various intervening versions renumbered all the sections.
The most recent B.a version of the document doesn't assign
section numbers at all to the individual instruction classes
in the way that the various A.x versions did. The simplest thing
to do is just to delete all the out of date C.x.x references.
Backports commit 4ce31af4aeb8471f6a913de7c59d3bde1fc4f03d from qemu
Now that we have a banked FAULTMASK register and banked exceptions,
we can implement the correct check in cpu_mmu_index() for whether
the MPU_CTRL.HFNMIENA bit's effect should apply. This bit causes
handlers which have requested a negative execution priority to run
with the MPU disabled. In v8M the test has to check this for the
current security state and so takes account of banking.
Backports relevant part of commit 5d4791991d4de12e83d44738417c9e964167b6e8 from qemu
In v8M the MSR and MRS instructions have extra register value
encodings to allow secure code to access the non-secure banked
version of various special registers.
(We don't implement the MSPLIM_NS or PSPLIM_NS aliases, because
we don't currently implement the stack limit registers at all.)
Backports commit 50f11062d4c896408731d6a286bcd116d1e08465 from qemu
Although none of the existing macro call-sites were broken,
it's always better to write macros that properly parenthesize
arguments that can be complex expressions, so that the intended
order of operations is not broken.
Backports commit 2a2be359c4335607c7f746cf27c412c08ab89aff from qemu
now cpu_mips_init() reimplements subset of cpu_generic_init()
tasks, so just drop it and use cpu_generic_init() directly.
Backports commit c4c8146cfd0fc3f95418fbc82a2eded594675022 from qemu
Register separate QOM types for each mips cpu model,
so it would be possible to reuse generic CPU creation
routines.
Backports commit 41da212c9ce9482fcfd490170c2611470254f8dc from qemu
This changes the order between cpu_mips_realize_env() and
cpu_exec_initfn(), but cpu_exec_initfn() don't have anything that
depends on cpu_mips_realize_env() being called first.
Backports commit df4dc10284e1d871db8adb512816a561473ffe3e from qemu
no logical change, only code movement (and fix a comment typo).
Backports commit 26aa3d9aecbb6fe9bce808a1d127191bdf3cc3d2 from qemu
Also backports commit 5502b66fc7d0bebd08b9b7017cb7e8b5261c3a2d
We already have several files that knowingly require assert()
to work, sometimes because refactoring the code for proper
error handling has not been tackled yet; there are probably
other files that have a similar situation but with no comments
documenting the same. In fact, we have places in migration
that handle untrusted input with assertions, where disabling
the assertions risks a worse security hole than the current
behavior of losing the guest to SIGABRT when migration fails
because of the assertion. Promote our current per-file
safety-valve to instead be project-wide, and expand it to also
cover glib's g_assert().
Note that we do NOT want to encourage 'assert(side-effects);'
(that is a bad practice that prevents copy-and-paste of code to
other projects that CAN disable assertions; plus it costs
unnecessary reviewer mental cycles to remember whether a project
special-cases the crippling of asserts); and we would LIKE to
fix migration to not rely on asserts (but that takes a big code
audit). But in the meantime, we DO want to send a message
that anyone that disables assertions has to tweak code in order
to compile, making it obvious that they are taking on additional
risk that we are not going to support. At the same time, leave
comments mentioning NDEBUG in files that we know still need to
be scrubbed, so there is at least something to grep for.
It would be possible to come up with some other mechanism for
doing runtime checking by default, but which does not abort
the program on failure, while leaving side effects in place
(unlike how crippling assert() avoids even the side effects),
perhaps under the name q_verify(); but it was not deemed worth
the effort (developers should not have to learn a replacement
when the standard C macro works just fine, and it would be a lot
of churn for little gain). The patch specifically uses #error
rather than #warn so that a user is forced to tweak the header
to acknowledge the issue, even when not using a -Werror
compilation.
Backports commit 262a69f4282e44426c7a132138581d400053e0a1 from qemu
Starting with Windows Server 2012 and Windows 8, if
CPUID.40000005.EAX contains a value of -1, Windows assumes specific
limit to the number of VPs. In this case, Windows Server 2012
guest VMs may use more than 64 VPs, up to the maximum supported
number of processors applicable to the specific Windows
version being used.
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/tlfs
For compatibility, Let's introduce a new property for X86CPU,
named "x-hv-max-vps" as Eduardo's suggestion, and set it
to 0x40 before machine 2.10.
(The "x-" prefix indicates that the property is not supposed to
be a stable user interface.)
Backports relevant parts of commit 6c69dfb67e84747cf071958594d939e845dfcc0c from qemu
The SSE4.1 phminposuw instruction finds the minimum 16-bit element in
the source vector, putting the value of that element in the low 16
bits of the destination vector, the index of that element in the next
three bits and zeroing the rest of the destination. The helper for
this operation fills the destination from high to low, meaning that
when the source and destination are the same register, the minimum
source element can be overwritten before it is copied to the
destination. This patch fixes it to fill the destination from low to
high instead, so the minimum source element is always copied first.
This fixes one gcc test failure in my GCC 6-based testing (and so
concludes the present sequence of patches, as I don't have any further
gcc test failures left in that testing that I attribute to QEMU bugs).
Backports commit aa406feadfc5b095ca147ec56d6187c64be015a7 from qemu
One of the cases of the SSE4.2 pcmpestri / pcmpestrm / pcmpistri /
pcmpistrm instructions does a substring search. The implementation of
this case in the pcmpxstrx helper is incorrect. The operation in this
case is a search for a string (argument d to the helper) in another
string (argument s to the helper); if a copy of d at a particular
position would run off the end of s, the resulting output bit should
be 0 whether or not the strings match in the region where they
overlap, but the QEMU implementation was wrongly comparing only up to
the point where s ends and counting it as a match if an initial
segment of d matched a terminal segment of s. Here, "run off the end
of s" means that some byte of d would overlap some byte outside of s;
thus, if d has zero length, it is considered to match everywhere,
including after the end of s. This patch fixes the implementation to
correspond with the proper instruction semantics. This fixes four gcc
test failures in my GCC 6-based testing.
Backports commit ae35eea7e4a9f21dd147406dfbcd0c4c6aaf2a60 from qemu
The SSE4.1 packusdw instruction combines source and destination
vectors of signed 32-bit integers into a single vector of unsigned
16-bit integers, with unsigned saturation. When the source and
destination are the same register, this means each 32-bit element of
that register is used twice as an input, to produce two of the 16-bit
output elements, and so if the operation is carried out
element-by-element in-place, no matter what the order in which it is
applied to the elements, the first element's operation will overwrite
some future input. The helper for packssdw avoids this issue by
computing the result in a local temporary and copying it to the
destination at the end; this patch fixes the packusdw helper to do
likewise. This fixes three gcc test failures in my GCC 6-based
testing.
Backports commit 80e19606215d4df370dfe8fe21c558a129f00f0b from qemu
It turns out that my recent fix to set rip_offset when emulating some
SSE4.1 instructions needs generalizing to cover a wider class of
instructions. Specifically, every instruction in the sse_op_table7
table, coming from various instruction set extensions, has an 8-bit
immediate operand that comes after any memory operand, and so needs
rip_offset set for correctness if there is a memory operand that is
rip-relative, and my patch only set it for a subset of those
instructions. This patch moves the rip_offset setting to cover the
wider class of instructions, so fixing 9 further gcc testsuite
failures in my GCC 6-based testing. (I do not know whether there
might be still further classes of instructions missing this setting.)
Backports commit c6a8242915328cda0df0fbc0803da3448137e614 from qemu
The SSE4.1 pmovsx* and pmovzx* instructions take packed 1-byte, 2-byte
or 4-byte inputs and sign-extend or zero-extend them to a wider vector
output. The associated helpers for these instructions do the
extension on each element in turn, starting with the lowest. If the
input and output are the same register, this means that all the input
elements after the first have been overwritten before they are read.
This patch makes the helpers extend starting with the highest element,
not the lowest, to avoid such overwriting. This fixes many GCC test
failures (161 in the gcc testsuite in my GCC 6-based testing) when
testing with a default CPU setting enabling those instructions.
Backports commit c6a56c8e990b213a1638af2d34352771d5fa4d9c from qemu
It's not even clear what the interface REG and VAL32 were supposed to mean.
All uses had REG = 0 and VAL32 was the bitset assigned to the destination.
Backports commit f46934df662182097dce07d57ec00f37e4d2abf1 from qemu
Instead of copying addr to a local temp, reuse the value (which we
have just compared as equal) already saved in cpu_exclusive_addr.
Backports commit 37e29a64254bf82a1901784fcca17c25f8164c2f from qemu
Previously when single stepping through ERET instruction via GDB
would result in debugger entering the "next" PC after ERET instruction.
When debugging in kernel mode, this will also cause unintended behavior,
because debugger will try to access memory from EL0 point of view.
Backports commit dddbba9943ef6a81c8702e4a50cb0a8b1a4201fe from qemu
In the v7M and v8M ARM ARM, the magic exception return values are
referred to as EXC_RETURN values, and in QEMU we use V7M_EXCRET_*
constants to define bits within them. Rename the 'type' variable
which holds the exception return value in do_v7m_exception_exit()
to excret, making it clearer that it does hold an EXC_RETURN value.
Backports commit 351e527a613147aa2a2e6910f92923deef27ee48 from qemu
The exception-return magic values get some new bits in v8M, which
makes some bit definitions for them worthwhile.
We don't use the bit definitions for the switch on the low bits
which checks the return type for v7M, because this is defined
in the v7M ARM ARM as a set of valid values rather than via
per-bit checks.
Backports commit 4d1e7a4745c050f7ccac49a1c01437526b5130b5 from qemu
In do_v7m_exception_exit(), there's no need to force the high 4
bits of 'type' to 1 when calling v7m_exception_taken(), because
we know that they're always 1 or we could not have got to this
"handle return to magic exception return address" code. Remove
the unnecessary ORs.
Backports commit 7115cdf5782922611bcc44c89eec5990db7f6466 from qemu
For a bus fault, the M profile BFSR bit PRECISERR means a bus
fault on a data access, and IBUSERR means a bus fault on an
instruction access. We had these the wrong way around; fix this.
Backports commit c6158878650c01b2c753b2ea7d0967c8fe5ca59e from qemu
For M profile we must clear the exclusive monitor on reset, exception
entry and exception exit. We weren't doing any of these things; fix
this bug.
Backports commit dc3c4c14f0f12854dbd967be3486f4db4e66d25b from qemu
For M profile we must clear the exclusive monitor on reset, exception
entry and exception exit. We weren't doing any of these things; fix
this bug.
Backports commit dc3c4c14f0f12854dbd967be3486f4db4e66d25b from qemu
Use a symbolic constant M_REG_NUM_BANKS for the array size for
registers which are banked by M profile security state, rather
than hardcoding lots of 2s.
Backports commit 4a16724f06ead684a5962477a557c26c677c2729 from qemu
Older compilers (rhel6) don't like redefinition of typedefs
Fixes: 12a6c15ef31c98ecefa63e91ac36955383038384
Backports commit 9d81b2d2000f41be55a0624a26873f993fb6e928 from qemu
GCC 4.7.2 on SunOS reports that the values assigned to array members are not
real constants:
target/m68k/fpu_helper.c:32:5: error: initializer element is not constant
target/m68k/fpu_helper.c:32:5: error: (near initialization for 'fpu_rom[0]')
rules.mak:66: recipe for target 'target/m68k/fpu_helper.o' failed
Convert the array to make_floatx80_init() to fix it.
Replace floatx80_pi-like constants with make_floatx80_init() as they are
defined as make_floatx80().
This fixes build on SmartOS (Joyent).
Backports commit 6fa9ba09dbf4eb8b52bcb47d6820957f1b77ee0b from qemu
We are not going to use ldrd for loading the comparator
for 32-bit guests, so don't limit cmp_off to 8 bits then.
This eliminates one insn in the tlb load for some guests.
Backports commit 95ede84f4de18747d03d79c148013cff99acd60b from qemu
Use UBFX to avoid limitation on CPU_TLB_BITS. Since we're dropping
the initial shift, we need to replace the page masking. We can use
MOVW+BIC to do this without shifting. The result is the same size
as the armv6 path with one less conditional instruction.
Backports commit 647ab96aaf5defeb138e48d610f7f633c587b40d from qemu
Split out maybe_out_small_movi for use with other operations
that want to add to the constant pool.
Backports commit 28eef8aaece5e83df4568d9842ab9611ec130b2c from qemu
We were passing in -2 instead of +2, but then ignoring
the actual contents of addend in the calculation.
Backports commit e692a3492d04500355bcf23575eed7cf137b38d5 from qemu
Already it saves 2 bytes per call, but also the constant pool
entry may well be shared across multiple calls.
Backports commit 4e45f23943c0bb91588627de3801826546155ad8 from qemu
A new shared header tcg-pool.inc.c adds new_pool_label,
for registering a tcg_target_ulong to be emitted after
the generated code, plus relocation data to install a
pointer to the data.
A new pointer is added to the TCGContext, so that we
dump the constant pool as data, not code.
Backports commit 57a269469dbf70013dab3a176e1735636010a772 from qemu
Dispense with TCGBackendData, as it has never been used for more than
holding a single pointer. Use a define in the cpu/tcg-target.h to
signal requirement for TCGLabelQemuLdst, so that we can drop the no-op
tcg-be-null.h stubs. Rename tcg-be-ldst.h to tcg-ldst.inc.c.
Backports commit 659ef5cbb893872d25e9d95191cc23b16546c8a1 from qemu
Replace the USE_DIRECT_JUMP ifdef with a TCG_TARGET_HAS_direct_jump
boolean test. Replace the tb_set_jmp_target1 ifdef with an unconditional
function tb_target_set_jmp_target.
While we're touching all backends, add a parameter for tb->tc_ptr;
we're going to need it shortly for some backends.
Move tb_set_jmp_target and tb_add_jump from exec-all.h to cpu-exec.c.
Backports commit a85833933628384d74ec412024d55cf012640287 from qemu
Nobody has mentioned AIX host support on the mailing list for years,
and we have no test systems for it so it is most likely broken.
We've advertised in configure for two releases now that we plan
to drop support for this host OS, and have had no complaints.
Drop the AIX host support code.
We can also drop the now-unused AIX version of sys_cache_info().
Note that the _CALL_AIX define used in the PPC tcg backend is
also used for Linux PPC64, and so that code should not be removed.
Backports commit 7872375219c03682bda3f6191fa5f6a58238ed36 from qemu
Implement the new do_transaction_failed hook for ARM, which should
cause the CPU to take a prefetch abort or data abort.
Backports commit c79c0a314c43b78f6326d5f137bdbafdbf8e9766 from qemu
Define a new MachineClass field ignore_memory_transaction_failures.
If this is flag is true then the CPU will ignore memory transaction
failures which should cause the CPU to take an exception due to an
access to an unassigned physical address; the transaction will
instead return zero (for a read) or be ignored (for a write). This
should be set only by legacy board models which rely on the old
RAZ/WI behaviour for handling devices that QEMU does not yet model.
New board models should instead use "unimplemented-device" for all
memory ranges where the guest will attempt to probe for a device that
QEMU doesn't implement and a stub device is required.
We need this for ARM boards, where we're about to implement support for
generating external aborts on memory transaction failures. Too many
of our legacy board models rely on the RAZ/WI behaviour and we
would break currently working guests when their "probe for device"
code provoked an external abort rather than a RAZ.
Backports commit ed860129acd3fcd0b1e47884e810212aaca4d21b from qemu
Implement the BXNS v8M instruction, which is like BX but will do a
jump-and-switch-to-NonSecure if the branch target address has bit 0
clear.
This is the first piece of code which implements "switch to the
other security state", so the commit also includes the code to
switch the stack pointers around, which is the only complicated
part of switching security state.
BLXNS is more complicated than just "BXNS but set the link register",
so we leave it for a separate commit.
Backports commit fb602cb726b3ebdd01ef3b1732d74baf9fee7ec9 from qemu
Move the regime_is_secure() utility function to internals.h;
we are going to want to call it from translate.c.
Backports commit 61fcd69b0db268e7612b07fadc436b93def91768 from qemu
Make the CFSR register banked if v8M security extensions are enabled.
Not all the bits in this register are banked: the BFSR
bits [15:8] are shared between S and NS, and we store them
in the NS copy of the register.
Backports commit 334e8dad7a109d15cb20b090131374ae98682a50 from qemu
Make the CCR register banked if v8M security extensions are enabled.
This is slightly more complicated than the other "add banking"
patches because there is one bit in the register which is not
banked. We keep the live data in the NS copy of the register,
and adjust it on register reads and writes. (Since we don't
currently implement the behaviour that the bit controls, there
is nowhere else that needs to care.)
This patch includes the enforcement of the bits which are newly
RES1 in ARMv8M.
Backports commit 9d40cd8a68cfc7606f4548cc9e812bab15c6dc28 from qemu
Make the MPU registers MPU_MAIR0 and MPU_MAIR1 banked if v8M security
extensions are enabled.
We can freely add more items to vmstate_m_security without
breaking migration compatibility, because no CPU currently
has the ARM_FEATURE_M_SECURITY bit enabled and so this
subsection is not yet used by anything.
Backports commit 62c58ee0b24eafb44c06402fe059fbd7972eb409 from qemu
Make the MPU registers MPU_MAIR0 and MPU_MAIR1 banked if v8M security
extensions are enabled.
Backports commit 4125e6feb71c810ca38f0d8e66e748b472a9cc54 from qemu
Make the FAULTMASK register banked if v8M security extensions are enabled.
Note that we do not yet implement the functionality of the new
AIRCR.PRIS bit (which allows the effect of the NS copy of FAULTMASK to
be restricted).
This patch includes the code to determine for v8M which copy
of FAULTMASK should be updated on exception exit; further
changes will be required to the exception exit code in general
to support v8M, so this is just a small piece of that.
The v8M ARM ARM introduces a notation where individual paragraphs
are labelled with R (for rule) or I (for information) followed
by a random group of subscript letters. In comments where we want
to refer to a particular part of the manual we use this convention,
which should be more stable across document revisions than using
section or page numbers.
Backports commit 42a6686b2f6199d086a58edd7731faeb2dbe7c14 from qemu
Make the PRIMASK register banked if v8M security extensions are enabled.
Note that we do not yet implement the functionality of the new
AIRCR.PRIS bit (which allows the effect of the NS copy of PRIMASK to
be restricted).
Backports commit 6d8048341995b31a77dc2e0dcaaf4e3df0e3121a from qemu
Make the BASEPRI register banked if v8M security extensions are enabled.
Note that we do not yet implement the functionality of the new
AIRCR.PRIS bit (which allows the effect of the NS copy of BASEPRI to
be restricted).
Backports commit acf949411ffb675edbfb707e235800b02e6a36f8 from qemu
Now that MPU lookups can return different results for v8M
when the CPU is in secure vs non-secure state, we need to
have separate MMU indexes; add the secure counterparts
to the existing three M profile MMU indexes.
Backports commit 66787c7868d05d29974e09201611b718c976f955 from qemu
If a v8M CPU supports the security extension then we need to
give it two AddressSpaces, the same way we do already for
an A profile core with EL3.
Backports commit 1d2091bc75ab7f9e2c43082f361a528a63c79527 from qemu
As the first step in implementing ARM v8M's security extension:
* add a new feature bit ARM_FEATURE_M_SECURITY
* add the CPU state field that indicates whether the CPU is
currently in the secure state
* add a migration subsection for this new state
(we will add the Secure copies of banked register state
to this subsection in later patches)
* add a #define for the one new-in-v8M exception type
* make the CPU debug log print S/NS status
Backports commit 1e577cc7cffd3de14dbd321de5c3ef191c6ab07f from qemu
As part of ARMv8M, we need to add support for the PMSAv8 MPU
architecture.
PMSAv8 differs from PMSAv7 both in register/data layout (for instance
using base and limit registers rather than base and size) and also in
behaviour (for example it does not have subregions); rather than
trying to wedge it into the existing PMSAv7 code and data structures,
we define separate ones.
This commit adds the data structures which hold the state for a
PMSAv8 MPU and the register interface to it. The implementation of
the MPU behaviour will be added in a subsequent commit.
Backports commit 0e1a46bbd2d6c39614b87f4e88ea305acce8a35f from qemu
ARM is a fixed-length ISA and we can compute the page crossing
condition exactly once during init_disas_context.
Backports commit d0264d86b026e9d948de577b05ff86d708658576 from qemu
We need not check for ARM vs Thumb state in order to dispatch
disassembly of every instruction.
Backports commit 722ef0a562a8cd810297b00516e36380e2f33353 from qemu
Since AArch64 uses a fixed-width ISA, we can pre-compute the number of
insns remaining on the page. Also, we can check for single-step once.
Backports commit dcc3a21209a8eeae0fe43966012f8e08d3566f98 from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit 58350fa4b2852fede96cfebad0b26bf79bca419c from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit 4013f7fc811e90b89da3a516dc71b01ca0e7e54e from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit be4079641f1bc755fc5d3ff194cf505c506227d8 from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit 70d3c035ae36a2c5c0f991ba958526127c92bb67 from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit 24299c892cbfe29120f051b6b7d0bcf3e0cc8e85 from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit 13189a9080b35b13af23f2be4806fa0cdbb31af3 from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit 0cb56b373da70047979b61b042f59aaff4012e1b from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit a68956ad7f8510bdc0b54793c65c62c6a94570a4 from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit f62bd897e64c6fb1f93e8795e835980516fe53b5 from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit b14768544fd715a3f1742c10fc36ae81c703cbc1 from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit 5c03990665aa9095e4d2734c8ca0f936a8e8f000 from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit 1d8a5535238fc5976e0542a413f4ad88f5d4b233 from qemu
Incrementally paves the way towards using the generic
instruction translation loop.
Backports commit dcba3a8d443842f7a30a2c52d50a6b50b6982b35 from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit e0d110d943891b719de7ca075fc17fa8ea5749b8 from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit 47e981b42553f00110024c33897354f9014e83e9 from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit 2c2f8cacd8cf4f67d6f1384b19d38f9a0a25878b from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit e6b41ec37f0a9742374dfdb90e662745969cd7ea from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit e6b41ec37f0a9742374dfdb90e662745969cd7ea from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit 9d75f52b34053066b8e8fc37610d5f300d67538b from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit 9761d39b09c4beb1340bf3074be3d3e0a5d453a4 from qemu
Incrementally paves the way towards using the generic instruction translation
loop.
Backports commit 6cf147aa299e49f7794858609a1e8ef19f81c007 from qemu
There's nothing magic about the exception that we generate in order
to execute the magic kernel page. We can and should allow gdb to
set a breakpoint at this location.
Backports commit 3805c2eba8999049bbbea29fdcdea4d47d943c88 from qemu
Used later. An enum makes expected values explicit and
bounds the value space of switches.
Backports commit 77fc6f5e28667634916f114ae04c6029cd7b9c45 from qemu
Fold DISAS_EXC and DISAS_TB_JUMP into DISAS_NORETURN.
In both cases all following code is dead. In the first
case because we have exited the TB via exception; in the
second case because we have exited the TB via goto_tb
and its associated machinery.
Backports commit a0c231e651b249960906f250b8e5eef5ed9888c4 from qemu
This target is not sophisticated in its use of cleanups at the
end of the translation loop. For the most part, any condition
that exits the TB is dealt with by emitting the exiting opcode
right then and there. Therefore the only is_jmp indicator that
is needed is DISAS_NORETURN.
For two stack segment modifying cases, we have not yet exited
the TB (therefore DISAS_NORETURN feels wrong), but intend to exit.
The caller of gen_movl_seg_T0 currently checks for any non-zero
value, therefore DISAS_TOO_MANY seems acceptable for that usage.
Backports commit 1e39d97af086d525cd0408eaa5d19783ea165906 from qemu
This will allow some amount of cleanup to happen before
switching the backends over to enum DisasJumpType.
Backports commit 5dc66895b0113034cd37fd5e65911d7959fc26a9 from qemu
This allows LOAD HALFWORD IMMEDIATE ON CONDITION,
eliminating one insn in some common cases.
Backports commit 7af525af01b9615c4f4df5da2e8a50f2fe00b023 from qemu
Currently, we cannot use mttcg for running strong memory model guests
on weak memory model hosts due to missing ordering semantics.
We implicitly generate fence instructions for stronger guests if an
ordering mismatch is detected. We generate fences only for the orders
for which fence instructions are necessary, for example a fence is not
necessary between a store and a subsequent load on x86 since its
absence in the guest binary tells that ordering need not be
ensured. Also note that if we find multiple subsequent fence
instructions in the generated IR, we combine them in the TCG
optimization pass.
This patch allows us to boot an x86 guest on ARM64 hosts using mttcg.
Backports commit b32dc3370a666e237b2099c22166b15e58cb6df8 from qemu
For external aborts, we will want to be able to specify the EA
(external abort type) bit in the syndrome field. Allow callers of
deliver_fault() to do that by adding a field to ARMMMUFaultInfo which
we use when constructing the syndrome values.
Backports commit c528af7aa64f159eb30b46e567b650c5440fc117 from qemu
We currently have some similar code in tlb_fill() and in
arm_cpu_do_unaligned_access() for delivering a data abort or prefetch
abort. We're also going to want to do the same thing to handle
external aborts. Factor out the common code into a new function
deliver_fault().
Backports commit aac43da1d772a50778ab1252c13c08c2eb31fb39 from qemu
Call the new cpu_transaction_failed() hook at the places where
CPU generated code interacts with the memory system:
io_readx()
io_writex()
get_page_addr_code()
Any access from C code (eg via cpu_physical_memory_rw(),
address_space_rw(), ld/st_*_phys()) will *not* trigger CPU exceptions
via cpu_transaction_failed(). Handling for transactions failures for
this kind of call should be done by using a function which returns a
MemTxResult and treating the failure case appropriately in the
calling code.
In an ideal world we would not generate CPU exceptions for
instruction fetch failures in get_page_addr_code() but instead wait
until the code translation process tried a load and it failed;
however that change would require too great a restructuring and
redesign to attempt at this point.
Backports commit 04e3aabde397e7abc78ba1ce6cbd144d5fbb1722 from qemu
Currently we have a rather half-baked setup for allowing CPUs to
generate exceptions on accesses to invalid memory: the CPU has a
cpu_unassigned_access() hook which the memory system calls in
unassigned_mem_write() and unassigned_mem_read() if the current_cpu
pointer is non-NULL. This was originally designed before we
implemented the MemTxResult type that allows memory operations to
report a success or failure code, which is why the hook is called
right at the bottom of the memory system. The major problem with
this is that it means that the hook can be called even when the
access was not actually done by the CPU: for instance if the CPU
writes to a DMA engine register which causes the DMA engine to begin
a transaction which has been set up by the guest to operate on
invalid memory then this will casue the CPU to take an exception
incorrectly. Another minor problem is that currently if a device
returns a transaction error then this won't turn into a CPU exception
at all.
The right way to do this is to have allow the CPU to respond
to memory system transaction failures at the point where the
CPU specific code calls into the memory system.
Define a new QOM CPU method and utility function
cpu_transaction_failed() which is called in these cases.
The functionality here overlaps with the existing
cpu_unassigned_access() because individual target CPUs will
need some work to convert them to the new system. When this
transition is complete we can remove the old cpu_unassigned_access()
code.
Backports commit 0dff0939f6fc6a7abd966d4295f06a06d7a01df9 from qemu
Move the MemTxResult type to memattrs.h. We're going to want to
use it in cpu/qom.h, which doesn't want to include all of
memory.h. In practice MemTxResult and MemTxAttrs are pretty
closely linked since both are used for the new-style
read_with_attrs and write_with_attrs callbacks, so memattrs.h
is a reasonable home for this rather than creating a whole
new header file for it.
Backports commit 3114d092b1740f9db9aa559aeb48ee387011e1da from qemu
Add a utility function for testing whether the CPU is in Handler
mode; this is just a check whether v7m.exception is non-zero, but
we do it in several places and it makes the code a bit easier
to read to not have to mentally figure out what the test is testing.
Backports commit 15b3f556bab4f961bf92141eb8521c8da3df5eb2 from qemu
For v7M, writes to the CONTROL register are only permitted for
privileged code. However even if the code is privileged, the
write must not affect the SPSEL bit in the CONTROL register
if the CPU is in Thread mode (as documented in the pseudocode
for the MSR instruction). Implement this, instead of permitting
SPSEL to be written in all cases.
This was causing mbed applications not to run, because the
RTX RTOS they use relies on this behaviour.
Backports commit 792dac309c8660306557ba058b8b5a6a75ab3c1f from qemu
Move the code in arm_v7m_cpu_do_interrupt() that calculates the
magic LR value down to when we're actually going to use it.
Having the calculation and use so far apart makes the code
a little harder to understand than it needs to be.
Backports commit bd70b29ba92e4446f9e4eb8b9acc19ef6ff4a4d5 from qemu
Make the arm_cpu_dump_state() debug logging handle the M-profile XPSR
rather than assuming it's an A-profile CPSR. On M profile the PSR
line of a register dump will now look like this:
XPSR=41000000 -Z-- T priv-thread
Backports commit 5b906f3589443a3c69d8feeaac37263843ecfb8d from qemu
We currently store the M profile CPU register state PRIMASK and
FAULTMASK in the daif field of the CPU state in its I and F
bits. This is a legacy from the original implementation, which
tried to share the cpu_exec_interrupt code between A profile
and M profile. We've since separated out the two cases because
they are significantly different, so now there is no common
code between M and A profile which looks at env->daif: all the
uses are either in A-only or M-only code paths. Sharing the state
fields now is just confusing, and will make things awkward
when we implement v8M, where the PRIMASK and FAULTMASK
registers are banked between security states.
Switch M profile over to using v7m.faultmask and v7m.primask
fields for these registers.
Backports commit e6ae5981ea4b0f6feb223009a5108582e7644f8f from qemu
The M profile XPSR is almost the same format as the A profile CPSR,
but not quite. Define some XPSR_* macros and use them where we
definitely dealing with an XPSR rather than reusing the CPSR ones.
Backports commit 987ab45e108953c1c98126c338c2119c243c372b from qemu
When we switched our handling of exception exit to detect
the magic addresses at translate time rather than via
a do_unassigned_access hook, we forgot to update a
comment; correct the omission.
Backports commit 9d17da4b68a05fc78daa47f0f3d914eea5d802ea from qemu
Remove the comment that claims that some MPU_CTRL bits are stored
in sctlr_el[1]. This has never been true since MPU_CTRL was added
in commit 29c483a50607 -- the comment is a leftover from
Michael Davidsaver's original implementation, which I modified
not to use sctlr_el[1]; I forgot to delete the comment then.
Backports commit 59e4972c3fc63d981e8b613ebb3bb01a05848075 from qemu
Tighten up the T32 decoder in the places where new v8M instructions
will be:
* TT/TTT/TTA/TTAT are in what was nominally LDREX/STREX r15, ...
which is UNPREDICTABLE:
make the UNPREDICTABLE behaviour be to UNDEF
* BXNS/BLXNS are distinguished from BX/BLX via the low 3 bits,
which in previous architectural versions are SBZ:
enforce the SBZ via UNDEF rather than ignoring it, and move
the "ARCH(5)" UNDEF case up so we don't leak a TCG temporary
* SG is in the encoding which would be LDRD/STRD with rn = r15;
this is UNPREDICTABLE and we currently UNDEF:
move this check further up the code so that we don't leak
TCG temporaries in the UNDEF case and have a better place
to put the SG decode.
This means that if a v8M binary is accidentally run on v7M
or if a test case hits something that we haven't implemented
yet the behaviour will be obvious (UNDEF) rather than obscure
(plough on treating it as a different instruction).
In the process, add some comments about the instruction patterns
at these points in the decode. Our Thumb and ARM decoders are
very difficult to understand currently, but gradually adding
comments like this should help to clarify what exactly has
been decoded when.
Backports commit ebfe27c593e5b222aa2a1fc545b447be3d995faa from qemu
Currently get_phys_addr() has PMSAv7 handling before the
"is translation disabled?" check, and then PMSAv5 after it.
Tidy this up by making the PMSAv5 code handle the "MPU disabled"
case itself, so that we have all the PMSA code in one place.
This will make adding the PMSAv8 code slightly cleaner, and
also means that pre-v7 PMSA cores benefit from the MPU lookup
logging that the PMSAv7 codepath had.
Backports commit 3279adb95e34dd3d67c66d729458f7784747cf8d from qemu
M profile cores can never trap on WFI or WFE instructions. Check for
M profile in check_wfx_trap() to ensure this.
The existing code will do the right thing for v7M cores because
the hcr_el2 and scr_el3 registers will be all-zeroes and so we
won't attempt to trap, but when we start setting ARM_FEATURE_V8
for v8M cores the v8A handling of SCTLR.nTWE and .nTWI will not
give the right results.
Backports commit 0e2845689ebdb4ea7174f96f6797e2d8942bd114 from qemu
In the ARM get_phys_addr() code, switch to using the MMUAccessType
enum and its MMU_* values rather than int and literal 0/1/2.
Backports commit 03ae85f858fc46495258a5dd4551fff2c34bd495 from qemu
Add a new base CPU model called 'EPYC' to model processors from AMD EPYC
family (which includes EPYC 76xx,75xx,74xx, 73xx and 72xx).
The following features bits have been added/removed compare to Opteron_G5
Added: monitor, movbe, rdrand, mmxext, ffxsr, rdtscp, cr8legacy, osvw,
fsgsbase, bmi1, avx2, smep, bmi2, rdseed, adx, smap, clfshopt, sha
xsaveopt, xsavec, xgetbv1, arat
Removed: xop, fma4, tbm
Backports commit 2e2efc7dbe2b0adc1200b5aa286cdbed729f6751 from qemu
The helper can be used for CPU object lookup using the CPU's
arch-specific ID (the one returned by CPUClass::get_arch_id()).
Backports commit 5ce46cb34eecec0bc94a4b1394763f9a1bbe20c3 from qemu
This moves a FlatView allocation and initialization to a helper.
While we are nere, replace g_new with g_new0 to not to bother if we add
new fields in the future.
This should cause no behavioural change.
Backports commit de7e6815b84c797cbda56dc96fcacaf5f37d3a20 from qemu
We are going to share FlatView's between AddressSpace's and per-AS
memory listeners won't suit the purpose anymore so open code
the dispatch tree rendering.
Since there is a good chance that dispatch_listener was the only
listener, this avoids address_space_update_topology_pass() if there is
no registered listeners; this should improve starting time.
This should cause no behavioural change.
Backports commit 1b04a1580917d9e41fd37ca62cbff9b4bf061e96 from qemu
This adds an AS** parameter to address_space_do_translate()
to make it easier for the next patch to share FlatViews.
This should cause no behavioural change.
Backports commit 6424975ce912061ac9e4a375237b0c89d83d93e3 from qemu
When using bit-wise operations that exploit the power-of-two
nature of the second argument of ROUND_UP(), we still need to
ensure that the mask is as wide as the first argument (done
by using a ternary to force proper arithmetic promotion).
Unpatched, ROUND_UP(2ULL*1024*1024*1024*1024, 512U) produces 0,
instead of the intended 2TiB, because negation of an unsigned
32-bit quantity followed by widening to 64-bits does not
sign-extend the mask.
Broken since its introduction in commit 292c8e50 (v1.5.0).
Callers that passed the same width type to both macro parameters,
or that had other code to ensure the first parameter's maximum
runtime value did not exceed the second parameter's width, are
unaffected, but I did not audit to see which (if any) existing
clients of the macro could trigger incorrect behavior (I found
the bug while adding a new use of the macro).
While preparing the patch, checkpatch complained about poor
spacing, so I also fixed that here and in the nearby DIV_ROUND_UP.
Backports commit 33a599667a9e70588483a31286dfff8cfc27d513 from qemu
According to the ARM ARM exclusive loads require the same alignment as
exclusive stores. Let's update the memops used for the load to match
that of the store. This adds the alignment requirement to the memops.
Backports commit 4a2fdb78e794c1ad93aa9e160235d6a61a2125de from qemu
We are not providing the required single-copy atomic semantics for
the 64-bit operation that is the 32-bit paired load.
At the same time, leave the entire 64-bit value in cpu_exclusive_val
and stop writing to cpu_exclusive_high. This means that we do not
have to re-assemble the 64-bit quantity when it comes time to store.
At the same time, drop a redundant temporary and perform all loads
directly into the cpu_exclusive_* globals.
Backports commit 19514cde3b92938df750acaecf2caaa85e1d36a6 from qemu
When we perform the atomic_cmpxchg operation we want to perform the
operation on a pair of 32-bit registers. Previously we were just passing
the register size in which was set to MO_32. This would result in the
high register to be ignored. To fix this issue we hardcode the size to
be 64-bits long when operating on 32-bit pairs.
Backports commit 955fd0ad5d610f62ba2f4ce46a872bf50434dcf8 from qemu
This reverts commit e2a7f28693aea7e194ec1435697ec4feb24f8a6f.
This was not supposed to go upstream yet. Reverting.
Backports commit cde0a63ad721dbb538419a00f9405587680be436 from qemu
When emulating various SSE4.1 instructions such as pinsrd, the address
of a memory operand is computed without allowing for the 8-bit
immediate operand located after the memory operand, meaning that the
memory operand uses the wrong address in the case where it is
rip-relative. This patch adds the required rip_offset setting for
those instructions, so fixing some GCC test failures (13 in the gcc
testsuite in my GCC 6-based testing) when testing with a default CPU
setting enabling those instructions.
Backports commit ab6ab3e9972a49a359f59895a88bed311472ca97 from qemu
For a 64-bit ILP32 host, aligning to sizeof(long) is not enough.
Guess the minimum for any host is 8, as that covers uint64_t.
Qemu doesn't use a host long double or host vectors, except in
extremely limited circumstances.
Fixes a bus error for a sparc v8plus host.
Backports commit 13aaef678ed377b12b76dc7fb9e615b2f2f9047b from qemu
Patch 85aa80813dd changed the IF emitting the TST instruction,
but failed to change the ?: converting CMP to CMPEQ, so the
result of the TST is ignored.
Backports commit ca671de8af96798e0f493378240034620a3a04ee from qemu
RDHWR CC reads the CPU timer like MFC0 CP0_Count, so with icount enabled
it must set can_do_io while it calls the helper to avoid the "Bad icount
read" error. It should also break out of the translation loop to ensure
that timer interrupts are immediately handled.
Backports commit d673a68db6963e86536b125af464bb6ed03eba33 from qemu
DMTC0 CP0_Cause does a redundant gen_io_start() and gen_io_end() pair,
even though this is done for all DMTC0 operations outside of the switch
statement. Remove these redundant calls.
Backports commit 51ca717b079dccae5b6cc9f45153f5044abd34f0 from qemu
Commit e350d8ca3ac7 ("target/mips: optimize indirect branches") made
indirect branches able to directly find the next TB and jump straight to
it without breaking out of translated code and going around the main
execution loop. This breaks the assumption in target/mips/translate.c
that BS_STOP is sufficient to cause pending interrupts to be handled,
since interrupts are only checked in the main loop.
Fix a few of these assumptions by using gen_save_pc to update the saved
PC and using BS_EXCP instead of BS_STOP:
- [D]MFC0 CP0_Count may trigger a timer interrupt which should be
immediately handled.
- [D]MTC0 CP0_Cause may trigger an interrupt (but in fact translation
was only even being stopped in the DMTC0 case).
- [D]MTC0 CP0_<any> when icount is used is assumed could potentially
cause interrupts.
- EI may trigger an interrupt which was pending. I specifically hit
this case when running KVM nested in mipsel-softmmu. A timer
interrupt while the 2nd guest was executing is caught by KVM which
switches back to the normal Linux exception base and re-enables
interrupts with EI. Since the above commit QEMU doesn't leave
translated code until the nested KVM has already restored the KVM
exception base and returned to the 2nd guest, at which point it is
too late to check for pending interrupts and it gets stuck in an
infinite loop of unhandled interrupts.
Something similar was needed for ARM in commit b29fd33db578
("target/arm: use DISAS_EXIT for eret handling").
Backports commit b74cddcbf6063f684725e3f8bca49a68e30cba71 from qemu
Improve the segment definitions used by get_physical_address() to yield
target_ulong types, e.g. 0xffffffff80000000 instead of 0x80000000. This
is in preparation for enabling emulation of MIPS KVM T&E segments in TCG
MIPS targets, which unlike KVM could potentially have 64-bit
target_ulong. In such a case the offset guest KSEG0 address ends up at
e.g. 0x000000008xxxxxxx instead of 0xffffffff8xxxxxxx.
This also allows the casts to int32_t that force sign extension to be
removed, which removes any confusion due to relational comparison of
unsigned (target_ulong) and signed (int32_t) types.
Backports commit 6743334568933199927af4992a04bfb3c30610f5 from qemu
Writing to the MIPS DESAVE register (and now the KScratch registers)
will stop translation, supposedly due to risk of execution mode
switches. However these registers are basically RW scratch registers
with no side effects so there is no risk of them triggering execution
mode changes.
Drop the bstate = BS_STOP for these registers for both mtc0 and dmtc0.
Backports commit cb539fd241900f51de7d21244f7a55422ad0d40a from qemu
Commit 04bf2526ce87f21b32c9acba1c5518708c243ad0 (exec: use
qemu_ram_ptr_length to access guest ram) start using qemu_ram_ptr_length
instead of qemu_map_ram_ptr, but when used with Xen, the behavior of
both function is different. They both call xen_map_cache, but one with
"lock", meaning the mapping of guest memory is never released
implicitly, and the second one without, which means, mapping can be
release later, when needed.
In the context of address_space_{read,write}_continue, the ptr to those
mapping should not be locked because it is used immediatly and never
used again.
The lock parameter make it explicit in which context qemu_ram_ptr_length
is called.
Backports commit f5aa69bdc3418773f26747ca282c291519626ece from qemu
When the PMSAv7 implementation was originally added it was for R profile
CPUs only, and reset was handled using the cpreg .resetfn hooks.
Unfortunately for M profile cores this doesn't work, because they do
not register any cpregs. Move the reset handling into arm_cpu_reset(),
where it will work for both R profile and M profile cores.
Backports commit 69ceea64bf565559a2b865ffb2a097d2caab805b from qemu
Almost all of the PMSAv7 state is in the pmsav7 substruct of
the ARM CPU state structure. The exception is the region
number register, which is in cp15.c6_rgnr. This exception
is a bit odd for M profile, which otherwise generally does
not store state in the cp15 substruct.
Rename cp15.c6_rgnr to pmsav7.rnr accordingly.
Backports commit 8531eb4f614a60e6582d4832b15eee09f7d27874 from qemu
For an M profile v7PMSA, the system space (0xe0000000 - 0xffffffff) can
never be executable, even if the guest tries to set the MPU registers
up that way. Enforce this restriction.
Backports commit bf446a11dfb17ae7d8ed2b61a2444804eb458075 from qemu
The M profile PMSAv7 specification says that if the address being looked
up is in the PPB region (0xe0000000 - 0xe00fffff) then we do not use
the MPU regions but always use the default memory map. Implement this
(we were previously behaving like an R profile PMSAv7, which does not
special case this).
Backports commit 38aaa60ca464b48e6feef346709e97335d01b289 from qemu
Correct off-by-one bug in the PSMAv7 MPU tracing where it would print
a write access as "reading", an insn fetch as "writing", and a read
access as "execute".
Since we have an MMUAccessType enum now, we can make the code clearer
in the process by using that rather than the raw 0/1/2 values.
Backports commit 709e4407add7acacc593cb6cdac026558c9a8fb6 from qemu
Enable the CP0_EBase.WG (write gate) on the I6400 and MIPS64R2-generic
CPUs. This allows 64-bit guests to run KVM itself, which uses
CP0_EBase.WG to point CP0_EBase at XKPhys.
Backports commit bad63a8008a0aaefcd00542c89bee01623d7c9de from qemu
Add the Enhanced Virtual Addressing (EVA) feature to the P5600 core
configuration, along with the related Segmentation Control (SC) feature
and writable CP0_EBase.WG bit.
This allows it to run Malta EVA kernels.
Backports commit 574da58e4678b3c09048f268821295422d8cde6d from qemu
Implement the optional segmentation control feature in the virtual to
physical address translation code.
The fixed legacy segment and xkphys handling is replaced with a dynamic
layout based on the segmentation control registers (which should be set
up even when the feature is not exposed to the guest).
Backports commit 480e79aedd322fcfac17052caff21626ea7c78e2 from qemu
The optional segmentation control registers CP0_SegCtl0, CP0_SegCtl1 &
CP0_SegCtl2 control the behaviour and required privilege of the legacy
virtual memory segments.
Add them to the CP0 interface so they can be read and written when
CP0_Config3.SC=1, and initialise them to describe the standard legacy
layout so they can be used in future patches regardless of whether they
are exposed to the guest.
Backports commit cec56a733dd2c3fa81dbedbecf03922258747f7d from qemu
The segmentation control feature allows a legacy memory segment to
become unmapped uncached at error level (according to CP0_Status.ERL),
and in fact the user segment is already treated in this way by QEMU.
Add a new MMU mode for this state so that QEMU's mappings don't persist
between ERL=0 and ERL=1.
Backports commit 42c86612d507c2a8789f2b8d920a244693c4ef7b from qemu
The MIPS mmu_idx is sometimes calculated from hflags without an env
pointer available as cpu_mmu_index() requires.
Create a common hflags_mmu_index() for the purpose of this calculation
which can operate on any hflags, not just with an env pointer, and
update cpu_mmu_index() itself and gen_intermediate_code() to use it.
Also update debug_post_eret() and helper_mtc0_status() to log the MMU
mode with the status change (SM, UM, or nothing for kernel mode) based
on cpu_mmu_index() rather than directly testing hflags.
This will also allow the logic to be more easily updated when a new MMU
mode is added.
Backports commit b0fc6003224543d2bdb172eca752656a6223e4a1 from qemu
When performing virtual to physical address translation, check the
required privilege level based on the mem_idx rather than the mode in
the hflags. This will allow EVA loads & stores to operate safely only on
user memory from kernel mode.
For the cases where the mmu_idx doesn't need to be overridden
(mips_cpu_get_phys_page_debug() and cpu_mips_translate_address()), we
calculate the required mmu_idx using cpu_mmu_index(). Note that this
only tests the MIPS_HFLAG_KSU bits rather than MIPS_HFLAG_MODE, so we
don't test the debug mode hflag MIPS_HFLAG_DM any longer. This should be
fine as get_physical_address() only compares against MIPS_HFLAG_UM and
MIPS_HFLAG_SM, neither of which should get set by compute_hflags() when
MIPS_HFLAG_DM is set.
Backports commit 9fbf4a58c90183b30bb2c8ad971ccce7e6716a16 from qemu
Implement decoding of microMIPS EVA load and store instruction groups in
the POOL31C pool. These use the same gen_ld(), gen_st(), gen_st_cond()
helpers as the MIPS32 decoding, passing the equivalent MIPS32 opcodes as
opc.
Backports commit 8fffc64696783b1ff1d17262d098976479895660 from qemu
Add CP0.ErrCtl register with WST, SPR and ITC bits. In 34K and interAptiv
processors these bits are used to enable CACHE instruction access to
different arrays. When WST=0, SPR=0 and ITC=1 the CACHE instruction will
access ITC tag values.
Generally we do not model caches and we have been treating the CACHE
instruction as NOP. But since CACHE can operate on ITC Tags new
MIPS_HFLAG_ITC_CACHE hflag is introduced to generate the helper only when
CACHE is in the ITC Access mode.
Backports commit 0d74a222c27e26fc40f4f6120c61c3f9ceaa3776 from qemu
Implement decoding of MIPS32 EVA loads and stores. These access the user
address space from kernel mode when implemented, so for each instruction
we need to check that EVA is available from Config5.EVA & check for
sufficient COP0 privilege (with the new check_eva()), and then override
the mem_idx used for the operation.
Unfortunately some Loongson 2E instructions use overlapping encodings,
so we must be careful not to prevent those from being decoded when EVA
is absent.
Backports commit 7696414729b2d0f870c80ad1dd637d854bc78847 from qemu
EVA load and store instructions access the user mode address map, so
they need to use mem_idx of MIPS_HFLAG_UM. Update the various utility
functions to allow mem_idx to be more easily overridden from the
decoding logic.
Specifically we add a mem_idx argument to the op_ld/st_* helpers used
for atomics, and a mem_idx local variable to gen_ld(), gen_st(), and
gen_st_cond().
Backports commit dd4096cd2ccc19384770f336c930259da7a54980 from qemu
Add support for the CP0_EBase.WG bit, which allows upper bits to be
written (bits 31:30 on MIPS32, or bits 63:30 on MIPS64), along with the
CP0_Config5.CV bit to control whether the exception vector for Cache
Error exceptions is forced into KSeg1.
This is necessary on MIPS32 to support Segmentation Control and Enhanced
Virtual Addressing (EVA) extensions (where KSeg1 addresses may not
represent an unmapped uncached segment).
It is also useful on MIPS64 to allow the exception base to reside in
XKPhys, and possibly out of range of KSEG0 and KSEG1.
Backports commit 74dbf824a1313b6064bbebb981a7440951d70896 from qemu
There is no need to invalidate any shadow TLB entries when the ASID
changes or when access to one of the 64-bit segments has been disabled,
since doing so doesn't reveal to software whether any TLB entries have
been evicted into the shadow half of the TLB.
Therefore weaken the tlb flushes in these cases to only flush the QEMU
TLB.
Backports commit 9658e4c342e6ae0d775101f8f6bb6efb16789af1 from qemu
Writing specific TLB entries with TLBWI flushes shadow TLB entries
unless an existing entry is having its access permissions upgraded. This
is necessary as software would from then on expect the previous mapping
in that entry to no longer be in effect (even if QEMU has quietly
evicted it to the shadow TLB on a TLBWR).
However it won't do this if only EHINV, XI, or RI bits have been set,
even if that results in a reduction of permissions, so add the necessary
checks to invoke the flush when these bits are set.
Backports commit eff6ff9431aa9776062a5f4a08d1f6503ca9995a from qemu
Using MFC0 to read CP0_UserLocal uses tcg_gen_ld32s_tl, however
CP0_UserLocal is a target_ulong. On a big endian host with a MIPS64
target this reads and sign extends the more significant half of the
64-bit register.
Fix this by using ld_tl to load the whole target_ulong and ext32s_tl to
sign extend it, as done for various other target_ulong COP0 registers.
Backports commit e40df9a80bb7cdb0a4ca650985fa9fe572097fa7 from qemu
This include was forgotten when splitting cacheinfo.c out of
tcg/ppc/tcg-target.inc.c (see commit b255b2c8).
For a Centos7 host, the include path
<signal.h>
<bits/sigcontext.h>
<asm/sigcontext.h>
<asm/elf.h>
<asm/auxvec.h>
implicitly pulls in the desired AT_* defines.
Not so for Debian Jessie.
Backports commit 810d5cad4087236236e00fd3046a16adf26e9060 from qemu
Reserve a register for the guest_base using ppc code for reference.
By doing so, we do not have to recompute it for every memory load.
Backports commit 4df9cac57f5220c17d856292e90fce455f708421 from qemu
Introduce Skylake-Server cpu mode which inherits the features from
Skylake-Client and supports some additional features that are: AVX512,
CLWB and PGPE1GB.
Backports commit 53f9a6f45fb214540cb40af45efc11ac40ac454c from qemu
Currently when running KVM, we expose "KVMKVMKVM\0\0\0" in
the 0x40000000 CPUID leaf. Other hypervisors (VMWare,
HyperV, Xen, BHyve) all do the same thing, which leaves
TCG as the odd one out.
The CPUID signature is used by software to detect which
virtual environment they are running in and (potentially)
change behaviour in certain ways. For example, systemd
supports a ConditionVirtualization= setting in unit files.
The virt-what command can also report the virt type it is
running on
Currently both these apps have to resort to custom hacks
like looking for 'fw-cfg' entry in the /proc/device-tree
file to identify TCG.
This change thus proposes a signature "TCGTCGTCGTCG" to be
reported when running under TCG.
To hide this, the -cpu option tcg-cpuid=off can be used.
Backports commits 4ed3d478c63dc65a02eba774c35116618ea5ff10 and 1ce36bfe6424243082d3d7c2330e1a0a4ff72a43 from qemu
object_resolve_path*() ambiguous path detection breaks when
ambiguous==NULL and the object tree have 3 objects of the same type and
only 2 of them are under the same parent. e.g.:
/container/obj1 (TYPE_FOO)
/container/obj2 (TYPE_FOO)
/obj2 (TYPE_FOO)
With the above tree, object_resolve_path_type("", TYPE_FOO, NULL) will
incorrectly return /obj2, because the search inside "/container" will
return NULL, and the match at "/obj2" won't be detected as ambiguous.
Fix that by always calling object_resolve_partial_path() with a non-NULL
ambiguous parameter.
Backports commit ebcc479eee740937e70a94a468effcf2126a572b from qemu
This patch fixes setting DExcCode field of CP0 Debug register
when SDBBP instruction is executed. According to EJTAG specification,
this field must be set to the value 9 (Bp).
Backports commit c6c2c0fc32362ba234ae3bdad1a55c2d6aefaa12 from qemu
Previously DISAS_JUMP did ensure this but with the optimisation of
8a6b28c7 (optimize indirect branches) we might not leave the loop.
This means if any pending interrupts are cleared by changing IRQ flags
we might never get around to servicing them. You usually notice this
by seeing the lookup_tb_ptr() helper gainfully chaining TBs together
while cpu->interrupt_request remains high and the exit_request has not
been set.
This breaks amongst other things the OPTEE test suite which executes
an eret from the secure world after a non-secure world IRQ has gone
pending which then never gets serviced.
Instead of using the previously implied semantics of DISAS_JUMP we use
DISAS_EXIT which will always exit the run-loop.
Backports commit b29fd33db578decacd14f34933b29aece3e7c25e from qemu
While an ISB will ensure any raised IRQs happen on the next
instruction it doesn't cause any to get raised by itself. We can
therefore use a simple tb exit for ISB instructions and rely on the
exit_request check at the top of each TB to deal with exiting if
needed.
Backports commit 0b609cc128ba5ef16cc841bcade898d1898f1dc3 from qemu
As the gen_goto_tb function can do both static and dynamic jumps it
should also set the is_jmp field. This matches the behaviour of the
a64 code.
Backports commit 4cae8f56fbab2798586576a56cc669f0127d04fb from qemu
We already have an exit condition, DISAS_UPDATE which will exit the
run-loop. Expand on the difference with DISAS_EXIT in the comments
Backports commit abd1fb0ee2c58b99f4b2d15718f1825fe4984e12 from qemu
DISAS_UPDATE should be used when the wider CPU state other than just
the PC has been updated and we should therefore exit the TCG runtime
and return to the main execution loop rather assuming DISAS_JUMP would
do that.
Backports commit e8d5230221851e8933811f1579fd13371f576955 from qemu
As a precursor to later patches attempt to come up with a more
concrete wording for what each of the common exit cases would be.
Backports commit df0311e634828fdc99ca59352aef68503d631aad from qemu
The Cortex-M3 and M4 CPUs always have 8 PMSA MPU regions (this isn't
a configurable option for the hardware). Make the default value of
the pmsav7-dregion property be set per-cpu, so we don't need to have
every user of these CPUs set it manually. (The existing default of
16 is correct for the other PMSAv7 core, the Cortex-R5.)
This fixes a bug where we were creating the M3 and M4 with
too many regions; most guest software would not notice or
care, though, since it would just not use the registers
associated with the unexpected extra regions.
Backports commit 8d92e26b452f8961ec90df3f93cf5f3b7a9d158f from qemu
Rename memory_region_init_rom() to memory_region_init_rom_nomigrate()
and memory_region_init_rom_device() to
memory_region_init_rom_device_nomigrate().
Backports commit b59821a95bd1d7cb4697fd7748725c910582e0e7 from qemu
Rename memory_region_init_ram() to memory_region_init_ram_nomigrate().
This leaves the way clear for us to provide a memory_region_init_ram()
which does handle migration.
Backports commit 1cfe48c1ce219b60a9096312f7a61806fae64ab3 from qemu
The various functions for initializing RAM MemoryRegions do not do
anything to cause the data in the MemoryRegion to be migrated.
Note in their documentation comments that this is the responsibility
of the caller.
(We will shortly add a new function that *does* do this for you.)
Backports commit a5c0234bb2754f5248e67929a34c843dbe039da5 from qemu
Add a documentation comment for memory_region_allocate_system_memory().
In particular, the reason for this function's existence and the
requirement on board code to call it exactly once are non-obvious.
Backports commit 09ad643823dcda0a86eddce1291c28d0ccb09a3b from qemu
link's check callback is supposed to verify/permit setting it,
however currently nothing restricts it from misusing it
and modifying target object from within.
Make sure that readonly semantics are checked by compiler
to prevent callback's misuse.
Backports commit 8f5d58ef2c92d7b82d9a6eeefd7c8854a183ba4a from qemu
Now that we have proper locking after MTTCG patches have landed, we
can revert the commit. This reverts commit
a9353fe897ca2687e5b3385ed39e3db3927a90e0.
Backports commit 406bc339b0505fcfc2ffcbca1f05a3756e338a65 from qemu
This warning is included in -Wall by clang, but not by GCC (which only
enables it for -Wextra). Include it in the list of warnings we enable
to minimize the differences between the compilers:
Backports commit b98fcfd8840f290c406c32301340e96f00238a93 from qemu
The gen_ prefix is awkward. Generated C should go through cgen()
exactly once (see commit 1f9a7a1). The common way to get this wrong is
passing a foo=gen_foo() keyword argument to mcgen(). I'd like us to
adopt a naming convention where gen_ means "something that's been piped
through cgen(), and thus must not be passed to cgen() or mcgen()".
Requires renaming gen_params(), gen_marshal_proto() and
gen_event_send_proto().
Backports commit 086ee7a6200fa5ad795b12110b5b3d5a93dcac3e from qemu
This patch fixes the msa copy_[s|u]_df instruction emulation when
the destination register rd is zero. Without this patch the zero
register would get clobbered, which should never happen because it
is supposed to be hardwired to 0.
Fix this corner case by explicitly checking rd = 0 and effectively
making these instructions emulation no-op in that case.
Backports commit cab4888136a92250fdd401402622824994f7ce0b from qemu
When running a helloworld program with qemu-i386 in linux-user
mode on Loongson 3A3000, it will crash. This patch fix the bug.
Backports commit 8b8d768f19037a825a0bc81654492caa7c8fab8b from qemu
Clang generates the following warning on aarch64 host:
CC util/cacheinfo.o
/home/pranith/qemu/util/cacheinfo.c:121:48: warning: value size does not match register size specified by the constraint and modifier [-Wasm-operand-widths]
asm volatile("mrs\t%0, ctr_el0" : "=r"(ctr));
^
/home/pranith/qemu/util/cacheinfo.c:121:28: note: use constraint modifier "w"
asm volatile("mrs\t%0, ctr_el0" : "=r"(ctr));
^~
%w0
Constraint modifier 'w' is not (yet?) accepted by gcc. Fix this by increasing the ctr size.
Backports commit 2ae96c157ab3155baf6595c08cf5d3fe3c023a60 from qemu
This patch enables the indirect jump path using an LDR (literal)
instruction. It will be interesting to test and see which performs
better among the two paths.
Backports commit 2acee8b2b5e6bba2935bb6ce5be92d0f0f9799cb from qemu
We use ADRP+ADD to compute the target address for goto_tb. This patch
introduces the NOP instruction which is used to align the above
instruction pair so that we can use one atomic instruction to patch
the destination offsets.
Backports commit b68686bd4bfeb70040b4099df993dfa0b4f37b03 from qemu
We can use a branch to register instruction for exit_tb for offsets
greater than 128MB.
Backports commit 23b7aa1d2af04ba57cc94f74d9f0ab25dce72fa0 from qemu
Move cpu_get_fp80()/cpu_set_fp80() from fpu_helper.c to
machine.c because fpu_helper.c will be disabled if tcg is
disabled in the build.
Backports commit db573d2cf7ae6b5a4fc324be6f55e078fc218464 from qemu.
In unicorn's case, they can be moved into unicorn.c
Move cpu_sync_bndcs_hflags() function from mpx_helper.c
to helper.c because mpx_helper.c need be disabled when
tcg is disabled.
Backports commit ab0a19d4f08d924e052eb369420d264240872f8a from qemu
Add CONFIG_TCG around TLB-related functions and structure declarations.
Some of these functions are defined in ./accel/tcg/cputlb.c, which will
not be linked in if TCG is disabled, and have no stubs; therefore, their
callers will also be compiled out for --disable-tcg.
Backports commit b11ec7f2e44b285a3967d629b55d1a6970b06787 from qemu
This lets you build without TCG (hardware accelerationor qtest only). When
this flag is passed to configure, it will automatically filter out the target
list to only those that support KVM or Xen or HAX.
Backports commit b3f6ea7e55e8228d6f84d5cee7cb11cae917ba95 from qemu
translate-all.c will be disabled if tcg is disabled in the build,
so page_size_init() function and related variables will be moved
to exec.c file.
Backports commit a0be0c585f5dcc4d50a37f6a20d3d625c5ef3a2c from qemu
Commit 1f5c00cfdb8114c ("qom/cpu: move tlb_flush to cpu_common_reset")
moved the call to tlb_flush() from the target-specific reset handlers
into the common code qom/cpu.c file, and protected the call with
"#ifdef CONFIG_SOFTMMU" to avoid that it is called for linux-user
only targets. But since qom/cpu.c is common code, CONFIG_SOFTMMU is
*never* defined here, so the tlb_flush() was simply never executed
anymore. Fix it by introducing a wrapper for tlb_flush() in a file
that is re-compiled for each target, i.e. in translate-all.c.
Backports commit 2cd53943115be5118b5b2d4b80ee0a39c94c4f73 from qemu
Move the handling of conforming code segments before the handling
of stack switch.
Because dpl == cpl after the new "if", it's now unnecessary to check
the C bit when testing dpl < cpl. Furthermore, dpl > cpl is checked
slightly above the modified code, so the final "else" is unreachable
and we can remove it.
Backports commit 1110bfe6f5600017258fa6578f9c17ec25b32277 from qemu
In do_interrupt64(), when interrupt stack table(ist) is enabled
and the the target code segment is conforming(e2 & DESC_C_MASK), the
old implementation always set new CPL to 0, and SS.RPL to 0.
This is incorrect for when CPL3 code access a CPL0 conforming code
segment, the CPL should remain unchanged. Otherwise higher privileged
code can be compromised.
The patch fix this for always set dpl = cpl when the target code segment
is conforming, and modify the last parameter `flags`, which contains
correct new CPL, in cpu_x86_load_seg_cache().
Backports commit e95e9b88ba5f4a6c17f4d0c3a3a6bf3f648bb328 from qemu
Some code paths can lead to atomic accesses racing with memset()
on cpu->tb_jmp_cache, which can result in torn reads/writes
and is undefined behaviour in C11.
These torn accesses are unlikely to show up as bugs, but from code
inspection they seem possible. For example, tb_phys_invalidate does:
/* remove the TB from the hash list */
h = tb_jmp_cache_hash_func(tb->pc);
CPU_FOREACH(cpu) {
if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
atomic_set(&cpu->tb_jmp_cache[h], NULL);
}
}
Here atomic_set might race with a concurrent memset (such as the
ones scheduled via "unsafe" async work, e.g. tlb_flush_page) and
therefore we might end up with a torn pointer (or who knows what,
because we are under undefined behaviour).
This patch converts parallel accesses to cpu->tb_jmp_cache to use
atomic primitives, thereby bringing these accesses back to defined
behaviour. The price to pay is to potentially execute more instructions
when clearing cpu->tb_jmp_cache, but given how infrequently they happen
and the small size of the cache, the performance impact I have measured
is within noise range when booting debian-arm.
Note that under "safe async" work (e.g. do_tb_flush) we could use memset
because no other vcpus are running. However I'm keeping these accesses
atomic as well to keep things simple and to avoid confusing analysis
tools such as ThreadSanitizer.
Backports commit f3ced3c59287dabc253f83f0c70aa4934470c15e from qemu
We are relying on cpu_env being defined as a global, yet most
targets (i.e. all but arm/a64) have it defined as a local variable.
Luckily all of them use the same "cpu_env" name, but really
compilation shouldn't break if the name of that local variable
changed.
Fix it by using tcg_ctx.tcg_env, which all targets set in their
translate_init function. This change also helps paving the way
for the upcoming "translation loop common to all targets" work.
Backports commit 53f6672bcf57d82b794a2cc3a3469be7d35c8653 from qemu
Add fsabs, fdabs, fsneg, fdneg, fsmove and fdmove.
The value is converted using the new floatx80_round() function.
Backports commit 77bdb2292492fafc4bc0fbb4d8c44fdd0ef1fa8e from qemu
Add a function to round a floatx80 to the defined precision
(floatx80_rounding_precision)
Backports commit 0f72129281765ed64d26353284059f2bdcde7a23 from qemu
fmovecr moves a floating point constant from the
FPU ROM to a floating point register.
Backports commit 9d403660d91229922c2786e81c23cc9dd8e644f1 from qemu
This may be used for deprecated object properties that are kept for
backwards compatibility.
Backports commit a733371214b68881d84725a3c71f60e2faf3b8e2 from qemu
This replaces env1 and page_index variables by env and index
so we can use VICTIM_TLB_HIT macro later.
Backports commit 3416343255cbe01fbe12e5e36cd4bb5042425b27 from qemu
Coldfire uses float64, but 680x0 use floatx80.
This patch introduces the use of floatx80 internally
and enables 680x0 80bits FPU.
Backports commit f83311e4764f1f25a8abdec2b32c64483be1759b from qemu
Switch to use QNum/uint where appropriate to remove i64 limitation.
The input visitor will cast i64 input to u64 for compatibility
reasons (existing json QMP client already use negative i64 for large
u64, and expect an implicit cast in qemu).
Note: before the patch, uint64_t values above INT64_MAX are sent over
json QMP as negative values, e.g. UINT64_MAX is sent as -1. After the
patch, they are sent unmodified. Clearly a bug fix, but we have to
consider compatibility issues anyway. libvirt should cope fine,
because its parsing of unsigned integers accepts negative values
modulo 2^64. There's hope that other clients will, too.
Backports commit 5923f85fb82df7c8c60a89458a5ae856045e5ab1 from qemu
In order to store integer values between INT64_MAX and UINT64_MAX, add
a uint64_t internal representation.
Backports commit 61a8f418b26a2d974e38e4ae55020aca8d402d88 from qemu
Before the previous commit, parameter promote_int = true made
visit_start_alternate() with an input visitor avoid QTYPE_QINT
variants and create QTYPE_QFLOAT variants instead. This was used
where QTYPE_QINT variants were invalid.
The previous commit fused QTYPE_QINT with QTYPE_QFLOAT, rendering
promote_int useless and unused.
Backports commit 60390d2dc85ffade8981ca41e02335cb07353a6d from qemu
We would like to use a same QObject type to represent numbers, whether
they are int, uint, or floats. Getters will allow some compatibility
between the various types if the number fits other representations.
Add a few more tests while at it.
Backports commit 01b2ffcedd94ad7b42bc870e4c6936c87ad03429 from qemu
QAPI_CLONE() returns a newly allocated QAPI object. Inconvenient when
we want to clone into an existing object. QAPI_CLONE_MEMBERS() does
exactly that.
Backports commit 4626a19c86c30d96cedbac2bd44ef8103303cb37 from qemu
Rather than making lots of callers wrap a scalar in a QInt, QString,
or QBool, provide helper macros that do the wrapping automatically.
Update the Coccinelle script to make mass conversions easy, although
the conversion itself will be done as a separate patches to ease
review and backport efforts.
Backports commit a92c21591b5bb9543996538f14854ca6b528318b from qemu
Visiting a list when input is the empty string should result in an
empty list, not an error. Noticed when commit 3d089ce belatedly added
tests, but simply accepted as weird then. It's actually a regression:
broken in commit 74f24cb, v2.7.0. Fix it, and throw in another test
case for empty string.
Backports commit d2788227c6185c72d88ef3127e9fed41686f8e39 from qemu
We can call tb_htable_lookup even when the tb_jmp_cache is completely
empty. Therefore, un-nest most of the code dependent on tb != NULL
from the read from the cache.
This improves the hit rate of lookup_tb_ptr; for instance, when booting
and immediately shutting down debian-arm, the hit rate improves from
93.2% to 99.4%.
Backports commit b97a879de980e99452063851597edb98e7e8039c from qemu
The new placement of the TB means that we can use one insn
to load the goto_tb destination directly from the TB.
Backports commit 308714e6bc945389c64faf1b9213e2c0d3f03391 from qemu
Since we're no longer using a direct branch, we have no
limit on the branch distance.
Backports commit acb0b292b6d0f49972dc98f742e79ed53973e438 from qemu
The new placement of the TB means that we can use one insn
to load the return value for exit_tb returning the TB pointer.
Backports commit cc74d332ff9a78684374847375ef63fc4bd10436 from qemu
We are partially initializing tb in tb_alloc. Instead, fully
initialize it in tb_gen_code, which is tb_alloc's only caller.
This saves an unnecessary write to tb->cflags.
Backports commit 2b48e10f888059a98043b4816769fa2a326a1d2c from qemu
Allocating an arbitrarily-sized array of tbs results in either
(a) a lot of memory wasted or (b) unnecessary flushes of the code
cache when we run out of TB structs in the array.
An obvious solution would be to just malloc a TB struct when needed,
and keep the TB array as an array of pointers (recall that tb_find_pc()
needs the TB array to run in O(log n)).
Perhaps a better solution, which is implemented in this patch, is to
allocate TB's right before the translated code they describe. This
results in some memory waste due to padding to have code and TBs in
separate cache lines--for instance, I measured 4.7% of padding in the
used portion of code_gen_buffer when booting aarch64 Linux on a
host with 64-byte cache lines. However, it can allow for optimizations
in some host architectures, since TCG backends could safely assume that
the TB and the corresponding translated code are very close to each
other in memory. See this message by rth for a detailed explanation:
https://lists.gnu.org/archive/html/qemu-devel/2017-03/msg05172.html
Subject: Re: GSoC 2017 Proposal: TCG performance enhancements
Backports commit 6e3b2bfd6af488a896f7936e99ef160f8f37e6f2 from qemu
Add helpers to gather cache info from the host at init-time.
For now, only export the host's I/D cache line sizes, which we
will use to improve cache locality to avoid false sharing.
Backports commit b255b2c8a5484742606e8760870ba3e14d0c9605 from qemu
V flag for subtraction is:
v = (res ^ src1) & (src1 ^ src2)
(see COMPUTE_CCR() in target/m68k/helper.c)
But gen_flush_flags() uses:
v = (res ^ src2) & (src1 ^ src2)
The problem has been found with the following program:
.global _start
_start:
move.l #-2147483648,%d0
subq.l #1,%d0
jvc 1f
move.l #1,%d1
move.l #1,%d0
trap #0
1:
move.l #0,%d1
move.l #1,%d0
trap #0
It works fine (exit(1)) on real hardware, and with "-singlestep".
"-singlestep" uses gen_helper_flush_flags(), whereas
without "-singlestep", V flag is computed directly in
gen_flush_flags().
This patch updates gen_flush_flags() to have the same result
as with gen_helper_flush_flags().
Backports commit 043b936ef6fe53396b3c6b8f5562ea3e238a071d from qemu
Running Windows with icount causes a crash in instruction of write cr.
This patch fixes it.
Reading and writing cr cause an icount read because there are called
cpu_get_apic_tpr and cpu_set_apic_tpr functions. So, there is need
gen_io_start()/gen_io_end() calls.
Backports commit 5b003a40bb1ab14d0398e91f03393d3c6b9577cd from qemu
This speeds up SMM switches. Later on it may remove the need to take
the BQL, and it may also allow to reuse code between TCG and KVM.
Backports commit f8c45c6550b9ff1e1f0b92709ff3213a79870879 from qemu
It really only plays with the dispatchers, so the parameter list does
not need that complexity. This helps for readability at least.
Backports commit 003a0cf2cd1828a1141a874428571267b117f765 from qemu
In theory this would re-enable usage of QEMU on an armv4 host.
Whether this is worthwhile is debatable -- we've been unconditionally
issuing the armv5t BX instruction in the prologue since 2011 without
complaint. Possibly we should simply require an armv6 host.
Backports commit 702a947484eb3e615183dafc93de590ab0679f60 from qemu
Instead of unconditionally exiting to the exec loop, use the
gen_jr helper to jump to the target if it is valid.
Perf impact: see next commit's log.
Backports commit fe62089563ffc6a42f16ff28a6b6be34d2697766 from qemu
Instead of unconditionally exiting to the exec loop, use the
lookup_and_goto_ptr helper to jump to the target if it is valid.
Perf impact: see next commit's log.
Backports commit 7ad55b4ffd982c80f26f7f3658138d94cdc678e8 from qemu
Instead of exporting goto_ptr directly to TCG frontends, export
tcg_gen_lookup_and_goto_ptr(), which calls goto_ptr with the pointer
returned by the lookup_tb_ptr() helper. This is the only use case
we have for goto_ptr and lookup_tb_ptr, so having this function is
very convenient. Furthermore, it trivially allows us to avoid calling
the lookup helper if goto_ptr is not implemented by the backend.
Backports commit cedbcb01529cb6cf9a2289cdbebbc63f6149fc18 from qemu
We need to coordinate with the TCG_OVERSIZED_GUEST test in cputlb.c,
and allow 64-bit atomics even though sizeof(void *) == 4.
Backports commit 374aae653499f4d405caf32b7fff0c8639113fe4 from qemu
The cp15, CRn=15, opc1=0, CRm=5, opc2=0 instruction invalidates all the
data cache on the cortex-r5. Implementing it as a NOP.
Backports commit 95e9a242e2a393c7d4e5cc04340e39c3a9420f03 from qemu
M profile doesn't implement ARM, and the architecturally required
behaviour for attempts to execute with the Thumb bit clear is to
generate a UsageFault with the CFSR INVSTATE bit set. We were
incorrectly implementing this as generating an UNDEFINSTR UsageFault;
fix this.
Backports commit e13886e3a790b52f0b2e93cb5e84fdc2ada5471a from qemu
Implement the exception return consistency checks
described in the v7M pseudocode ExceptionReturn().
Inspired by a patch from Michael Davidsaver's series, but
this is a reimplementation from scratch based on the
ARM ARM pseudocode.
Backports commit aa488fe3bb5460c6675800ccd80f6dccbbd70159 from qemu
Extract the code from the tail end of arm_v7m_do_interrupt() which
enters the exception handler into a pair of utility functions
v7m_exception_taken() and v7m_push_stack(), which correspond roughly
to the pseudocode PushStack() and ExceptionTaken().
This also requires us to move the arm_v7m_load_vector() utility
routine up so we can call it.
Handling illegal exception returns has some cases where we want to
take a UsageFault either on an existing stack frame or with a new
stack frame but with a specific LR value, so we want to be able to
call these without having to go via arm_v7m_cpu_do_interrupt().
Backports commit 39ae2474e337247e5930e8be783b689adc9f6215 from qemu
All the places in armv7m_cpu_do_interrupt() which pend an
exception in the NVIC are doing so for synchronous
exceptions. We know that we will always take some
exception in this case, so we can just acknowledge it
immediately, rather than returning and then immediately
being called again because the NVIC has raised its outbound
IRQ line.
Backports commit a25dc805e2e63a55029e787a52335e12dabf07dc from qemu
The M profile condition for when we can take a pending exception or
interrupt is not the same as that for A/R profile. The code
originally copied from the A/R profile version of the
cpu_exec_interrupt function only worked by chance for the
very simple case of exceptions being masked by PRIMASK.
Replace it with a call to a function in the NVIC code that
correctly compares the priority of the pending exception
against the current execution priority of the CPU.
Backports commit 7ecdaa4a9635f1ded0dfa9218c25273b6d4dcd44 from qemu
Having armv7m_nvic_acknowledge_irq() return the new value of
env->v7m.exception and its one caller assign the return value
back to env->v7m.exception is pointless. Just make the return
type void instead.
Backports commit a5d8235545e98c1ce02560d5f4f57552d937efe9 from qemu
Implement HFNMIENA support for the M profile MPU. This bit controls
whether the MPU is treated as enabled when executing at execution
priorities of less than zero (in NMI, HardFault or with the FAULTMASK
bit set).
Doing this requires us to use a different MMU index for "running
at execution priority < 0", because we will have different
access permissions for that case versus the normal case.
Backports commit 3bef7012560a7f0ea27b265105de5090ba117514 from qemu
The M series MPU is almost the same as the already implemented R
profile MPU (v7 PMSA). So all we need to implement here is the MPU
register interface in the system register space.
This implementation has the same restriction as the R profile MPU
that it doesn't permit regions to be sized down smaller than 1K.
We also do not yet implement support for MPU_CTRL.HFNMIENA; this
bit should if zero disable use of the MPU when running HardFault,
NMI or with FAULTMASK set to 1 (ie at an execution priority of
less than zero) -- if the MPU is enabled we don't treat these
cases any differently.
Backports commit 29c483a506070e8f554c77d22686f405e30b9114 from qemu
General logic is that operations stopped by the MPU are MemManage,
and those which go through the MPU and are caught by the unassigned
handle are BusFault. Distinguish these by looking at the
exception.fsr values, and set the CFSR bits and (if appropriate)
fill in the BFAR or MMFAR with the exception address.
Backports commit 5dd0641d234e355597be62e5279d8a519c831625 from qemu
All M profile CPUs are PMSA, so set the feature bit.
(We haven't actually implemented the M profile MPU register
interface yet, but setting this feature bit gives us closer
to correct behaviour for the MPU-disabled case.)
Backports commit 790a11503cfb5e1dcd031ea2212bbebae4ca3cec from qemu
Add support for the M profile default memory map which is used
if the MPU is not present or disabled.
The main differences in behaviour from implementing this
correctly are that we set the PAGE_EXEC attribute on
the right regions of memory, such that device regions
are not executable.
Backports commit 3a00d560bcfca7ad04327062c1986a016c104b1f from qemu
Improve the "-d mmu" tracing for the PMSAv7 MPU translation
process as an aid in debugging guest MPU configurations:
* fix a missing newline for a guest-error log
* report the region number with guest-error or unimp
logs of bad region register values
* add a log message for the overall result of the lookup
* print "0x" prefix for hex values
Backports commit c9f9f1246d630960bce45881e9c0d27b55be71e2 from qemu
Now that we enforce both:
* pmsav7_dregion == 0 implies has_mpu == false
* PMSA with has_mpu == false means SCTLR.M cannot be set
we can remove a check on pmsav7_dregion from get_phys_addr_pmsav7(),
because we can only reach this code path if the MPU is enabled
(and so region_translation_disabled() returned false).
Backports commit e9235c6983b261e04e897e8ff900b2b7a391e644 from qemu
If the CPU is a PMSA config with no MPU implemented, then the
SCTLR.M bit should be RAZ/WI, so that the guest can never
turn on the non-existent MPU.
Backports commit 06312febfb2d35367006ef23608ddd6a131214d4 from qemu
Fix the handling of QOM properties for PMSA CPUs with no MPU:
Allow no-MPU to be specified by either:
* has-mpu = false
* pmsav7_dregion = 0
and make setting one imply the other. Don't clear the PMSA
feature bit in this situation.
Backports commit f50cd31413d8bc9d1eef8edd1f878324543bf65d from qemu
ARM CPUs come in two flavours:
* proper MMU ("VMSA")
* only an MPU ("PMSA")
For PMSA, the MPU may be implemented, or not (in which case there
is default "always acts the same" behaviour, but it isn't guest
programmable).
QEMU is a bit confused about how we indicate this: we have an
ARM_FEATURE_MPU, but it's not clear whether this indicates
"PMSA, not VMSA" or "PMSA and MPU present" , and sometimes we
use it for one purpose and sometimes the other.
Currently trying to implement a PMSA-without-MPU core won't
work correctly because we turn off the ARM_FEATURE_MPU bit
and then a lot of things which should still exist get
turned off too.
As the first step in cleaning this up, rename the feature
bit to ARM_FEATURE_PMSA, which indicates a PMSA CPU (with
or without MPU).
Backports commit 452a095526a0537f16c271516a2200877a272ea8 from qemu
Make M profile use completely separate ARMMMUIdx values from
those that A profile CPUs use. This is a prelude to adding
support for the MPU and for v8M, which together will require
6 MMU indexes which don't map cleanly onto the A profile
uses:
non secure User
non secure Privileged
non secure Privileged, execution priority < 0
secure User
secure Privileged
secure Privileged, execution priority < 0
Backports commit e7b921c2d9efc249f99b9feb0e7dca82c96aa5c4 from qemu
The v7M exception architecture requires that if a synchronous
exception cannot be taken immediately (because it is disabled
or at too low a priority) then it should be escalated to
HardFault (and the HardFault exception is then taken).
Implement this escalation logic.
Backports commit a73c98e159d18155445d29b6044be6ad49fd802f from qemu
The M profile CPU's MPU has an awkward corner case which we
would like to implement with a different MMU index.
We can avoid having to bump the number of MMU modes ARM
uses, because some of our existing MMU indexes are only
used by non-M-profile CPUs, so we can borrow one.
To avoid that getting too confusing, clean up the code
to try to keep the two meanings of the index separate.
Instead of ARMMMUIdx enum values being identical to core QEMU
MMU index values, they are now the core index values with some
high bits set. Any particular CPU always uses the same high
bits (so eventually A profile cores and M profile cores will
use different bits). New functions arm_to_core_mmu_idx()
and core_to_arm_mmu_idx() convert between the two.
In general core index values are stored in 'int' types, and
ARM values are stored in ARMMMUIdx types.
Backports commit 8bd5c82030b2cb09d3eef6b444f1620911cc9fc5 from qemu
The PMUv3 driver of linux kernel (in arch/arm64/kernel/perf_event.c)
relies on the PMUVER field of id_aa64dfr0_el1 to decide if PMU support
is present or not. This patch clears the PMUVER field under TCG mode
when vPMU=off. Without it, PMUv3 will init insider guest VMs even
with vPMU=off. This patch also removes a redundant line inside the
if-statement.
Backports commit 2b3ffa929249b15a75d8bde3e8e57a744f52aff0 from qemu
When identifying the DFSR format for an alignment fault, use
the mmu index that we are passed, rather than calling cpu_mmu_index()
to get the mmu index for the current CPU state. This doesn't actually
make any difference since the only cases where the current MMU index
differs from the index used for the load are the "unprivileged
load/store" instructions, and in that case the mmu index may
differ but the translation regime is the same (apart from the
"use from Hyp mode" case which is UNPREDICTABLE).
However it's the more logical thing to do.
Backports commit e517d95b63427fae9f03958dbc005c36b4ebf2cf from qemu
This patch converts the old "is_write" bool into IOMMUAccessFlags. The
difference is that "is_write" can only express either read/write, but
sometimes what we really want is "none" here (neither read nor write).
Replay is an good example - during replay, we should not check any RW
permission bits since thats not an actual IO at all.
Backports commit bf55b7afce53718ef96f4e6616da62c0ccac37dd from qemu
This function is an abstraction helper for address_space_translate() and
address_space_get_iotlb_entry(). It does the lookup of address into
memory region section, then does proper IOMMU translation if necessary.
Refactor the two existing functions to use it.
This fixes vhost when IOMMU is disabled by guest.
Backports commit a764040cc831cfe5b8bf1c80e8341b9bf2de3ce8 from qemu
In case where the conditional write is the first write to the page,
TLB_NOTDIRTY will be set and stop_the_world is triggered. Handle this as
a special case and set the dirty bit. After that fall through to the
actual atomic instruction below.
Backports commit 7f9af1abdcc69fd1d3d8d2be68464329600616d6 from qemu
Users of tcg_gen_atomic_cmpxchg and do_atomic_op rightfully utilize
the output. Even though this code is dead, it gets translated, and
without the initialization we encounter a tcg_error.
Backports commit 79b1af906245558c30e0a5faf26cb52b63f83cce from qemu
We already require gcc 4.1 or newer (for the atomic
support), so the fallback codepaths for older gcc
versions than that are now dead code and we can
just delete them.
NB: clang reports itself as gcc 4.2 (regardless of
clang version), so clang won't be using the fallbacks
either.
Backports commit fa54abb8c298f892639ffc4bc2f61448ac3be4a1 from qemu
Now that we've rewritten M-profile exception return so that the magic
PC values are not visible to other parts of QEMU, we can delete the
special casing of them elsewhere.
Backports commit f4e8e4edda875cab9df91dc4ae9767f7cb1f50aa from qemu
On M profile, return from exceptions happen when code in Handler mode
executes one of the following function call return instructions:
* POP or LDM which loads the PC
* LDR to PC
* BX register
and the new PC value is 0xFFxxxxxx.
QEMU tries to implement this by not treating the instruction
specially but then catching the attempt to execute from the magic
address value. This is not ideal, because:
* there are guest visible differences from the architecturally
specified behaviour (for instance jumping to 0xFFxxxxxx via a
different instruction should not cause an exception return but it
will in the QEMU implementation)
* we have to account for it in various places (like refusing to take
an interrupt if the PC is at a magic value, and making sure that
the MPU doesn't deny execution at the magic value addresses)
Drop these hacks, and instead implement exception return the way the
architecture specifies -- by having the relevant instructions check
for the magic value and raise the 'do an exception return' QEMU
internal exception immediately.
The effect on the generated code is minor:
bx lr, old code (and new code for Thread mode):
TCG:
mov_i32 tmp5,r14
movi_i32 tmp6,$0xfffffffffffffffe
and_i32 pc,tmp5,tmp6
movi_i32 tmp6,$0x1
and_i32 tmp5,tmp5,tmp6
st_i32 tmp5,env,$0x218
exit_tb $0x0
set_label $L0
exit_tb $0x7f2aabd61993
x86_64 generated code:
0x7f2aabe87019: mov %ebx,%ebp
0x7f2aabe8701b: and $0xfffffffffffffffe,%ebp
0x7f2aabe8701e: mov %ebp,0x3c(%r14)
0x7f2aabe87022: and $0x1,%ebx
0x7f2aabe87025: mov %ebx,0x218(%r14)
0x7f2aabe8702c: xor %eax,%eax
0x7f2aabe8702e: jmpq 0x7f2aabe7c016
bx lr, new code when in Handler mode:
TCG:
mov_i32 tmp5,r14
movi_i32 tmp6,$0xfffffffffffffffe
and_i32 pc,tmp5,tmp6
movi_i32 tmp6,$0x1
and_i32 tmp5,tmp5,tmp6
st_i32 tmp5,env,$0x218
movi_i32 tmp5,$0xffffffffff000000
brcond_i32 pc,tmp5,geu,$L1
exit_tb $0x0
set_label $L1
movi_i32 tmp5,$0x8
call exception_internal,$0x0,$0,env,tmp5
x86_64 generated code:
0x7fe8fa1264e3: mov %ebp,%ebx
0x7fe8fa1264e5: and $0xfffffffffffffffe,%ebx
0x7fe8fa1264e8: mov %ebx,0x3c(%r14)
0x7fe8fa1264ec: and $0x1,%ebp
0x7fe8fa1264ef: mov %ebp,0x218(%r14)
0x7fe8fa1264f6: cmp $0xff000000,%ebx
0x7fe8fa1264fc: jae 0x7fe8fa126509
0x7fe8fa126502: xor %eax,%eax
0x7fe8fa126504: jmpq 0x7fe8fa122016
0x7fe8fa126509: mov %r14,%rdi
0x7fe8fa12650c: mov $0x8,%esi
0x7fe8fa126511: mov $0x56095dbeccf5,%r10
0x7fe8fa12651b: callq *%r10
which is a difference of one cmp/branch-not-taken. This will
be lost in the noise of having to exit generated code and
look up the next TB anyway.
Backports commit 3bb8a96f5348913ee130169504f3642f501b113e from qemu
For M profile exception-return handling we'd like to generate different
code for some instructions depending on whether we are in Handler
mode or Thread mode. This isn't the same as "are we privileged
or user", so we need an extra bit in the TB flags to distinguish.
Backports commit 064c379c99b835bdcc478d21a3849507ea07d53a from qemu
Move the code to generate the "condition failed" instruction
codepath out of the if (singlestepping) {} else {}. This
will allow adding support for handling a new is_jmp type
which can't be neatly split into "singlestepping case"
versus "not singlestepping case".
Backports commit f021b2c4627890d82fbcc300db3bd782b37b7f8a from qemu
arm: Abstract out "are we singlestepping" test to utility function
We now test for "are we singlestepping" in several places and
it's not a trivial check because we need to care about both
architectural singlestep and QEMU gdbstub singlestep. We're
also about to add another place that needs to make this check,
so pull the condition out into a function.
Backports commit b636649f5a2e108413dd171edaf320f781f57942 from qemu
Move the utility routines gen_set_condexec() and gen_set_pc_im()
up in the file, as we will want to use them from a function
placed earlier in the file than their current location.
Backports commit 4d5e8c969a74c86124fc2284ea603cc6dd3c5dfa from qemu
We currently have two places that do:
if (dc->ss_active) {
gen_step_complete_exception(dc);
} else {
gen_exception_internal(EXCP_DEBUG);
}
Factor this out into its own function, as we're about to add
a third place that needs the same logic.
Backports commit 5425415ebba5fa20558e1ef25e1997a6f5ea4c7c from qemu
In Thumb mode, the only instructions which can cause an interworking
branch by writing the PC are BLX, BX, BXJ, LDR, POP and LDM. Unlike
ARM mode, data processing instructions which target the PC do not
cause interworking branches.
When we added support for doing interworking branches on writes to
PC from data processing instructions in commit 21aeb3430ce7ba, we
accidentally changed a Thumb instruction to have interworking
branch behaviour for writes to PC. (MOV, MOVS register-shifted
register, encoding T2; this is the standard encoding for
LSL/LSR/ASR/ROR (register).)
For this encoding, behaviour with Rd == R15 is specified as
UNPREDICTABLE, so allowing an interworking branch is within
spec, but it's confusing and differs from our handling of this
class of UNPREDICTABLE for other Thumb ALU operations. Make
it perform a simple (non-interworking) branch like the others.
Backports commit bedb8a6b09c1754c3b9f155750c62dc087706698 from qemu
For M-profile CPUs, the BXJ instruction does not exist at all, and
the encoding should always UNDEF. We were accidentally implementing
it to behave like A-profile BXJ; correct the error.
Backports commit 9d7c59c84d4530d05e8702b1c3a31e6da00a397e from qemu
In tlb_fill() we construct a syndrome register value from a
fault status register value which is filled in by arm_tlb_fill().
arm_tlb_fill() returns FSR values which might be in the format
used with short-format page descriptors, or the format used
with long-format (LPAE) descriptors. The syndrome register
always uses LPAE-format FSR status codes.
It isn't actually possible to end up delivering a syndrome
register value to the guest for a fault which is reported
with a short-format FSR (that kind of stage 1 fault will only
happen for an AArch32 translation regime which doesn't have
a syndrome register, and can never be redirected to an AArch64
or Hyp exception level). Add an assertion which checks this,
and adjust the code so that we construct a syndrome with
an invalid status code, rather than allowing set bits in
the FSR input to randomly corrupt other fields in the syndrome.
Backports commit 65ed2ed90d9d81fd4b639029be850ea5651f919f from qemu
The excnames[] array is defined in internals.h because we used
to use it from two different source files for handling logging
of AArch32 and AArch64 exception entry. Refactoring means that
it's now used only in arm_log_exception() in helper.c, so move
the array into that function.
Backports commit 2c4a7cc5afb1bfc1728a39abd951ddd7714c476e from qemu
Recent changes have added new EXCP_ values to ARM but forgot
to update the excnames[] array which is used to provide
human-readable strings when printing information about the
exception for debug logging. Add the missing entries, and
add a comment to the list of #defines to help avoid the mistake
being repeated in future.
Backports commit 32b81e620ea562d56ab2733421b5da1082b237a2 from qemu
For "ldp x0, x1, [x0]", if the second load is on a second page and
the second page is unmapped, the exception would be raised with x0
already modified. This means the instruction couldn't be restarted.
Backports commit 2d1bbf51c2cb948da4b6fd5f91cf3ecc80b28156 from qemu
MemoryRegionCache did not know about virtio support for IOMMUs (because the
two features were developed at the same time). Revert MemoryRegionCache
to "normal" address_space_* operations for 2.9, as it is simpler than
undoing the virtio patches.
Backports commit 90c4fe5fc517a045e7a7cf2f23472e114042ca29 from qemu
The C store helper functions take the address argument as a
target_ulong type; if this is 32 bit but the host is 64 bit
then the SPARC calling convention requires that the caller
must zero extend the value. We weren't doing this, which
meant we could pass values to the caller with high bits set
and QEMU would crash if it was compiled with optimizations.
In particular, the i386 BIOS would not start.
Backports commit 5c32be5baf41aec4f4675d2bf24f9948756abf3c from qemu
The C store helper functions take the data argument as a uint8_t,
uint16_t, etc depending on the store size. The SPARC calling
convention requires that data types smaller than the register
size must be extended by the caller. We weren't doing this,
which meant that if QEMU was compiled with optimizations enabled
we could end up storing incorrect values to guest memory.
(In particular the i386 guest BIOS would crash on startup.)
Add code to the trampolines that call the store helpers to
do the zero extension as required.
Backports commit 709a340d679d95a0c6cbb9b5f654498f04345b50 from qemu
The existing code for "host" and "max" CPU models overrides every
single feature in the CPU object at realize time, even the ones
that were explicitly enabled or disabled by the user using
"feat=on" or "feat=off", while features set using +feat/-feat are
kept.
This means "-cpu host,+invtsc" works as expected, while
"-cpu host,invtsc=on" doesn't.
This was a known bug, already documented in a comment inside
x86_cpu_expand_features(). What makes this bug worse now is that
libvirt 3.0.0 and newer now use "feat=on|off" instead of
+feat/-feat when it detects a QEMU version that supports it (see
libvirt commit d47db7b16dd5422c7e487c8c8ee5b181a2f9cd66).
Change the feature property getter/setter to set a
env->user_features field, to keep track of features that were
explicitly changed using QOM properties. Then make the
max_features code not override user features when handling "-cpu
host" and "-cpu max".
This will also allow us to remove the plus_features/minus_features
hack in the future, but I plan to do that after 2.9.0 is
released.
Backports commit d4a606b38b5d4b3689b86cc1575908e82179ecfb from qemu
The Cygwin target is really compiling for native Win32 with -mno-cygwin.
Except, GCC 4.7.0 has finally removed the long deprecated -mno-cygwin
option, and that happened about five years ago.
Let it rest in peace.
Backports commit c8645752ce31cc044ecc5f969a986fdcb6aab590 from qemu
It is unnecessary to test R6 from delay/forbidden slot check
in gen_msa_branch().
https://bugs.launchpad.net/qemu/+bug/1663287
Backports commit 075a1fe788d36b271ec25507466c30b9a90b5d54 from qemu
this fixes many warnings like:
target/mips/translate.c:6253:13: warning: Value stored to 'rn' is never read
rn = "invalid sel";
^ ~~~~~~~~~~~~~
Backports commit 3570d7f6672836140f0a1ec9bf95dd5ea50a2aaa from qemu
static code analyzer complain:
target/mips/helper.c:453:5: warning: Function call argument is an uninitialized value
qemu_log_mask(CPU_LOG_MMU,
^~~~~~~~~~~~~~~~~~~~~~~~~~
'physical' and 'prot' are uninitialized if 'ret' is not TLBRET_MATCH.
Backports commit def74c0cf05722b2e502d4b4f1219966c5b0cbd3 from qemu
Our implementation of writes to the APSR for M-profile via the MSR
instruction was badly broken.
First and worst, we had the sense wrong on the test of bit 2 of the
SYSm field -- this is supposed to request an APSR write if bit 2 is 0
but we were doing it if bit 2 was 1. This bug was introduced in
commit 58117c9bb429cd, so hasn't been in a QEMU release.
Secondly, the choice of exactly which parts of APSR should be written
is defined by bits in the 'mask' field. We were not passing these
through from instruction decode, making it impossible to check them
in the helper.
Pass the mask bits through from the instruction decode to the helper
function and process them appropriately; fix the wrong sense of the
SYSm bit 2 check.
Invalid mask values and invalid combinations of mask and register
number are UNPREDICTABLE; we choose to treat them as if the mask
values were valid.
Backports commit b28b3377d7e9ba35611d454d5a63ef50cab1f8c5 from qemu
For M profile (unlike A profile) the reset value of R14 is specified
as 0xffffffff. (The rationale is that this is an illegal exception
return value, so if guest code tries to return to it it will result
in a helpful exception.)
Registers r0 to r12 and the flags are architecturally UNKNOWN on
reset, so we leave those at zero.
Backports commit 056f43df9168413f304500b69c33158d66efb7cf from qemu
For M profile CPUs, FAULTMASK should be 0 on reset, like PRIMASK.
QEMU stores FAULTMASK in the PSTATE F bit, so (as with PRIMASK in the
I bit) we have to clear these to undo the A profile default of 1.
Update the comment accordingly and move it so that it's closer to the
code it's referring to.
Backports commit dc7abe4d65ad39390b2db120f5ad18f8f6576f8b from qemu
For v7M attempts to access a nonexistent coprocessor are reported
differently from plain undefined instructions (as UsageFaults of type
NOCP rather than type UNDEFINSTR). Split them out into a new
EXCP_NOCP so we can report the FSR value correctly.
Backports commit 7517748e3f71a3099e57915fba95c4c308e6d842 from qemu
For v7M attempts to access a nonexistent coprocessor are reported
differently from plain undefined instructions (as UsageFaults of type
NOCP rather than type UNDEFINSTR). Split them out into a new
EXCP_NOCP so we can report the FSR value correctly.
Backports commit 7517748e3f71a3099e57915fba95c4c308e6d842 from qemu
When we take an exception for an undefined instruction, set the
appropriate CFSR bit.
Backports commit 81dd9648c69bb89afdd6f4bb3ed6f3efdac96524 from qemu
The CCR.STACKALIGN bit controls whether the CPU is supposed to force
8-alignment of the stack pointer on entry to the exception handler.
Backports commit dc858c6633a9af8b80c1509cf6f825e4390d3ad1 from qemu
Add the structure fields, VMState fields, reset code and macros for
the v7M system control registers CCR, CFSR, HFSR, DFSR, MMFAR and
BFAR.
Backports commit 2c4da50d9477fb830d778bb5d6a11215aa359b44 from qemu
Give an explicit error and abort when a load
from the vector table fails. Architecturally this
should HardFault (which will then immediately
fail to load the HardFault vector and go into Lockup).
Since we don't model Lockup, just report this guest
error via cpu_abort(). This is more helpful than the
previous behaviour of reading a zero, which is the
address of the reset stack pointer and not a sensible
location to jump to.
Backports commit 1b9ea408fca1ce8caae67b792355b023c69c5ac5 from qemu
For v7m we need to catch attempts to execute from special
addresses at 0xfffffff0 and above. Previously we did this
with the aid of a hacky special purpose lump of memory
in the address space and a check in translate.c for whether
we were translating code at those addresses.
We can implement this more cleanly using a CPU
unassigned access handler which throws the exception
if the unassigned access is for one of the special addresses.
Backports commit 542b3478a00cb7ef51c259255b3ab1e2a7daada2 from qemu
The MRS and MSR instruction handling has a number of flaws:
* unprivileged accesses should only be able to read
CONTROL and the xPSR subfields, and only write APSR
(others RAZ/WI)
* privileged access should not be able to write xPSR
subfields other than APSR
* accesses to unimplemented registers should log as
guest errors, not abort QEMU
Backports commit 58117c9bb429cd9552d998687aa99088eb1d8528 from qemu
The v7m CONTROL register bit 1 is SPSEL, which indicates
the stack being used. We were storing this information
not in v7m.control but in the separate v7m.other_sp
structure field. Unfortunately, the code handling reads
of the CONTROL register didn't take account of this, and
so if SPSEL was updated by an exception entry or exit then
a subsequent guest read of CONTROL would get the wrong value.
Using a separate structure field doesn't really gain us
anything in efficiency, so drop this unnecessary complexity
in favour of simply storing all the bits in v7m.control.
This is a migration compatibility break for M profile
CPUs only.
Backports commit abc24d86cc0364f402e438fae3acb14289b40734 from qemu
The MRS instruction requires that bits [19..16] are all 1s, and for
A/R profile also that bits [7..0] are all 0s. At this point in the
decode tree we have checked all of the rest of the instruction but
were allowing these to be any value. If these bits are not set then
the result is architecturally UNPREDICTABLE, but choosing to UNDEF is
more helpful to the user and avoids unexpected odd behaviour if the
encodings are used for some purpose in future architecture versions.
Backports commit 3d54026fb06d1aea7ebb4e9825970b06bebcacac from qemu
M profile doesn't have the MSR(banked) and MRS(banked) instructions
and uses the encodings for different kinds of M-profile MRS/MSR.
Guard the relevant bits of the decode logic to make sure we don't
accidentally fall into them by accident on M-profile.
(The bit being checked for this (bit 5) is part of the SYSm field on
M-profile, but since no currently allocated system registers have
encodings with bit 5 of SYSm set, this hasn't been a problem in
practice.)
Backports commit 43ac65742319ef5ac4461daf43316b189cd21e89 from qemu
M profile doesn't have the HVC or SMC encodings, so make them always
UNDEF rather than generating calls to helper functions that assume
A/R profile.
Backports commit 001b3cab51ebfcb13e8dd03ea25bfa3bd0c517a3 from qemu
The 'name' parameter to memory_region_init_* had been marked as debug
only, however vmstate_region_ram uses it as a parameter to
qemu_ram_set_idstr to set RAMBlock names and these form part of the
migration stream.
Backports commit e8f5fe2de125a0bfbefbaa6a69af81f4817cb7a0 from qemu
The power state spec section 5.1.5 AFFINITY_INFO defines the
affinity info return values as
0 ON
1 OFF
2 ON_PENDING
I grepped QEMU for power_state to ensure that no assumptions
of OFF=0 were being made.
Backports commit d5affb0d8677e1a8a8fe03fa25005b669e7cdc02 from qemu
In armv8, this register implements more than a single bit, with
fine-grained enables for read access to event counters, cycles
counters, and write access to the software increment. This change
implements those checks using custom access functions for the relevant
registers.
Backports commit 6ecd0b6ba0591ef280ed984103924d4bdca5ac32 from qemu
glibc blacklists TSX on Haswell CPUs with model==60 and
stepping < 4. To make the Haswell CPU model more useful, make
those guests actually use TSX by changing CPU stepping to 4.
References:
* glibc commit 2702856bf45c82cf8e69f2064f5aa15c0ceb6359
https://sourceware.org/git/?p=glibc.git;a=commit;h=2702856bf45c82cf8e69f2064f5aa15c0ceb6359
Backports commit ec56a4a7b07e2943f49da273a31e3195083b1f2e from qemu
Helper function for code that needs to check the host CPU
vendor/family/model/stepping values.
Backports commit 20271d484069f154fb262507e63adc3a37e885d2 from qemu
..just like the rest of the displayed ESR register. Otherwise people
might scratch their heads if a not obviously hex number is displayed
for the EC field.
Backports commit 6568da459b611845ef55526cd23afc9fa9f4647f from qemu
Paths through the softmmu code during code generation now need to be audited
to check for double locking of tb_lock. In particular, VMEXIT can take tb_lock
through cpu_vmexit -> cpu_x86_update_cr4 -> tlb_flush.
To avoid this, split VMEXIT delivery in two parts, similar to what is done with
exceptions. cpu_vmexit only records the VMEXIT exit code and information, and
cc->do_interrupt can then deliver it when it is safe to take the lock.
Backports commit 10cde894b63146139f981857e4eedf756fa53dcb from qemu
The translation code uses cpu_ld*_code which can trigger a tlb_fill
which if it fails will erroneously attempts a fault resolution. This
never works during translation as the TB being generated hasn't been
added yet. The target should have checked retaddr before calling
cpu_restore_state but for those that have yet to be fixed we do it
here to avoid a recursive tb_lock() under MTTCG's new locking regime
Backports commit d8b2239bcd8872a5c5f7534d1658fc2365caab2d from qemu
This suppresses the incorrect warning when forcing MTTCG for x86
guests on x86 hosts. A future patch will still warn when
TARGET_SUPPORT_MTTCG hasn't been defined for the guest (which is still
pending for x86).
Backports commit 72c1701f62e8d44eb24a0583a958edc280105455 from qemu
Fix the design flaw demonstrated in the previous commit: new method
check_list() lets input visitors report that unvisited input remains
for a list, exactly like check_struct() lets them report that
unvisited input remains for a struct or union.
Implement the method for the qobject input visitor (straightforward),
and the string input visitor (less so, due to the magic list syntax
there). The opts visitor's list magic is even more impenetrable, and
all I can do there today is a stub with a FIXME comment. No worse
than before.
Backports commit a4a1c70dc759e5b81627e96564f344ab43ea86eb from qemu
The split between tests/test-qobject-input-visitor.c and
tests/test-qobject-input-strict.c now makes less sense than ever. The
next commit will take care of that.
Backports commit 048abb7b20c9f822ad9d4b730bade73b3311a47a from qemu
Commit 240f64b made all qobject input visitors created outside tests
strict, except for the one in object_property_set_qobject(). That one
was left behind only because Eric couldn't spare the time to figure
out whether making it strict would break anything, with a TODO
comment. Time to resolve it.
Strict makes a difference only for otherwise successful visits of QAPI
structs or unions. Let's examine what the callers of
object_property_set_qobject() visit:
* object_property_set_str(), object_property_set_bool(),
object_property_set_int() visit a QString, QBool, QInt,
respectively. Strictness can't matter.
* qmp_qom_set visits its @value argument. Comes straight from QMP and
can be anything ('any' in the QAPI schema). Strictness matters when
the property's set() method visits a struct or union QAPI type.
No such methods exist, thus switching to strict can't break
anything.
If we acquire such methods in the future, we'll *want* the visitor
to be strict, so that unexpected members get rejected as they should
be.
Switch to strict.
Backports commit 05601ed2de60df0e344d6b783a6bc0c1ff2b5d1f from qemu
The string input visitor tries to cope with null input. Null input
isn't used anywhere, and isn't covered by tests. Unsurprisingly, it
doesn't fully work: start_list() crashes because it passes the input
via parse_str() to strtoll() unchecked.
Make string_input_visitor_new() assert its argument isn't null, and
drop the code trying to deal with null input.
The opts visitor crashes when you try to actually visit something with
null input. Make opts_visitor_new() assert its argument isn't null,
mostly for clarity.
qobject_input_visitor_new() already asserts its argument isn't null.
Backports commit f332e830e38b3ff3953ef02ac04e409ae53769c5 from qemu
visit_optional() is to be called only between visit_start_struct() and
visit_end_struct(). Visitors that don't support struct visits,
i.e. don't implement start_struct(), end_struct(), have no use for it.
Clarify documentation.
The string input visitor doesn't support struct visits. Its
parse_optional() is therefore useless. Drop it.
Backports commit a8aec6de2ac1a5e36989fdfba29067b361009b75 from qemu
Error messages refer to nodes of the QObject being visited by name.
Trouble is the names are sometimes less than helpful:
* The name of the root QObject is whatever @name argument got passed
to the visitor, except NULL gets mapped to "null". We commonly pass
NULL. Not good.
Avoiding errors "at the root" mitigates. For instance,
visit_start_struct() can only fail when the visited object is not a
dictionary, and we commonly ensure it is beforehand.
* The name of a QDict's member is the member key. Good enough only
when this happens to be unique.
* The name of a QList's member is "null". Not good.
Improve error messages by referring to nodes by path instead, as
follows:
* The path of the root QObject is whatever @name argument got passed
to the visitor, except NULL gets mapped to "<anonymous>".
* The path of a root QDict's member is the member key.
* The path of a root QList's member is "[%u]", where %u is the list
index, starting at zero.
* The path of a non-root QDict's member is the path of the QDict
concatenated with "." and the member key.
* The path of a non-root QList's member is the path of the QList
concatenated with "[%u]", where %u is the list index.
For example, the incorrect QMP command
{ "execute": "blockdev-add", "arguments": { "node-name": "foo", "driver": "raw", "file": {"driver": "file" } } }
now fails with
{"error": {"class": "GenericError", "desc": "Parameter 'file.filename' is missing"}}
instead of
{"error": {"class": "GenericError", "desc": "Parameter 'filename' is missing"}}
and
{ "execute": "input-send-event", "arguments": { "device": "bar", "events": [ [] ] } }
now fails with
{"error": {"class": "GenericError", "desc": "Invalid parameter type for 'events[0]', expected: object"}}
instead of
{"error": {"class": "GenericError", "desc": "Invalid parameter type for 'null', expected: QDict"}}
Aside: calling the thing "parameter" is suboptimal for QMP, because
the root object is "arguments" there.
The qobject output visitor doesn't have this problem because it should
not fail. Same for dealloc and clone visitors.
The string visitors don't have this problem because they visit just
one value, whose name needs to be passed to the visitor as @name. The
string output visitor shouldn't fail anyway.
The options visitor uses QemuOpts names. Their name space is flat, so
the use of QDict member keys as names is fine. NULL names used with
roots and lists could conceivably result in bad error messages. Left
for another day.
Backports commit a9fc37f6bc3f2ab90585cb16493da9f6dcfbfbcf from qemu
qobject_input_start_struct() sets *list, except when it fails because
qobject_input_get_object() fails, i.e. the input object doesn't exist.
All the other input visitor start_struct(), start_list(),
start_alternate() always set *obj / *list.
Change qobject_input_start_struct() to match.
Backports commit 58561c27669ddf1c6d39ff8ce25837c6f2d9d92c from qemu
The QObject input visitor has three error message formats:
* Parameter '%s' is missing
* "Invalid parameter type for '%s', expected: %s"
* "QMP input object member '%s' is unexpected"
The '%s' are member names (or "null", but I'll fix that later).
The last error message calls the thing "QMP input object member"
instead of "parameter". Misleading when the visitor is used on
QObjects that don't come from QMP. Change it to "Parameter '%s' is
unexpected".
Backports commit 910f738b851a263396fc85b2052e47f884ffead3 from qemu
The QERR_ macros are leftovers from the days of "rich" error objects.
QERR_QMP_BAD_INPUT_OBJECT, QERR_QMP_BAD_INPUT_OBJECT_MEMBER,
QERR_QMP_EXTRA_MEMBER are used in just one place now, except for one
use that has crept into qobject-input-visitor.c.
Drop these macros, to make the (bad) error messages more visible.
Backports commit 99fb0c53c038105bae68b02a3d9f1cbf7951ba10 from qemu
At the moment ram device's memory regions are DEVICE_NATIVE_ENDIAN. It's
incorrect. This memory region is backed by a MMIO area in host, so the
uint64_t data that MemoryRegionOps read from/write to this area should be
host-endian rather than target-endian. Hence, current code does not work
when target and host endianness are different which is the most common case
on PPC64. To fix it, this introduces DEVICE_HOST_ENDIAN for the ram device.
This has been tested on PPC64 BE/LE host/guest in all possible combinations
including TCG.
Backports commit c99a29e702528698c0ce2590f06ca7ff239f7c39 from qemu
The cpu->exit_request check in cpu_loop_exec_tb is unnecessary,
because cpu->tcg_exit_req is always set after cpu->exit_request.
So let the TB exit and we will pick up the exit request later
in cpu_handle_interrupt.
Backports commit 55ac0a9bf4e1b1adfc7d73586a7aa085f58c9851 from qemu
CPU runnability checks and CPU model expansion have slightly
different requirements. Document the steps involved in loading a
CPU model and realizing a CPU, so their requirements and purpose
are clearly defined.
This patch doesn't change any implementation. It just add
comments, rename the x86_cpu_load_features() function for clarity
(so it won't be confused with x86_cpu_load_def()), and move
x86_cpu_filter_features() closer to it.
Backports commit b8d834a00fa3ed4dad7d371e1a00938a126a54a0 from qemu
To fix the following warnings:
In file included from /users/pranith/qemu/tcg/tcg.c:255:
/users/pranith/qemu/tcg/aarch64/tcg-target.inc.c:879:24: warning: implicit conversion from enumeration type 'TCGMemOp' (aka 'enum TCGMemOp') to different enumeration type 'TCGType' (aka 'enum TCGType')
[-Wenum-conversion]
tcg_out_cmp(s, ext, a, b, b_const);
~~~~~~~~~~~ ^~~
/users/pranith/qemu/tcg/aarch64/tcg-target.inc.c:893:36: warning: implicit conversion from enumeration type 'TCGMemOp' (aka 'enum TCGMemOp') to different enumeration type 'TCGType' (aka 'enum TCGType')
[-Wenum-conversion]
tcg_out_insn(s, 3201, CBZ, ext, a, offset);
~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~
/users/pranith/qemu/tcg/aarch64/tcg-target.inc.c:389:65: note: expanded from macro 'tcg_out_insn'
glue(tcg_out_insn_,FMT)(S, glue(glue(glue(I,FMT),_),OP), ## __VA_ARGS__)
^
/users/pranith/qemu/tcg/aarch64/tcg-target.inc.c:895:37: warning: implicit conversion from enumeration type 'TCGMemOp' (aka 'enum TCGMemOp') to different enumeration type 'TCGType' (aka 'enum TCGType')
[-Wenum-conversion]
tcg_out_insn(s, 3201, CBNZ, ext, a, offset);
~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~
/users/pranith/qemu/tcg/aarch64/tcg-target.inc.c:389:65: note: expanded from macro 'tcg_out_insn'
glue(tcg_out_insn_,FMT)(S, glue(glue(glue(I,FMT),_),OP), ## __VA_ARGS__)
^
/users/pranith/qemu/tcg/aarch64/tcg-target.inc.c:1610:27: warning: implicit conversion from enumeration type 'TCGType' (aka 'enum TCGType') to different enumeration type 'TCGMemOp' (aka 'enum TCGMemOp')
[-Wenum-conversion]
tcg_out_brcond(s, ext, a2, a0, a1, const_args[1], arg_label(args[3]));
~~~~~~~~~~~~~~ ^~~
backports commit dc1eccd661ada3b746ca4438e444993c36a0f04f from qemu
In float64_to_uint64_round_to_zero() a typo meant that we were
taking the uint64_t return value from float64_to_uint64() and
putting it into an int64_t variable before returning it as
uint64_t again. Use uint64_t instead of pointlessly casting it
back and forth to int64_t.
Backports commit d000b477f2693dbca97cd8ea751c2e0b71890662 from qemu
In get_page_addr_code(), if the guest PC doesn't correspond to RAM
then we currently run the CPU's do_unassigned_access() hook if it has
one, and otherwise we give up and exit QEMU with a more-or-less
useful message. This code assumes that the do_unassigned_access hook
will never return, because if it does then we'll plough on attempting
to use a non-RAM TLB entry to get a RAM address and will abort() in
qemu_ram_addr_from_host_nofail(). Unfortunately some CPU
implementations of this hook do return: Microblaze, SPARC and the ARM
v7M.
Change the code to call report_bad_exec() if the hook returns, as
well as if it didn't have one. This means we can tidy it up to use
the cpu_unassigned_access() function which wraps the "get the CPU
class and call the hook if it has one" work, since we aren't trying
to distinguish "no hook" from "hook existed and returned" any more.
This brings the handling of this hook into line with the handling
used for data accesses, where "hook returned" is treated the
same as "no hook existed" and gets you the default behaviour.
Backports commit 44d7ce0ef39cb45e13d384574d79799eb3d39834 from qemu
The aarch64 crypto instructions for AES and SHA are missing the
check for if the FPU is enabled.
Backports commit a4f5c5b72380deeccd53a6890ea3782f10ca8054 from qemu
This enables the multi-threaded system emulation by default for ARMv7
and ARMv8 guests using the x86_64 TCG backend. This is because on the
guest side:
- The ARM translate.c/translate-64.c have been converted to
- use MTTCG safe atomic primitives
- emit the appropriate barrier ops
- The ARM machine has been updated to
- hold the BQL when modifying shared cross-vCPU state
- defer powerctl changes to async safe work
All the host backends support the barrier and atomic primitives but
need to provide same-or-better support for normal load/store
operations.
Backports commit ca759f9e387db87e1719911f019bc60c74be9ed8 from qemu
The WFE and YIELD instructions are really only hints and in TCG's case
they were useful to move the scheduling on from one vCPU to the next. In
the parallel context (MTTCG) this just causes an unnecessary cpu_exit
and contention of the BQL.
Backports commit c22edfebff29f63d793032e4fbd42a035bb73e27 from qemu
This moves the helper function closer to where it is called and updates
the error message to report via error_report instead of the deprecated
fprintf.
Backports commit 857baec1d9e80947f0c1007c3a3d2331d62b4b53 from qemu
While the vargs approach was flexible the original MTTCG ended up
having munge the bits to a bitmap so the data could be used in
deferred work helpers. Instead of hiding that in cputlb we push the
change to the API to make it take a bitmap of MMU indexes instead.
For ARM some the resulting flushes end up being quite long so to aid
readability I've tended to move the index shifting to a new line so
all the bits being or-ed together line up nicely, for example:
tlb_flush_page_by_mmuidx(other_cs, pageaddr,
(1 << ARMMMUIdx_S1SE1) |
(1 << ARMMMUIdx_S1SE0));
Backports commit 0336cbf8532935d8e23c2aabf3e2ce2c0697b6ac from qemu
The patch enables handling atomic code in the guest. This should be
preferably done in cpu_handle_exception(), but the current assumptions
regarding when we can execute atomic sections cause a deadlock.
The current mechanism discards the flags which were set in atomic
execution. We ensure they are properly saved by calling the
cc->cpu_exec_enter/leave() functions around the loop.
As we are running cpu_exec_step_atomic() from the outermost loop we
need to avoid an abort() when single stepping over atomic code since
debug exception longjmp will point to the the setlongjmp in
cpu_exec(). We do this by setting a new jmp_env so that it jumps back
here on an exception.
Backports relevant parts of commit 08e73c48b053566bfe0c994f154f73991cd0ff0e from qemu
There are a couple of changes that occur at the same time here:
- introduce a single vCPU qemu_tcg_cpu_thread_fn
One of these is spawned per vCPU with its own Thread and Condition
variables. qemu_tcg_rr_cpu_thread_fn is the new name for the old
single threaded function.
- the TLS current_cpu variable is now live for the lifetime of MTTCG
vCPU threads. This is for future work where async jobs need to know
the vCPU context they are operating in.
The user to switch on multi-thread behaviour and spawn a thread
per-vCPU. For a simple test kvm-unit-test like:
./arm/run ./arm/locking-test.flat -smp 4 -accel tcg,thread=multi
Will now use 4 vCPU threads and have an expected FAIL (instead of the
unexpected PASS) as the default mode of the test has no protection when
incrementing a shared variable.
We enable the parallel_cpus flag to ensure we generate correct barrier
and atomic code if supported by the front and backends. This doesn't
automatically enable MTTCG until default_mttcg_enabled() is updated to
check the configuration is supported.
Backports relevant parts of commit 372579427a5040a26dfee78464b50e2bdf27ef26
There are now only two uses of the global exit_request left.
The first ensures we exit the run_loop when we first start to process
pending work and in the kick handler. This is just as easily done by
setting the first_cpu->exit_request flag.
The second use is in the round robin kick routine. The global
exit_request ensured every vCPU would set its local exit_request and
cause a full exit of the loop. Now the iothread isn't being held while
running we can just rely on the kick handler to push us out as intended.
We lightly re-factor the main vCPU thread to ensure cpu->exit_requests
cause us to exit the main loop and process any IO requests that might
come along. As an cpu->exit_request may legitimately get squashed
while processing the EXCP_INTERRUPT exception we also check
cpu->queued_work_first to ensure queued work is expedited as soon as
possible.
Backports commit e5143e30fb87fbf179029387f83f98a5a9b27f19 from qemu
..and make the definition local to cpus. In preparation for MTTCG the
concept of a global tcg_current_cpu will no longer make sense. However
we still need to keep track of it in the single-threaded case to be able
to exit quickly when required.
qemu_cpu_kick_no_halt() moves and becomes qemu_cpu_kick_rr_cpu() to
emphasise its use-case. qemu_cpu_kick now kicks the relevant cpu as
well as qemu_kick_rr_cpu() which will become a no-op in MTTCG.
For the time being the setting of the global exit_request remains.
Backports commit 791158d93b27f22a17c2ada06621831d54f09a2c from qemu
Also atomically sets the unicorn equivalents
We know there will be cases where MTTCG won't work until additional work
is done in the front/back ends to support. It will however be useful to
be able to turn it on.
As a result MTTCG will default to off unless the combination is
supported. However the user can turn it on for the sake of testing.
Backports commit 8d4e9146b3568022ea5730d92841345d41275d66 from qemu
We'll be using the memory ordering definitions to define values for
both the host and guest. To avoid fighting with circular header
dependencies just move these types into their own minimal header.
Backports commit 20937143145b8f5a4194e5c407731ba38797864e from qemu
Enable tcg lock debug asserts in a debug build by default instead of
relying on DEBUG_LOCKING. None of the other DEBUG_* macros have
asserts, so this patch removes DEBUG_LOCKING and enable these asserts
in a debug build.
Backports commit 6ac3d7e845549f08473f020c1c70f14b8911a67e from qemu
This makes qemu_strtosz(), qemu_strtosz_mebi() and
qemu_strtosz_metric() similar to qemu_strtoi64(), except negative
values are rejected.
Backports commit f17fd4fdf0df3d2f3444399d04c38d22b9a3e1b7 from qemu
Change the qemu_strtosz() & friends to return -EINVAL when @endptr is
null and the conversion doesn't consume the string completely.
Matches how qemu_strtol() & friends work.
Only test_qemu_strtosz_simple() passes a null @endptr. No functional
change there, because its conversion consumes the string.
Simplify callers that use @endptr only to fail when it doesn't point
to '\0' to pass a null @endptr instead.
Backports commit 4fcdf65ae2c00ae69f7625f26ed41f37d77b403c from qemu
Writing QEMU_STRTOSZ_DEFSUFFIX_* instead of '*' gains nothing. Get
rid of these eyesores.
Backports commit 17f942560e54f8ee72996bc3276c697503606d7b from qemu
Most callers of qemu_strtosz_suffix() pass QEMU_STRTOSZ_DEFSUFFIX_B.
Capture the pattern in new qemu_strtosz().
Inline qemu_strtosz_suffix() into its only remaining caller.
Backports commit 466dea14e677555dd24465aca75d00a3537ad062 from qemu
With qemu_strtosz(), no suffix means mebibytes. It's used rarely.
I'm going to add a similar function where no suffix means bytes.
Rename qemu_strtosz() to qemu_strtosz_MiB() to make the name
qemu_strtosz() available for the new function.
Backports commit e591591b323772eea733de6027f5e8b50692d0ff from qemu
To parse numbers with metric suffixes, we use
qemu_strtosz_suffix_unit(nptr, &eptr, QEMU_STRTOSZ_DEFSUFFIX_B, 1000)
Capture this in a new function for legibility:
qemu_strtosz_metric(nptr, &eptr)
Replace test_qemu_strtosz_suffix_unit() by test_qemu_strtosz_metric().
Rename qemu_strtosz_suffix_unit() to do_strtosz() and give it internal
linkage.
Backports commit d2734d2629266006b0413433778474d5801c60be from qemu
Reorder check_strtox_error() to make it obvious that we always store
through a non-null @endptr.
Transform
if (some error) {
error case ...
err = value for error case;
} else {
normal case ...
err = value for normal case;
}
return err;
to
if (some error) {
error case ...
return value for error case;
}
normal case ...
return value for normal case;
Backports commit 4baef2679e029c76707be1e2ed54bf3dd21693fe from qemu
Name same things the same, different things differently.
* qemu_strtol()'s parameter @nptr is called @p in
check_strtox_error(). Rename the latter.
* qemu_strtol()'s parameter @endptr is called @next in
check_strtox_error(). Rename the latter.
* qemu_strtol()'s variable @p is called @endptr in
check_strtox_error(). Rename both to @ep.
* qemu_strtol()'s variable @err is *negative* errno,
check_strtox_error()'s parameter @err is *positive*. Rename the
latter to @libc_errno.
Same for qemu_strtoul(), qemu_strtoi64(), qemu_strtou64(), of course.
Backports commit 717adf960933da0650d995f050d457063d591914 from qemu
The name qemu_strtoll() suggests conversion to long long, but it
actually converts to int64_t. Rename to qemu_strtoi64().
The name qemu_strtoull() suggests conversion to unsigned long long,
but it actually converts to uint64_t. Rename to qemu_strtou64().
Backports commit b30d188677456b17c1cd68969e08ddc634cef644 from qemu
Fixes the following documentation bugs:
* Fails to document that null @nptr is safe.
* Fails to document that we return -EINVAL when no conversion could be
performed (commit 47d4be1).
* Confuses long long with int64_t, and unsigned long long with
uint64_t.
* Claims the unsigned conversions can underflow. They can't.
While there, mark problematic assumptions that int64_t is long long,
and uint64_t is unsigned long long with FIXME comments.
Backports commit 4295f879becfbbb9f4330489311586b96915d920 from qemu
Commit 89cad9f changed qdict_get_qdict() to return NULL instead of
crash when the key doesn't exist or its value isn't a QDict.
Commit 2d6421a neglected to do the same for qdict_get_qlist().
Correct that, and update the function comments.
qdict_get_obj() is now unused, remove.
Backports commit b25f23e7dbc6bc0dcda010222a4f178669d1aedc from qemu
float128_to_uint32_round_to_zero() is needed by xscvqpuwz instruction
of PowerPC ISA 3.0.
Backports commit fd425037d25cecaaffdb3831697e0adc10ca2ba3 from qemu
Implement float128_to_uint64() and use that to implement
float128_to_uint64_round_to_zero()
This is required by xscvqpudz instruction of PowerPC ISA 3.0.
Backports commit 2e6d85683576c970c714c1cc071dca742835b9d4 from qemu
Power ISA 3.0 introduces a few quadruple precision floating point
instructions that support round-to-odd rounding mode. The
round-to-odd mode is explained as under:
Let Z be the intermediate arithmetic result or the operand of a convert
operation. If Z can be represented exactly in the target format, the
result is Z. Otherwise the result is either Z1 or Z2 whichever is odd.
Here Z1 and Z2 are the next larger and smaller numbers representable
in the target format respectively.
Backports commit 9ee6f678f473007e252934d6acd09c24490d9d42 from qemu
Provide a new cpu_supports_isa function which allows callers to
determine whether a CPU supports one of the ISA_ flags, by testing
whether the associated struct mips_def_t sets the ISA flags in its
insn_flags field.
An example use of this is to allow boards which generate bootloader code
to determine the properties of the CPU that will be used, for example
whether the CPU is 64 bit or which architecture revision it implements.
Backports commit bed9e5ceb158c886d548fe59675a6eba18baeaeb from qemu
Clear cache->mr so that address_space_cache_destroy does nothing
the second time it is called.
Backports commit 91047df38dffa80222179f63fbb74c1dfefa25ed from qemu
Reorganize the sigsetjmp so that the restart case falls through
to cpu_handle_exception and the execution loop.
Backports commit 4515e58d60dc3aac53dbd5e53e4c3bec126967d8 from qemu
The sigsetjmp only needs to be prepared once for the whole execution
of cpu_exec. This patch takes care of the "== 0" side, using a
nested loop so that cpu_handle_interrupt goes straight back to
cpu_handle_exception without doing another sigsetjmp.
Backports commit a42cf3f3f266a97ceb13e8b99bc7b13f7bf4192a from qemu
The siglongjmp goes straight back to the beginning of cpu_exec's
outermost loop. We do not need a siglongjmp, we can simply
leave the inner TB execution loop.
Backports commit 209b71b60ef3341246038e1c926c3b704969cdd3 from qemu
This seems to have worked just fine so far on weakly-ordered
architectures, but I don't see anything that prevents the
reordering from:
store 1 to exit_request
store 1 to tcg_exit_req
load tcg_exit_req
store 0 to tcg_exit_req
load exit_request
store 0 to exit_request
store 1 to exit_request
store 1 to tcg_exit_req
to this:
store 1 to exit_request
store 1 to tcg_exit_req
load tcg_exit_req
load exit_request
store 1 to exit_request
store 1 to tcg_exit_req
store 0 to tcg_exit_req
store 0 to exit_request
therefore losing a request. It's possible that other memory barriers
(e.g. in rcu_read_unlock) are hiding it, but better safe than
sorry.
Backports commit a70fe14b7dddcb944fbd6c9f3739cd3a22089af5 from qemu
This patch contains several fixes to enable vPMU under TCG mode. It
first removes the checking of kvm_enabled() while unsetting
ARM_FEATURE_PMU. With it, the .pmu option can be used to turn on/off vPMU
under TCG mode. Secondly the PMU node of DT table is now created under TCG.
The last fix is to disable the masking of PMUver field of ID_AA64DFR0_EL1.
Backports commit d6f02ce3b8a43ddd8f83553fe754a34b26fb273f from qemu
In order to support Linux perf, which uses PMXEVTYPER register,
this patch adds read/write access support for PMXEVTYPER. The access
is CONSTRAINED UNPREDICTABLE when PMSELR is not 0x1f. Additionally
this patch adds support for PMXEVTYPER_EL0.
Backports commit fdb8665672ded05f650d18f8b62d5c8524b4385b from qemu
This patch adds support for AArch64 register PMSELR_EL0. The existing
PMSELR definition is revised accordingly.
Backports commit 6b0407805d46bbeba70f4be426285d0a0e669750 from qemu
Add support for generating the ISS (Instruction Specific Syndrome)
for Data Abort exceptions taken from AArch32. These syndromes are
used by hypervisors for example to trap and emulate memory accesses.
This is the equivalent for AArch32 guests of the work done for AArch64
guests in commit aaa1f954d4cab243.
Backports commit 9bb6558a218bf7e466e5ac1100639517d8a30d33 from qemu
In the ARM ldr/str decode path, rather than directly testing
"insn & (1 << 21)" and "insn & (1 << 24)", abstract these
bits out into wbit and pbit local flags. (We will want to
do more tests against them to determine whether we need to
provide syndrome information.)
Backports commit 63f26fcfda8e19f94ce23336726d14805250a5b6 from qemu
In BE32 mode, sub-word size watchpoints can fail to trigger because the
address of the access is adjusted in the opcode helpers before being
compared with the watchpoint registers. This patch reverses the address
adjustment before performing the comparison with the help of a new CPUClass
hook.
This version of the patch augments and tidies up comments a little.
Backports commit 40612000599e52e792d23c998377a0fa429c4036 from qemu
Thumb-1 code has some issues in BE32 mode (as currently implemented). In
short, since bytes are swapped within words at load time for BE32
executables, this also swaps pairs of adjacent Thumb-1 instructions.
This patch un-swaps those pairs of instructions again, both for execution,
and for disassembly. (The previous version of the patch always read four
bytes in arm_read_memory_func and then extracted the proper two bytes,
in a probably misguided attempt to match the behaviour of actual hardware
as described by e.g. the ARM9TDMI TRM, section 3.3 "Endian effects for
instruction fetches". It's less complicated to just read the correct
two bytes though.)
Backports commit f7478a92dd9ee2276bfaa5b7317140d3f9d6a53b from qemu
Add a new "cfgend" property which selects whether the CPU resets into
big-endian mode or not. This setting affects whether we reset with
SCTLR_B (ARMv6 and earlier) or SCTLR_EE (ARMv7 and later) set.
Backports commit 3a062d5730266b2386eeda68b1a1c6e96451db31 from qemu
Currently float128_default_nan() returns 0xFFFF800000000000 in the
higher double word, but it should return 0x7FFF800000000000 which
is the correct higher double word for default qNAN on PowerPC.
Backports commit 5d51eaea84899d88cb161fab3f089168e3812e9e from qemu
stub version of MISMATCH_CHECK is empty so it's easy to misuse for
people not building kvm on arm. Use QEMU_BUILD_BUG_ON similar to the
non-stub version to make it easier to catch bugs.
Backports commit 705ae59fecae341a4b1a45ce48b46de4b1bb3cf4 from qemu
Macro calls without a trailing ; look weird in C, this works as a side
effect of how QEMU_BUILD_BUG_ON is implemented. Fix this up.
Backports commit 1b28762a333bd238611103e9ed2348d7af93b0db from qemu
It's a familiar pattern: some code uses ARRAY_SIZE, then refactoring
changes the argument from an array to a pointer to a dynamically
allocated buffer. Code keeps compiling but any ARRAY_SIZE calls now
return the size of the pointer divided by element size.
Let's add build time checks to ARRAY_SIZE before we allow more
of these in the code-base.
Backports commit ed63ec0d22ccdce3b2222d9a514423b7fbba3a0d from qemu
QEMU_BUILD_BUG_ON uses a typedef in order to be safe
to use outside functions, but sometimes it's useful
to have a version that can be used within an expression.
Following what Linux does, introduce QEMU_BUILD_BUG_ON_ZERO
that return zero after checking condition at build time.
Backports commit d757573e69f2ef58a4a7b41f6c55d65fa1e1c5c2 from qemu
There are theoretical concerns that some compilers might not trigger
build failures on attempts to define an array of size (x ? -1 : 1) where
x is a variable and make it a variable sized array instead. Let rewrite
using a struct with a negative bit field size instead as there are no
dynamic bit field sizes. This is similar to what Linux does.
Backports commit f291887e8eef5d37d31484638f6e62401b4b99a2 from qemu
Some headers use QEMU_BUILD_BUG_ON. This causes a problem
if the C file including that header happens to have
QEMU_BUILD_BUG_ON at the same line number.
Fix using a widely available extension: __COUNTER__.
If unavailable, provide a stub.
Backports commit 60abf0a5e05134187e274ce5f32524ccf0cae1a6 from qemu
ldl_p has a signed return type so assigning it to uint64_t implicitly
sign-extends the value. This results in devices with min_access_size = 8
seeing unexpected values passed to their write handlers.
Example: guest performs a 32-bit write of 0x80000000 to an mmio region
and the handler receives 0xFFFFFFFF80000000 in its value argument.
Backports commit 6da67de6803e93cbb7e93ac3497865832f8c00ea from qemu
We only use the IS_M() macro in two places, and it's a bit of a
namespace grab to put in cpu.h. Drop it in favour of just explicitly
calling arm_feature() in the places where it was used.
Backports commit 531c60a97ab51618b4b9ccef1c5fe00607079706 from qemu
1st mmap returns *ptr* which aligns to host page size,
| size + align |
------------------------------------------
ptr
input param *align* could be 1M, or 2M, or host page size. After
QEMU_ALIGN_UP, offset will >= 0
2nd mmap use flag MAP_FIXED, then it return ptr+offset, or else fail.
If it success, then we will have something like:
| offset | size |
--------------------------------------
ptr ptr1
*ptr1* is what we really want to return, it equals ptr+offset.
Backports commit 6e4c890e15b23f078650499fbde11760b8eccf10 from qemu
When CPU vendor is set to AMD, the AMD feature alias bits on
CPUID[0x80000001].EDX are already automatically copied from CPUID[1].EDX
on x86_cpu_realizefn(). When CPU vendor is Intel, those bits are
reserved and should be zero. On either case, those bits shouldn't be set
in the CPU model table.
Commit 726a8ff68677d8d5fba17eb0ffb85076bfb598dc removed those
bits from most CPU models, but the Opteron_* entries still have
them. Remove the alias bits from Opteron_* too.
Add an assert() to x86_register_cpudef_type() to ensure we don't
make the same mistake again.
Backports commit 2a923a293df95334fa22634016efdd138f49da7f from qemu
AVX512_VPOPCNTDQ: Vector POPCNT instructions for word and qwords.
variable precision.
Backports commit f77543772dcd38fa438470d9b80bafbd3a3ebbd7 from qemu
Like the original MIPS, HPPA has the MSB of an SNaN set.
However, it has different rules for silencing an SNaN:
(1) msb is cleared and (2) msb-1 must be set if the fraction
is now zero, and (implementation defined) may be set always.
I haven't checked real hardware but chose the set always
alternative because it's easy and within spec.
Backports commit 005fa38d86257d471ac461c066a5409a9f5ebb02 from qemu
C11 allows errno to be clobbered by pretty much any library function
call, so in general callers need to take care to save errno before
calling other functions.
However, for error reporting functions this is rather awkward and can
make the code on the caller side more complicated than
necessary. error_setg_errno() already takes care of preserving errno
and some functions rely on that, so just promise that we continue to
do so in the future.
Backports commit 98cb89af4df7e1776ce418ed6167b6e214a64435 from qemu
Enable the ARM_FEATURE_EL2 bit on Cortex-A52 and
Cortex-A57, since this is all now sufficiently implemented
to work with the GICv3. We provide the usual CPU property
to disable it for backwards compatibility with the older
virt boards.
In this commit, we disable the EL2 feature on the
virt and ZynpMP boards, so there is no overall effect.
Another commit will expose a board-level property to
allow the user to enable EL2.
Backports commit c25bd18a04c8bd0f19556d719864b7b08528222d from qemu
The PSCI spec states that a CPU_ON call should cause the new
CPU to be started in the highest implemented Non-secure
exception level. We were incorrectly starting it at the
exception level of the caller, which happens to be correct
if EL2 is not implemented. Implement the correct logic
as described in the PSCI 1.0 spec section 6.4:
* if EL2 exists and SCR_EL3.HCE is set: start in EL2
* otherwise start in EL1
Backports commit 3f591a20221511c639cc7959755e570801a21cd2 from qemu
Split ARM on/off function from PSCI support code.
This will allow to reuse these functions in other code.
Backports commit 825482adde1f971cbddf27e15fb4453ab3fae994 from qemu
The DBGVCR_EL2 system register is needed to run a 32-bit
EL1 guest under a Linux EL2 64-bit hypervisor. Its only
purpose is to provide AArch64 with access to the state of
the DBGVCR AArch32 register. Since we only have a dummy
DBGVCR, implement a corresponding dummy DBGVCR32_EL2.
Backports commit 4d2ec4da1c2d60c9fd8bad137506870c2f980410 from qemu
To run a VM in 32-bit EL1 our AArch32 interrupt handling code
needs to be able to cope with VIRQ and VFIQ exceptions.
These behave like IRQ and FIQ except that we don't need to try
to route them to Monitor mode.
Backports commit 87a4b270348c69a446ebcddc039bfae31b1675cb from qemu
We've currently got 18 architectures in QEMU, and thus 18 target-xxx
folders in the root folder of the QEMU source tree. More architectures
(e.g. RISC-V, AVR) are likely to be included soon, too, so the main
folder of the QEMU sources slowly gets quite overcrowded with the
target-xxx folders.
To disburden the main folder a little bit, let's move the target-xxx
folders into a dedicated target/ folder, so that target-xxx/ simply
becomes target/xxx/ instead.
Backports commit fcf5ef2ab52c621a4617ebbef36bf43b4003f4c0 from qemu
In OpenSPARC T1+ TWINX ASIs in store instructions are aliased
with Block Initializing Store ASIs.
"UltraSPARC T1 Supplement Draft D2.1, 14 May 2007" describes them
in the chapter "5.9 Block Initializing Store ASIs"
Integer stores of all sizes are allowed with these ASIs.
Backports commit 3390537b5df4014e24a30f9bdcfa05c2bd0cd6d8 from qemu
According to chapter 13.3 of the
UltraSPARC T1 Supplement to the UltraSPARC Architecture 2005,
only the sun4u format is available for data-access loads.
Store UA2005 entries in the sun4u format to simplify processing.
Backports commit 7285fba083de3f14f6e98abb4469173b56da9480 from qemu
Implement the behavior described in the chapter 13.9.11 of
UltraSPARC T1™ Supplement to the UltraSPARC Architecture 2005:
"If a TLB Data-In replacement is attempted with all TLB
entries locked and valid, the last TLB entry (entry 63) is
replaced."
Backports commit 4797a6851975c1239df440c5f01d8566e63717bb from qemu
Please note that QEMU doesn't impelement Real->Physical address
translation. The "Real Address" is always the "Physical Address".
Backports commit 84f8f5876628963e67f66edde8a71208c4274ac8 from qemu
Accordinf to UA2005, 9.3.3 "Address Space Identifiers",
"In hyperprivileged mode, all instruction fetches and loads and stores with implicit
ASIs use a physical address, regardless of the value of TL".
Backports commit 9a10756d1204c3528e47892195349bf882069846 from qemu
As described in Chapter 5.7.6 of the UltraSPARC Architecture 2005,
outstanding disrupting exceptions that are destined for privileged mode can only
cause a trap when the virtual processor is in nonprivileged or privileged mode and
PSTATE.ie = 1. At all other times, they are held pending.
Backports commit 1a2aefae6627170fdee689b394a65f76080c068a from qemu
Use explicit register pointers while accessing D/I-MMU registers.
Call cpu_unassigned_access on access to missing registers.
Backports commit 20395e63375358bf6dd147057aaf998abf7abdb9 from qemu
while IMMU/DMMU is disabled
- ignore MMU-faults in hypervisorv mode or if CPU doesn't have hypervisor
- signal TT_INSN_REAL_TRANSLATION_MISS/TT_DATA_REAL_TRANSLATION_MISS otherwise
Backports commit 1ceca928538a3633b74a7dc718a05ce6767f2f76 from qemu
We have never has the concept of global TLB entries which would avoid
the flush so we never actually use this flag. Drop it and make clear
that tlb_flush is the sledge-hammer it has always been.
Backports commit d10eb08f5d8389c814b554d01aa2882ac58221bf from qemu
Both the cpu->tb_jmp_cache and SoftMMU TLB structures are only used
when running TCG code so we might as well skip them for anything else.
Backports commit ba7d3d1858c257e39b47f7f12fa2016ffd960b11 from qemu
It is a common thing amongst the various cpu reset functions want to
flush the SoftMMU's TLB entries. This is done either by calling
tlb_flush directly or by way of a general memset of the CPU
structure (sometimes both).
This moves the tlb_flush call to the common reset function and
additionally ensures it is only done for the CONFIG_SOFTMMU case and
when tcg is enabled.
In some target cases we add an empty end_of_reset_fields structure to the
target vCPU structure so have a clear end point for any memset which
is resetting value in the structure before CPU_COMMON (where the TLB
structures are).
While this is a nice clean-up in general it is also a precursor for
changes coming to cputlb for MTTCG where the clearing of entries
can't be done arbitrarily across vCPUs. Currently the cpu_reset
function is usually called from the context of another vCPU as the
architectural power up sequence is run. By using the cputlb API
functions we can ensure the right behaviour in the future.
Backports commit 1f5c00cfdb8114c1e3a13426588ceb64f82c9ddb from qemu
On 680x0 family only.
Address Register indirect With postincrement:
When using the stack pointer (A7) with byte size data, the register
is incremented by two.
Address Register indirect With predecrement:
When using the stack pointer (A7) with byte size data, the register
is decremented by two.
Backports commit 727d937b59f1f722f983e20f9cd23b0e7ef60165 from qemu
gen_flush_flags() is setting unconditionally cc_op_synced to 1
and s->cc_op to CC_OP_FLAGS, whereas env->cc_op can be set
to something else by a previous tcg fragment.
We fix that by not setting cc_op_synced to 1
(except for gen_helper_flush_flags() that updates env->cc_op)
FIX: https://github.com/vivier/qemu-m68k/issues/19
Backports commit 695576db2daaf2bdc63e7f6d36038b61caed622a from qemu
M680x0 bit operations with an immediate value use 9 bits of the 16bit
value, while coldfire ones use only 8 bits.
Backports commit fe53c2be8c12da345bd788b949e0b2360e4b3db3 from qemu
In commit c52ab08aee6f7d4717fc6b517174043126bd302f,
the patch snippet for the "syscall" insn got applied to "iret".
Backports commit 410e98146ffde201ab4c778823ac8beaa74c4c3f from qemu
Particularly when andc is also available, this is two insns
shorter than using clz to compute ctz.
Backports commit 14e99210f6c6cede461a54b2e0f9b4cd55175f00 from qemu
The number of actual invocations of ctpop itself does not warrent
an opcode, but it is very helpful for POWER7 to use in generating
an expansion for ctz.
Backports commit a768e4e99247911f00c5c0267c12d4e207d5f6cc from qemu
The number of actual invocations does not warrent an opcode,
and the backends generating it. But at least we can eliminate
redundant helpers.
Backports commit 086920c2c8008f125fd38781072fa25c3ad158ea from qemu
Previously we could not have different constraints for different ISA levels,
which prevented us from eliding the matching constraint for shifts.
We do now have to make sure that the operands match for constant shifts.
We can also handle some small left shifts via lea.
Backports commit 6a5aed4bdc7078838a8098336588d56c9ce09d1d from qemu
Use a switch instead of searching a table. Share constraints between
32-bit and 64-bit, when at all possible.
Backports commit cd26449a505f808e479af4fdd539e05767e09c06 from qemu
This allows an output operand to match an input operand
only when the input operand needs a register.
Backports commit 17280ff4a5f264e01e55ae514ee6d3586f9577b2 from qemu
This will let us choose how to interpret a given constraint
depending on whether the opcode is 32- or 64-bit. Which will
let us share more constraint combinations between opcodes.
At the same time, change the interface to return the advanced
pointer instead of passing it in/out by reference.
Backports commit 069ea736b50b75fdec99c9b8cc603b97bd98419e from qemu
This will allow the target to tailor the constraints to the
auto-detected ISA extensions.
Backports commit f69d277ece43c42c7ab0144c2ff05ba740f6706b from qemu
A couple of places where it was easy to identify a right-shift
followed by an extract or and-with-immediate, and the obvious
sign-extract from a high byte register.
Backports commit 04fc2f1c8fc030a11e08e81bb926392c0991282a from qemu